ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Aerodynamics for Engineering Students (Seventh Edition)

دانلود کتاب آیرودینامیک برای دانشجویان مهندسی (ویرایش هفتم)

Aerodynamics for Engineering Students (Seventh Edition)

مشخصات کتاب

Aerodynamics for Engineering Students (Seventh Edition)

ویرایش: [7 ed.] 
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9780081001943 
ناشر: Butterworth-Heinemann 
سال نشر: 2015 
تعداد صفحات: 671
[667] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 11 Mb 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Aerodynamics for Engineering Students (Seventh Edition) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آیرودینامیک برای دانشجویان مهندسی (ویرایش هفتم) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب آیرودینامیک برای دانشجویان مهندسی (ویرایش هفتم)

آیرودینامیک برای دانشجویان مهندسی، ویرایش هفتم، یکی از متون درسی پیشرو در جهان در زمینه آیرودینامیک است. این توضیحات مختصری از مفاهیم اساسی، همراه با مقدمه ای عالی برای تئوری آیرودینامیک ارائه می دهد. این نسخه به روز شده با آموزش بهبود یافته و محتوای سازماندهی شده برای تسهیل یادگیری دانش آموز بازنگری شده است و شامل پوشش جدید یا گسترده در چندین زمینه مهم مانند جریان مافوق صوت، پهپادها و دینامیک سیالات محاسباتی است. برنامه‌ها و مثال‌هایی را ارائه می‌کند که به دانش‌آموزان کمک می‌کند تا ارتباط بین مثال‌های فیزیکی روزمره آیرودینامیک و کاربرد اصول آیرودینامیک در طراحی آیرودینامیک را ببینند. واحدها، منعکس کننده این واقعیت است که صنعت هوافضا از هر دو سیستم واحد استفاده می کند.


توضیحاتی درمورد کتاب به خارجی

Aerodynamics for Engineering Students, Seventh Edition, is one of the world's leading course texts on aerodynamics. It provides concise explanations of basic concepts, combined with an excellent introduction to aerodynamic theory. This updated edition has been revised with improved pedagogy and reorganized content to facilitate student learning, and includes new or expanded coverage in several important areas, such as hypersonic flow, UAV's, and computational fluid dynamics. Provides contemporary applications and examples that help students see the link between everyday physical examples of aerodynamics and the application of aerodynamic principles to aerodynamic design Contains MATLAB-based computational exercises throughout, giving students practice in using industry-standard computational tools Includes examples in SI and Imperial units, reflecting the fact that the aerospace industry uses both systems of units Improved pedagogy, including more examples and end-of-chapter problems, and additional and updated MATLAB codes



فهرست مطالب

Cover
Front-Matter_2017_Aerodynamics-for-Engineering-Students
Copyright_2017_Aerodynamics-for-Engineering-Students
Preface_2017_Aerodynamics-for-Engineering-Students
	Preface
		Additional Resources
		Acknowledgments
Chapter-1---Basic-Concepts-and-Definit_2017_Aerodynamics-for-Engineering-Stu
	1 Basic Concepts and Definitions
		1.1 Introduction
			1.1.1 Basic Concepts
		1.2 Units and Dimensions
			1.2.1 Fundamental Dimensions and Units
			1.2.2 Fractions and Multiples
			1.2.3 Units of Other Physical Quantities
			1.2.4 Imperial Units
		1.3 Relevant Properties
			1.3.1 Forms of Matter
			1.3.2 Fluids
			1.3.3 Pressure
				Pressure in Fluid at Rest
				Pascal's Law
			1.3.4 Temperature
			1.3.5 Density
			1.3.6 Viscosity
				Dynamic Viscosity
				Kinematic Viscosity
			1.3.7 Speed of Sound and Bulk Elasticity
			1.3.8 Thermodynamic Properties
				Specific Heat
					Specific Heat at Constant Volume
					Specific Heat at Constant Pressure
					Ratio of Specific Heats
				Enthalpy
				Entropy
		1.4 Aeronautical Definitions
			1.4.1 Airfoil Geometry
				Camber
				Thickness Distribution
			1.4.2 Wing Geometry
				Wingspan
				Chords
				Wing Area
				Mean Chords
				Aspect Ratio
				Wing Sweep
				Dihedral Angle
				Incidence, Twist, Wash-out, and Wash-in
		1.5 Dimensional Analysis
			1.5.1 Fundamental Principles
			1.5.2 Dimensional Analysis Applied to Aerodynamic Force
		1.6 Basic Aerodynamics
			1.6.1 Aerodynamic Force and Moment
				Lift, L
				Drag, D
				Side Force, Y
				Pitching Moment, M
				Rolling Moment, LR
				Yawing Moment, N
			1.6.2 Force and Moment Coefficients
			1.6.3 Pressure Distribution on an Airfoil
			1.6.4 Pitching Moment
				Aerodynamic Center
				Center of Pressure
			1.6.5 Types of Drag
				Total Drag
					Skin-Friction Drag (or Surface-Friction Drag)
					Pressure Drag
				Induced Drag (or Vortex Drag)
				Wave Drag
				Form Drag (or Boundary-Layer Pressure Drag)
				Profile Drag (or Boundary-Layer Drag)
				Comparison of Drags for Various Body Types
				The Wake
			1.6.6 Estimation of Lift, Drag, and Pitching Moment Coefficients from the Pressure Distribution
			1.6.7 Induced Drag
			1.6.8 Lift-Dependent Drag
			1.6.9 Airfoil Characteristics
				Lift Coefficient: Incidence
				Effect of Aspect Ratio on the CL versus alpha Curve
				Effect of Reynolds Number on the CL versus alpha Curve
				Drag Coefficient versus Lift Coefficient
				Drag Coefficient versus Lift Coefficient Squared
				Pitching Moment Coefficient
		1.7 Basic Flight Stability
		1.8 Control-Volume Analysis
			1.8.1 Froude's Momentum Theory of Propulsion
			1.8.2 Momentum Theory Applied to the Helicopter Rotor
				Actuator Disc in Hovering Flight
				Vertical Climbing Flight
				Slow, Powered Descending Flight
				Translational Helicopter Flight
		1.9 Hydrostatics
		1.10 Exercises
Chapter-2---Equations-of-Motion_2017_Aerodynamics-for-Engineering-Students
	2 Equations of Motion
		2.1 Introduction
			2.1.1 Selection of Reference Frame
				Types of Flow
			2.1.2 A Comparison of Steady and Unsteady Flow
				True Unsteady Flow
		2.2 One-Dimensional Flow: The Basic Equations
			2.2.1 One-Dimensional Flow: The Basic Equations of Conservation
				Conservation of Mass
				Momentum Equation
				The Conservation of Energy
				Equation of State
				Momentum Equation for an Incompressible Fluid
			2.2.2 Comments on the Momentum and Energy Equations
		2.3 Viscous Boundary Layers
		2.4 Measurement of Air Speed
			2.4.1 Pitôt-Static Tube
			2.4.2 Pressure Coefficient
			2.4.3 Air-Speed Indicator: Indicated and Equivalent Air Speeds
			2.4.4 Incompressibility Assumption
		2.5 Two-Dimensional Flow
			2.5.1 Component Velocities
				Fluid Acceleration
			2.5.2 Equation of Continuity or Conservation of Mass
			2.5.3 Equation of Continuity in Polar Coordinates
		2.6 Stream Function and Streamline
			2.6.1 Stream Function psi
				Sign Convention for Stream Functions
			2.6.2 Streamline
			2.6.3 Velocity Components in Terms of psi
		2.7 Momentum Equation
			2.7.1 Euler Equations
		2.8 Rates of Strain, Rotational Flow, and Vorticity
			2.8.1 Distortion of Fluid Element in Flow Field
			2.8.2 Rate of Shear Strain
			2.8.3 Rate of Direct Strain
			2.8.4 Vorticity
			2.8.5 Vorticity in Polar Coordinates
			2.8.6 Rotational and Irrotational Flow
			2.8.7 Circulation
		2.9 Navier-Stokes Equations
			2.9.1 Relationship between Rates of Strain and Viscous Stresses
			2.9.2 Derivation of the Navier-Stokes Equations
		2.10 Properties of the Navier-Stokes Equations
		2.11 Exact Solutions of the Navier-Stokes Equations
			2.11.1 Couette Flow: Simple Shear Flow
			2.11.2 Plane Poiseuille Flow: Pressure-Driven Channel Flow
			2.11.3 Hiemenz Flow: Two-Dimensional Stagnation-Point Flow
		2.12 Exercises
Chapter-3---Viscous-Flow-and-Boundary-L_2017_Aerodynamics-for-Engineering-St
	3 Viscous Flow and Boundary Layers
		3.1 Introduction
		3.2 Boundary-Layer Theory
			3.2.1 Blasius's Solution
			3.2.2 Definitions of Boundary-Layer Thickness
				Displacement Thickness
				Momentum Thickness
				Kinetic-Energy Thickness
			3.2.3 Skin-Friction Drag
			3.2.4 Laminar Boundary-Layer Thickness along a Flat Plate
			3.2.5 Solving the General Case
		3.3 Boundary-Layer Separation
			3.3.1 Separation Bubbles
		3.4 Flow Past Cylinders and Spheres
			3.4.1 Turbulence on Spheres
			3.4.2 Golf Balls
			3.4.3 Cricket Balls
		3.5 The Momentum-Integral Equation
			3.5.1 An Approximate Velocity Profile for the Laminar Boundary Layer
		3.6 Approximate Methods for a Boundary Layer on a Flat Plate
			3.6.1 Simplified Form of the Momentum-Integral Equation
			3.6.2 Rate of Growth of a Laminar Boundary Layer on a Flat Plate
			3.6.3 Drag Coefficient for a Flat Plate of Streamwise Length L with a Wholly Laminar Boundary Layer
			3.6.4 Turbulent Velocity Profile
			3.6.5 Rate of Growth of a Turbulent Boundary Layer on a Flat Plate
			3.6.6 Drag Coefficient for a Flat Plate with a Wholly Turbulent Boundary Layer
			3.6.7 Conditions at Transition
			3.6.8 Mixed Boundary-Layer Flow on a Flat Plate with Zero Pressure Gradient
		3.7 Additional Examples of the Momentum-Integral Equation
		3.8 Laminar-Turbulent Transition
		3.9 The Physics of Turbulent Boundary Layers
			3.9.1 Reynolds Averaging and Turbulent Stress
			3.9.2 Boundary-Layer Equations for Turbulent Flows
			3.9.3 Eddy Viscosity
			3.9.4 Prandtl's Mixing-Length Theory of Turbulence
			3.9.5 Regimes of Turbulent Wall Flow
				Outer Boundary Layer
			3.9.6 Formulae for Local Skin-Friction Coefficient and Drag
				Effects of Wall Roughness
			3.9.7 Distribution of Reynolds Stresses and Turbulent Kinetic Energy Across the Boundary Layer
			3.9.8 Turbulence Structures in the Near-Wall Region
		3.10 Estimation of Profile Drag from the Velocity Profile in a Wake
			3.10.1 Momentum-Integral Expression for the Drag of a Two-Dimensional Body
			3.10.2 Jones's Wake Traverse Method for Determining Profile Drag
			3.10.3 Growth Rate of a Two-Dimensional Wake Using the General Momentum-Integral Equation
		3.11 Some Boundary-Layer Effects in Supersonic Flow
			3.11.1 Near-Normal Shock Interaction with the Laminar Boundary Layer
			3.11.2 Shock-Wave/Boundary-Layer Interaction in Supersonic Flow
		3.12 Exercises
Chapter-4---Compressible-Flow_2017_Aerodynamics-for-Engineering-Students
	4 Compressible Flow
		4.1 Introduction
		4.2 Isentropic One-Dimensional Flow
			4.2.1 Pressure, Density, and Temperature Ratios along a Streamline in Isentropic Flow
			4.2.2 Ratio of Areas at Different Sections of the Stream Tube in Isentropic Flow
			4.2.3 Velocity along an Isentropic Stream Tube
			4.2.4 Variation of Mass Flow with Pressure
		4.3 One-Dimensional Flow: Weak Waves
			4.3.1 Speed of Sound (Acoustic Speed)
		4.4 One-Dimensional Flow: Plane Normal Shock Waves
			4.4.1 One-Dimensional Properties of Normal Shock Waves
			4.4.2 Pressure-Density Relations across the Shock
			4.4.3 Static Pressure Jump across a Normal Shock
			4.4.4 Density Jump across the Normal Shock
			4.4.5 Temperature Rise across the Normal Shock
			4.4.6 Entropy Change across the Normal Shock
			4.4.7 Mach Number Change across the Normal Shock
			4.4.8 Velocity Change across the Normal Shock
			4.4.9 Total Pressure Change across the Normal Shock
			4.4.10 Pitôt Tube Equation
			4.4.11 Converging-Diverging Nozzle Operations
		4.5 Mach Waves and Shock Waves in Two-Dimensional Flow
			4.5.1 Mach Waves
			4.5.2 Mach Wave Reflection
			4.5.3 Mach Wave Interference
			4.5.4 Shock Waves
			4.5.5 Plane Oblique Shock Relations
			4.5.6 Shock Polar
				Geometrical proof
			4.5.7 Two-Dimensional Supersonic Flow Past a Wedge
		4.6 Exercises
		4.7 Matlab Functions for Compressible Flow
Chapter-5---Potential-Flow_2017_Aerodynamics-for-Engineering-Students
	5 Potential Flow
		5.1 Introduction
			5.1.1 The Velocity Potential
				Sign Convention for Velocity Potential
			5.1.2 The Equipotential
			5.1.3 Velocity Components in Terms of phi
		5.2 Laplace's Equation
		5.3 Standard Flows in Terms of psi and phi
			5.3.1 Two-Dimensional Flow from a Source (or Towards a Sink)
				To Find the Stream Function psi of a Source
				To Find the Velocity Potential phi of a Source
			5.3.2 Line (Point) Vortex
			5.3.3 Uniform Flow
				Flow of Constant Velocity Parallel to Ox Axis from Left to Right
				Flow of Constant Velocity Parallel to Oy Axis
				Flow of Constant Velocity in Any Direction
			5.3.4 Solid Boundaries and Image Systems
			5.3.5 A Source in a Uniform Horizontal Stream
				Method (see Fig.5.14)
				The Position of the Stagnation Point
				The Local Velocity
			5.3.6 Source-Sink Pair
			5.3.7 A Source set Upstream of an Equal Sink in a Uniform Stream
			5.3.8 Doublet
			5.3.9 Flow Around a Circular Cylinder Given by a Doublet in a Uniform Horizontal Flow
				The Pressure Distribution Around a Cylinder
			5.3.10 A Spinning Cylinder in a Uniform Flow
				The Normal Force on a Spinning Circular Cylinder in a Uniform Stream
				The Flow Pattern Around a Spinning Cylinder
			5.3.11 Bernoulli's Equation for Rotational Flow
		5.4 Axisymmetric Flows (Inviscid and Incompressible Flows)
			5.4.1 Cylindrical Coordinate System
			5.4.2 Spherical Coordinates
			5.4.3 Axisymmetric Flow from a Point Source (or Towards a Point Sink)
			5.4.4 Point Source and Sink in a Uniform Axisymmetric Flow
			5.4.5 The Point Doublet and the Potential Flow Around a Sphere
			5.4.6 Flow Around Slender Bodies
		5.5 Computational (Panel) Methods
		5.6 A Computational Routine in Fortran 77
		5.7 Exercises
Chapter-6---Thin-Airfoil-Theory_2017_Aerodynamics-for-Engineering-Students
	6 Thin Airfoil Theory
		6.1 Introduction
			6.1.1 The Kutta Condition
			6.1.2 Circulation and Vorticity
			6.1.3 Circulation and Lift (The Kutta-Zhukovsky Theorem)
		6.2 The Development of Airfoil Theory
		6.3 General Thin-Airfoil Theory
		6.4 Solution to the General Equation
			6.4.1 Thin Symmetrical Flat-Plate Airfoil
				Aerodynamic Coefficients for a Flat Plate
			6.4.2 General Thin-Airfoil Section
				Lift and Moment Coefficients for a General Thin Airfoil
		6.5 The Flapped Airfoil
			6.5.1 Hinge Moment Coefficient
		6.6 The Jet Flap
		6.7 Normal Force and Pitching Moment Derivatives Due to Pitching
			6.7.1 (Zq)(Mq) Wing Contributions
		6.8 Particular Camber Lines
			6.8.1 Cubic Camber Lines
			6.8.2 NACA Four-Digit Wing Sections
		6.9 The Thickness Problem for Thin-Airfoil Theory
			6.9.1 Thickness Problem for Thin Airfoils
		6.10 Computational (Panel) Methods for Two-Dimensional Lifting Flows
		6.11 Exercises
Chapter-7---Wing-Theory_2017_Aerodynamics-for-Engineering-Students
	7 Wing Theory
		7.1 The Vortex System
			7.1.1 Starting Vortex
			7.1.2 Trailing Vortex System
			7.1.3 Bound Vortex System
			7.1.4 Horseshoe Vortex
		7.2 Laws of Vortex Motion
			7.2.1 Helmholtz's Theorems
			7.2.2 The Biot-Savart Law
				Special Cases of the Biot-Savart Law
			7.2.3 Variation of Velocity in Vortex Flow
		7.3 The Wing as a Simplified Horseshoe Vortex
			7.3.1 Influence of Downwash on the Tailplane
			7.3.2 Ground Effects
		7.4 Vortex Sheets
			7.4.1 Use of Vortex Sheets to Model the Lifting Effects of a Wing
				Lifting Effect
		7.5 Relationship between Spanwise Loading and Trailing Vorticity
			7.5.1 Induced Velocity (Downwash)
			7.5.2 The Consequences of Downwash-Trailing Vortex Drag
			7.5.3 Characteristics of Simple Symmetric Loading-Elliptic Distribution
				Lift for Elliptic Distribution
				Downwash for Elliptic Distribution
				Induced Drag (Vortex Drag) for Elliptic Distribution
			7.5.4 General (Series) Distribution of Lift
			7.5.5 Aerodynamic Characteristics for Symmetrical General Loading
				Lift on the Wing
				Downwash
				Induced Drag (Vortex Drag)
				Minimum Induced Drag Condition
		7.6 Determination of Load Distribution on a Given Wing
			7.6.1 General Theory for Wings of High Aspect Ratio
			7.6.2 General Solution to Prandtl's Integral Equation
			7.6.3 Load Distribution for Minimum Drag
		7.7 Swept and Delta Wings
			7.7.1 Yawed Wings of Infinite Span
			7.7.2 Swept Wings of Finite Span
			7.7.3 Wings of Small Aspect Ratio
		7.8 Computational (Panel) Methods for Wings
			Displacement Effect
		7.9 Exercises
Chapter-8---Airfoils-and-Wings-in-Compres_2017_Aerodynamics-for-Engineering-
	8 Airfoils and Wings in Compressible Flow
		8.1 Wings in Compressible Flow
			8.1.1 Transonic Flow: The Critical Mach Number
			8.1.2 Subcritical Flow: The Small-Perturbation Theory (Prandtl-Glauert Rule)
				The Equations of Motion of a Compressible Fluid
				Small Disturbances
				Prandtl-Glauert Rule: The Application of Linearized Theories of Subsonic Flow
				Constant Chordwise Ordinates
				Constant Normal Ordinates
				Critical Pressure Coefficient
				Application to Swept Wings
			8.1.3 Supersonic Linearized Theory (Ackeret's Rule)
				Symmetrical Double Wedge Airfoil in Supersonic Flow
					Moment about the Leading Edge
				Supersonic Biconvex Circular Arc Airfoil in Supersonic Flow
					Moment Coefficient and kCP
				General Airfoil Section
					Lift
					Drag (Wave)
					Lift/Wave Drag Ratio
					Moment Coefficient and Center-of-Pressure Coefficient
				Airfoil Section Made Up of Unequal Circular Arcs
					Lift Coefficient
					Drag (Wave) Coefficient
					Moment Coefficient (about Leading Edge)
					Center-of-Pressure Coefficient
					Lift/Drag Ratio
				Double-Wedge Airfoil Section
					Lift
					Drag (Wave)
					Lift-Drag Ratio
			8.1.4 Other Aspects of Supersonic Wings
				The Shock-Expansion Approximation
				Wings of Finite Span
				Computational Methods
		8.2 Exercises
Chapter-9---Computational-Fluid-Dynam_2017_Aerodynamics-for-Engineering-Stud
	9 Computational Fluid Dynamics
		9.1 Computational Methods
			9.1.1 Methods Based on the Momentum-Integral Equation
			9.1.2 Transition Prediction
			9.1.3 Computational Solution for the Laminar Boundary-Layer Equations
			9.1.4 Computational Solution for Turbulent Boundary Layers
			9.1.5 Zero-Equation Methods
				Cebeci-Smith Method
			9.1.6 k- epsilon: A Typical Two-Equation Method
			9.1.7 Large-Eddy Simulation
				Two Common Choices of Filter Function
				Subgrid Scale Modeling
Chapter-10---Flow-Control-and-Wing-De_2017_Aerodynamics-for-Engineering-Stud
	10 Flow Control and Wing Design
		10.1 Introduction
		10.2 Maximizing Lift for Single-Element Airfoils
		10.3 Multi-Element Airfoils
			10.3.1 The Slat Effect
			10.3.2 The Flap Effect
			10.3.3 Off-the-Surface Recovery
			10.3.4 Fresh Boundary-Layer Effect
			10.3.5 The Gurney Flap
			10.3.6 Movable Flaps: Artificial Bird Feathers
		10.4 Boundary Layer Control Prevention to Separation
			10.4.1 Boundary-Layer Suction
			10.4.2 Control by Tangential Blowing
			10.4.3 Other Methods of Separation Control
		10.5 Reduction of Skin-Friction Drag
			10.5.1 Laminar Flow Control by Boundary-Layer Suction
			10.5.2 Compliant Walls: Artificial Dolphin Skins
			10.5.3 Riblets
		10.6 Reduction of Form Drag
		10.7 Reduction of Induced Drag
		10.8 Reduction of Wave Drag
Appendix-A---Symbols-and-Notation_2017_Aerodynamics-for-Engineering-Students
	A Symbols and Notation
		Subscripts
		Primes and Superscripts
Appendix-B---The-International-Standard-A_2017_Aerodynamics-for-Engineering-
	B The International Standard Atmosphere
Appendix-C---A-Solution-of-Integrals-of-the-Ty_2017_Aerodynamics-for-Enginee
	C A Solution of Integrals of the Type of Glauert's Integral
Appendix-D---Conversion-of-Imperial-Units-to-Sys_2017_Aerodynamics-for-Engin
	D Conversion of Imperial Units to Systéme International (SI) Units
Bibliography_2017_Aerodynamics-for-Engineering-Students
	Bibliography
Index_2017_Aerodynamics-for-Engineering-Students
	Index




نظرات کاربران