دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [7 ed.] نویسندگان: E.L. Houghton, P.W. Carpenter, Steven H. Collicott, Daniel T. Valentine سری: ISBN (شابک) : 9780081001943 ناشر: Butterworth-Heinemann سال نشر: 2015 تعداد صفحات: 671 [667] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Aerodynamics for Engineering Students (Seventh Edition) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آیرودینامیک برای دانشجویان مهندسی (ویرایش هفتم) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آیرودینامیک برای دانشجویان مهندسی، ویرایش هفتم، یکی از متون درسی پیشرو در جهان در زمینه آیرودینامیک است. این توضیحات مختصری از مفاهیم اساسی، همراه با مقدمه ای عالی برای تئوری آیرودینامیک ارائه می دهد. این نسخه به روز شده با آموزش بهبود یافته و محتوای سازماندهی شده برای تسهیل یادگیری دانش آموز بازنگری شده است و شامل پوشش جدید یا گسترده در چندین زمینه مهم مانند جریان مافوق صوت، پهپادها و دینامیک سیالات محاسباتی است. برنامهها و مثالهایی را ارائه میکند که به دانشآموزان کمک میکند تا ارتباط بین مثالهای فیزیکی روزمره آیرودینامیک و کاربرد اصول آیرودینامیک در طراحی آیرودینامیک را ببینند. واحدها، منعکس کننده این واقعیت است که صنعت هوافضا از هر دو سیستم واحد استفاده می کند.
Aerodynamics for Engineering Students, Seventh Edition, is one of the world's leading course texts on aerodynamics. It provides concise explanations of basic concepts, combined with an excellent introduction to aerodynamic theory. This updated edition has been revised with improved pedagogy and reorganized content to facilitate student learning, and includes new or expanded coverage in several important areas, such as hypersonic flow, UAV's, and computational fluid dynamics. Provides contemporary applications and examples that help students see the link between everyday physical examples of aerodynamics and the application of aerodynamic principles to aerodynamic design Contains MATLAB-based computational exercises throughout, giving students practice in using industry-standard computational tools Includes examples in SI and Imperial units, reflecting the fact that the aerospace industry uses both systems of units Improved pedagogy, including more examples and end-of-chapter problems, and additional and updated MATLAB codes
Cover Front-Matter_2017_Aerodynamics-for-Engineering-Students Copyright_2017_Aerodynamics-for-Engineering-Students Preface_2017_Aerodynamics-for-Engineering-Students Preface Additional Resources Acknowledgments Chapter-1---Basic-Concepts-and-Definit_2017_Aerodynamics-for-Engineering-Stu 1 Basic Concepts and Definitions 1.1 Introduction 1.1.1 Basic Concepts 1.2 Units and Dimensions 1.2.1 Fundamental Dimensions and Units 1.2.2 Fractions and Multiples 1.2.3 Units of Other Physical Quantities 1.2.4 Imperial Units 1.3 Relevant Properties 1.3.1 Forms of Matter 1.3.2 Fluids 1.3.3 Pressure Pressure in Fluid at Rest Pascal's Law 1.3.4 Temperature 1.3.5 Density 1.3.6 Viscosity Dynamic Viscosity Kinematic Viscosity 1.3.7 Speed of Sound and Bulk Elasticity 1.3.8 Thermodynamic Properties Specific Heat Specific Heat at Constant Volume Specific Heat at Constant Pressure Ratio of Specific Heats Enthalpy Entropy 1.4 Aeronautical Definitions 1.4.1 Airfoil Geometry Camber Thickness Distribution 1.4.2 Wing Geometry Wingspan Chords Wing Area Mean Chords Aspect Ratio Wing Sweep Dihedral Angle Incidence, Twist, Wash-out, and Wash-in 1.5 Dimensional Analysis 1.5.1 Fundamental Principles 1.5.2 Dimensional Analysis Applied to Aerodynamic Force 1.6 Basic Aerodynamics 1.6.1 Aerodynamic Force and Moment Lift, L Drag, D Side Force, Y Pitching Moment, M Rolling Moment, LR Yawing Moment, N 1.6.2 Force and Moment Coefficients 1.6.3 Pressure Distribution on an Airfoil 1.6.4 Pitching Moment Aerodynamic Center Center of Pressure 1.6.5 Types of Drag Total Drag Skin-Friction Drag (or Surface-Friction Drag) Pressure Drag Induced Drag (or Vortex Drag) Wave Drag Form Drag (or Boundary-Layer Pressure Drag) Profile Drag (or Boundary-Layer Drag) Comparison of Drags for Various Body Types The Wake 1.6.6 Estimation of Lift, Drag, and Pitching Moment Coefficients from the Pressure Distribution 1.6.7 Induced Drag 1.6.8 Lift-Dependent Drag 1.6.9 Airfoil Characteristics Lift Coefficient: Incidence Effect of Aspect Ratio on the CL versus alpha Curve Effect of Reynolds Number on the CL versus alpha Curve Drag Coefficient versus Lift Coefficient Drag Coefficient versus Lift Coefficient Squared Pitching Moment Coefficient 1.7 Basic Flight Stability 1.8 Control-Volume Analysis 1.8.1 Froude's Momentum Theory of Propulsion 1.8.2 Momentum Theory Applied to the Helicopter Rotor Actuator Disc in Hovering Flight Vertical Climbing Flight Slow, Powered Descending Flight Translational Helicopter Flight 1.9 Hydrostatics 1.10 Exercises Chapter-2---Equations-of-Motion_2017_Aerodynamics-for-Engineering-Students 2 Equations of Motion 2.1 Introduction 2.1.1 Selection of Reference Frame Types of Flow 2.1.2 A Comparison of Steady and Unsteady Flow True Unsteady Flow 2.2 One-Dimensional Flow: The Basic Equations 2.2.1 One-Dimensional Flow: The Basic Equations of Conservation Conservation of Mass Momentum Equation The Conservation of Energy Equation of State Momentum Equation for an Incompressible Fluid 2.2.2 Comments on the Momentum and Energy Equations 2.3 Viscous Boundary Layers 2.4 Measurement of Air Speed 2.4.1 Pitôt-Static Tube 2.4.2 Pressure Coefficient 2.4.3 Air-Speed Indicator: Indicated and Equivalent Air Speeds 2.4.4 Incompressibility Assumption 2.5 Two-Dimensional Flow 2.5.1 Component Velocities Fluid Acceleration 2.5.2 Equation of Continuity or Conservation of Mass 2.5.3 Equation of Continuity in Polar Coordinates 2.6 Stream Function and Streamline 2.6.1 Stream Function psi Sign Convention for Stream Functions 2.6.2 Streamline 2.6.3 Velocity Components in Terms of psi 2.7 Momentum Equation 2.7.1 Euler Equations 2.8 Rates of Strain, Rotational Flow, and Vorticity 2.8.1 Distortion of Fluid Element in Flow Field 2.8.2 Rate of Shear Strain 2.8.3 Rate of Direct Strain 2.8.4 Vorticity 2.8.5 Vorticity in Polar Coordinates 2.8.6 Rotational and Irrotational Flow 2.8.7 Circulation 2.9 Navier-Stokes Equations 2.9.1 Relationship between Rates of Strain and Viscous Stresses 2.9.2 Derivation of the Navier-Stokes Equations 2.10 Properties of the Navier-Stokes Equations 2.11 Exact Solutions of the Navier-Stokes Equations 2.11.1 Couette Flow: Simple Shear Flow 2.11.2 Plane Poiseuille Flow: Pressure-Driven Channel Flow 2.11.3 Hiemenz Flow: Two-Dimensional Stagnation-Point Flow 2.12 Exercises Chapter-3---Viscous-Flow-and-Boundary-L_2017_Aerodynamics-for-Engineering-St 3 Viscous Flow and Boundary Layers 3.1 Introduction 3.2 Boundary-Layer Theory 3.2.1 Blasius's Solution 3.2.2 Definitions of Boundary-Layer Thickness Displacement Thickness Momentum Thickness Kinetic-Energy Thickness 3.2.3 Skin-Friction Drag 3.2.4 Laminar Boundary-Layer Thickness along a Flat Plate 3.2.5 Solving the General Case 3.3 Boundary-Layer Separation 3.3.1 Separation Bubbles 3.4 Flow Past Cylinders and Spheres 3.4.1 Turbulence on Spheres 3.4.2 Golf Balls 3.4.3 Cricket Balls 3.5 The Momentum-Integral Equation 3.5.1 An Approximate Velocity Profile for the Laminar Boundary Layer 3.6 Approximate Methods for a Boundary Layer on a Flat Plate 3.6.1 Simplified Form of the Momentum-Integral Equation 3.6.2 Rate of Growth of a Laminar Boundary Layer on a Flat Plate 3.6.3 Drag Coefficient for a Flat Plate of Streamwise Length L with a Wholly Laminar Boundary Layer 3.6.4 Turbulent Velocity Profile 3.6.5 Rate of Growth of a Turbulent Boundary Layer on a Flat Plate 3.6.6 Drag Coefficient for a Flat Plate with a Wholly Turbulent Boundary Layer 3.6.7 Conditions at Transition 3.6.8 Mixed Boundary-Layer Flow on a Flat Plate with Zero Pressure Gradient 3.7 Additional Examples of the Momentum-Integral Equation 3.8 Laminar-Turbulent Transition 3.9 The Physics of Turbulent Boundary Layers 3.9.1 Reynolds Averaging and Turbulent Stress 3.9.2 Boundary-Layer Equations for Turbulent Flows 3.9.3 Eddy Viscosity 3.9.4 Prandtl's Mixing-Length Theory of Turbulence 3.9.5 Regimes of Turbulent Wall Flow Outer Boundary Layer 3.9.6 Formulae for Local Skin-Friction Coefficient and Drag Effects of Wall Roughness 3.9.7 Distribution of Reynolds Stresses and Turbulent Kinetic Energy Across the Boundary Layer 3.9.8 Turbulence Structures in the Near-Wall Region 3.10 Estimation of Profile Drag from the Velocity Profile in a Wake 3.10.1 Momentum-Integral Expression for the Drag of a Two-Dimensional Body 3.10.2 Jones's Wake Traverse Method for Determining Profile Drag 3.10.3 Growth Rate of a Two-Dimensional Wake Using the General Momentum-Integral Equation 3.11 Some Boundary-Layer Effects in Supersonic Flow 3.11.1 Near-Normal Shock Interaction with the Laminar Boundary Layer 3.11.2 Shock-Wave/Boundary-Layer Interaction in Supersonic Flow 3.12 Exercises Chapter-4---Compressible-Flow_2017_Aerodynamics-for-Engineering-Students 4 Compressible Flow 4.1 Introduction 4.2 Isentropic One-Dimensional Flow 4.2.1 Pressure, Density, and Temperature Ratios along a Streamline in Isentropic Flow 4.2.2 Ratio of Areas at Different Sections of the Stream Tube in Isentropic Flow 4.2.3 Velocity along an Isentropic Stream Tube 4.2.4 Variation of Mass Flow with Pressure 4.3 One-Dimensional Flow: Weak Waves 4.3.1 Speed of Sound (Acoustic Speed) 4.4 One-Dimensional Flow: Plane Normal Shock Waves 4.4.1 One-Dimensional Properties of Normal Shock Waves 4.4.2 Pressure-Density Relations across the Shock 4.4.3 Static Pressure Jump across a Normal Shock 4.4.4 Density Jump across the Normal Shock 4.4.5 Temperature Rise across the Normal Shock 4.4.6 Entropy Change across the Normal Shock 4.4.7 Mach Number Change across the Normal Shock 4.4.8 Velocity Change across the Normal Shock 4.4.9 Total Pressure Change across the Normal Shock 4.4.10 Pitôt Tube Equation 4.4.11 Converging-Diverging Nozzle Operations 4.5 Mach Waves and Shock Waves in Two-Dimensional Flow 4.5.1 Mach Waves 4.5.2 Mach Wave Reflection 4.5.3 Mach Wave Interference 4.5.4 Shock Waves 4.5.5 Plane Oblique Shock Relations 4.5.6 Shock Polar Geometrical proof 4.5.7 Two-Dimensional Supersonic Flow Past a Wedge 4.6 Exercises 4.7 Matlab Functions for Compressible Flow Chapter-5---Potential-Flow_2017_Aerodynamics-for-Engineering-Students 5 Potential Flow 5.1 Introduction 5.1.1 The Velocity Potential Sign Convention for Velocity Potential 5.1.2 The Equipotential 5.1.3 Velocity Components in Terms of phi 5.2 Laplace's Equation 5.3 Standard Flows in Terms of psi and phi 5.3.1 Two-Dimensional Flow from a Source (or Towards a Sink) To Find the Stream Function psi of a Source To Find the Velocity Potential phi of a Source 5.3.2 Line (Point) Vortex 5.3.3 Uniform Flow Flow of Constant Velocity Parallel to Ox Axis from Left to Right Flow of Constant Velocity Parallel to Oy Axis Flow of Constant Velocity in Any Direction 5.3.4 Solid Boundaries and Image Systems 5.3.5 A Source in a Uniform Horizontal Stream Method (see Fig.5.14) The Position of the Stagnation Point The Local Velocity 5.3.6 Source-Sink Pair 5.3.7 A Source set Upstream of an Equal Sink in a Uniform Stream 5.3.8 Doublet 5.3.9 Flow Around a Circular Cylinder Given by a Doublet in a Uniform Horizontal Flow The Pressure Distribution Around a Cylinder 5.3.10 A Spinning Cylinder in a Uniform Flow The Normal Force on a Spinning Circular Cylinder in a Uniform Stream The Flow Pattern Around a Spinning Cylinder 5.3.11 Bernoulli's Equation for Rotational Flow 5.4 Axisymmetric Flows (Inviscid and Incompressible Flows) 5.4.1 Cylindrical Coordinate System 5.4.2 Spherical Coordinates 5.4.3 Axisymmetric Flow from a Point Source (or Towards a Point Sink) 5.4.4 Point Source and Sink in a Uniform Axisymmetric Flow 5.4.5 The Point Doublet and the Potential Flow Around a Sphere 5.4.6 Flow Around Slender Bodies 5.5 Computational (Panel) Methods 5.6 A Computational Routine in Fortran 77 5.7 Exercises Chapter-6---Thin-Airfoil-Theory_2017_Aerodynamics-for-Engineering-Students 6 Thin Airfoil Theory 6.1 Introduction 6.1.1 The Kutta Condition 6.1.2 Circulation and Vorticity 6.1.3 Circulation and Lift (The Kutta-Zhukovsky Theorem) 6.2 The Development of Airfoil Theory 6.3 General Thin-Airfoil Theory 6.4 Solution to the General Equation 6.4.1 Thin Symmetrical Flat-Plate Airfoil Aerodynamic Coefficients for a Flat Plate 6.4.2 General Thin-Airfoil Section Lift and Moment Coefficients for a General Thin Airfoil 6.5 The Flapped Airfoil 6.5.1 Hinge Moment Coefficient 6.6 The Jet Flap 6.7 Normal Force and Pitching Moment Derivatives Due to Pitching 6.7.1 (Zq)(Mq) Wing Contributions 6.8 Particular Camber Lines 6.8.1 Cubic Camber Lines 6.8.2 NACA Four-Digit Wing Sections 6.9 The Thickness Problem for Thin-Airfoil Theory 6.9.1 Thickness Problem for Thin Airfoils 6.10 Computational (Panel) Methods for Two-Dimensional Lifting Flows 6.11 Exercises Chapter-7---Wing-Theory_2017_Aerodynamics-for-Engineering-Students 7 Wing Theory 7.1 The Vortex System 7.1.1 Starting Vortex 7.1.2 Trailing Vortex System 7.1.3 Bound Vortex System 7.1.4 Horseshoe Vortex 7.2 Laws of Vortex Motion 7.2.1 Helmholtz's Theorems 7.2.2 The Biot-Savart Law Special Cases of the Biot-Savart Law 7.2.3 Variation of Velocity in Vortex Flow 7.3 The Wing as a Simplified Horseshoe Vortex 7.3.1 Influence of Downwash on the Tailplane 7.3.2 Ground Effects 7.4 Vortex Sheets 7.4.1 Use of Vortex Sheets to Model the Lifting Effects of a Wing Lifting Effect 7.5 Relationship between Spanwise Loading and Trailing Vorticity 7.5.1 Induced Velocity (Downwash) 7.5.2 The Consequences of Downwash-Trailing Vortex Drag 7.5.3 Characteristics of Simple Symmetric Loading-Elliptic Distribution Lift for Elliptic Distribution Downwash for Elliptic Distribution Induced Drag (Vortex Drag) for Elliptic Distribution 7.5.4 General (Series) Distribution of Lift 7.5.5 Aerodynamic Characteristics for Symmetrical General Loading Lift on the Wing Downwash Induced Drag (Vortex Drag) Minimum Induced Drag Condition 7.6 Determination of Load Distribution on a Given Wing 7.6.1 General Theory for Wings of High Aspect Ratio 7.6.2 General Solution to Prandtl's Integral Equation 7.6.3 Load Distribution for Minimum Drag 7.7 Swept and Delta Wings 7.7.1 Yawed Wings of Infinite Span 7.7.2 Swept Wings of Finite Span 7.7.3 Wings of Small Aspect Ratio 7.8 Computational (Panel) Methods for Wings Displacement Effect 7.9 Exercises Chapter-8---Airfoils-and-Wings-in-Compres_2017_Aerodynamics-for-Engineering- 8 Airfoils and Wings in Compressible Flow 8.1 Wings in Compressible Flow 8.1.1 Transonic Flow: The Critical Mach Number 8.1.2 Subcritical Flow: The Small-Perturbation Theory (Prandtl-Glauert Rule) The Equations of Motion of a Compressible Fluid Small Disturbances Prandtl-Glauert Rule: The Application of Linearized Theories of Subsonic Flow Constant Chordwise Ordinates Constant Normal Ordinates Critical Pressure Coefficient Application to Swept Wings 8.1.3 Supersonic Linearized Theory (Ackeret's Rule) Symmetrical Double Wedge Airfoil in Supersonic Flow Moment about the Leading Edge Supersonic Biconvex Circular Arc Airfoil in Supersonic Flow Moment Coefficient and kCP General Airfoil Section Lift Drag (Wave) Lift/Wave Drag Ratio Moment Coefficient and Center-of-Pressure Coefficient Airfoil Section Made Up of Unequal Circular Arcs Lift Coefficient Drag (Wave) Coefficient Moment Coefficient (about Leading Edge) Center-of-Pressure Coefficient Lift/Drag Ratio Double-Wedge Airfoil Section Lift Drag (Wave) Lift-Drag Ratio 8.1.4 Other Aspects of Supersonic Wings The Shock-Expansion Approximation Wings of Finite Span Computational Methods 8.2 Exercises Chapter-9---Computational-Fluid-Dynam_2017_Aerodynamics-for-Engineering-Stud 9 Computational Fluid Dynamics 9.1 Computational Methods 9.1.1 Methods Based on the Momentum-Integral Equation 9.1.2 Transition Prediction 9.1.3 Computational Solution for the Laminar Boundary-Layer Equations 9.1.4 Computational Solution for Turbulent Boundary Layers 9.1.5 Zero-Equation Methods Cebeci-Smith Method 9.1.6 k- epsilon: A Typical Two-Equation Method 9.1.7 Large-Eddy Simulation Two Common Choices of Filter Function Subgrid Scale Modeling Chapter-10---Flow-Control-and-Wing-De_2017_Aerodynamics-for-Engineering-Stud 10 Flow Control and Wing Design 10.1 Introduction 10.2 Maximizing Lift for Single-Element Airfoils 10.3 Multi-Element Airfoils 10.3.1 The Slat Effect 10.3.2 The Flap Effect 10.3.3 Off-the-Surface Recovery 10.3.4 Fresh Boundary-Layer Effect 10.3.5 The Gurney Flap 10.3.6 Movable Flaps: Artificial Bird Feathers 10.4 Boundary Layer Control Prevention to Separation 10.4.1 Boundary-Layer Suction 10.4.2 Control by Tangential Blowing 10.4.3 Other Methods of Separation Control 10.5 Reduction of Skin-Friction Drag 10.5.1 Laminar Flow Control by Boundary-Layer Suction 10.5.2 Compliant Walls: Artificial Dolphin Skins 10.5.3 Riblets 10.6 Reduction of Form Drag 10.7 Reduction of Induced Drag 10.8 Reduction of Wave Drag Appendix-A---Symbols-and-Notation_2017_Aerodynamics-for-Engineering-Students A Symbols and Notation Subscripts Primes and Superscripts Appendix-B---The-International-Standard-A_2017_Aerodynamics-for-Engineering- B The International Standard Atmosphere Appendix-C---A-Solution-of-Integrals-of-the-Ty_2017_Aerodynamics-for-Enginee C A Solution of Integrals of the Type of Glauert's Integral Appendix-D---Conversion-of-Imperial-Units-to-Sys_2017_Aerodynamics-for-Engin D Conversion of Imperial Units to Systéme International (SI) Units Bibliography_2017_Aerodynamics-for-Engineering-Students Bibliography Index_2017_Aerodynamics-for-Engineering-Students Index