ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Nanomaterials and Their Applications

دانلود کتاب نانومواد پیشرفته و کاربردهای آنها

Advanced Nanomaterials and Their Applications

مشخصات کتاب

Advanced Nanomaterials and Their Applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781032347226, 9781003323518 
ناشر: CRC Press 
سال نشر: 2024 
تعداد صفحات: 235 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 42 Mb 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Advanced Nanomaterials and Their Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد پیشرفته و کاربردهای آنها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
List of Contributors
About the Editors
Part I Nanomaterials and Electronic Application
	1 Materials in Emerging Nonvolatile Memory Devices
		1.1 Introduction
		1.2 Properties of Hafnium Oxide
		1.3 Use of Dielectric Properties of Hafnium Oxide for Memory Applications
		1.4 Deposition and Growth of HfO2 Film
		1.5 Use of Hafnium Oxide for Resistive Random Access Memory Devices
			1.5.1 Valence Change Memory
			1.5.2 Impact of Oxygen Vacancy
			1.5.3 Resistive Switching Properties and the Impact of Doping/Alloying
			1.5.4 Electrochemical Metallization Memory
			1.5.5 Understanding Filament Formation
			1.5.6 Quantum Conductance and Device Scaling
			1.5.7 Impact of Metal Electrodes
			1.5.8 Different Electrode Materials and the Impact of Location
		1.6 Emerging Two-Dimensional Materials and Their Impact On Resistive Switching
		1.7 Design of the Hybrid Filament in Hafnium Oxide
			1.7.1 Hybrid Filament-Based Memory
			1.7.2 Hybrid Filament–based Selector
		1.8 Emerging Applications
		1.9 Summary
		Note
		References
	2 III-V Materials and Their Transistor Application
		2.1 The Short Background Story
		2.2 III-V Materials
		2.3 Developing the Mathematical Model
		2.4 Modeling the Surface Potential
		2.5 Modeling the Drain Current
		2.6 Model Validation and SPICE Implementation
		2.7 Conclusion
		References
	3 Transition Metal Dichalcogenides Properties, Synthesis, and Application in Nanoelectronics Devices
		3.1 Introduction
			3.1.1 Crystal Structure of Transition Metal Dichalcogenides
		3.2 Properties of Transition Metal Dichalcogenides
		3.3 Preparation Technique of Transition Metal Dichalcogenides
			3.3.1 Chemical Vapor Deposition
			3.3.2 Metal-Organic Chemical Vapor Deposition
			3.3.3 Liquid Phase Exfoliation
			3.3.4 Atomic Layer Deposition
			3.3.5 Molecular Beam Epitaxy
		3.4 Doping of Transition Metal Dichalcogenides
		3.5 Noble Transition Metal Dichalcogenides (NTMDs)
		3.6 Application of Transition Metal Dichalcogenides
		3.7 Transition Metal Dichalcogenides for Potential Application as a Gas Sensor
		3.8 Conclusion
		Acknowledgment
		References
	4 Conducting Polymer Nanocomposites for Electrochemical Supercapacitor
		4.1 Introduction
		4.2 Supercapacitors as Energy Storage Systems
		4.3 Electrochemical Properties of Conducting Polymers
		4.4 Nanocomposites of Conducting Polymers
		4.5 Conducting Polymers Nanocomposites in Supercapacitors
			4.5.1 PANI Nanocomposites
			4.5.2 PPy Nanocomposites
			4.5.3 PTh Nanocomposites
			4.5.4 Other CP-Based Nanocomposites
		4.6 Conclusion
		References
	5 Properties and Supercapacitor Applications of Graphene-Based Materials
		5.1 Introduction
		5.2 Graphene
		5.3 Graphene Oxide and Reduced Graphene Oxide
		5.4 Composites of GO and RGO With Metal Oxides
		5.5 Synthesis of GO
		5.6 Synthesis of RGO
		5.7 Properties of GO and RGO
			5.7.1 Optical Properties
			5.7.2 Vibrational Properties
			5.7.3 Structural Properties
			5.7.4 Bonding Properties
				5.7.4.1 X-Ray Photoelectron Spectroscopy (XPS)
				5.7.4.2 Morphological Properties
		5.8 Electrochemical Properties for Supercapacitor Application
		5.9 Cyclic Voltammetry
		5.10 Galvanostatic Charge Discharge (GCD)
		5.11 Conclusion
		Acknowledgment
		References
Part II Advanced Nanomaterials: Bio-Medical Applications
	6 First Principles Approach Toward Electrically Doped Nanodevices
		6.1 Background
		6.2 Density Functional Theory
		6.3 Nonequilibrium Green’s Function
		6.4 Molecular Modeling of Inorganic Nanodevices
		6.5 Electrical Doping for the Organic and Inorganic Nanodevices
		References
	7 Nanoparticles in Biomedical Applications: MRI Contrast Agents
		7.1 Introduction
		7.2 Theoretical Background
			7.2.1 Solomon-Bloembergen-Morgan (SBM) Theory
			7.2.2 Outer-Sphere Diffusion-Based Relaxivity Model
		7.3 Parametric Optimization for Enhancing Relaxivity
			7.3.1 Enrichment of the Number of Coordinated Water Molecules
			7.3.2 Optimization of Rotational Correlation Time
			7.3.3 Minimizing Internal Motion
			7.3.4 Optimization of Water Residency Time
		7.4 Factors Affecting R1 and R2 Relaxivity
			7.4.1 Size Effect
				7.4.1.1 Effect On R2 Relaxivity
				7.4.1.2 Effect On R1 Relaxivity
			7.4.2 Shape
				7.4.2.1 Cubes
				7.4.2.2 Plates
		7.5 Types of Contrast Agents
			7.5.1 Routes of Administration of MRI Contrast Agent
			7.5.3 Superparamagnetic Iron Oxide Nanoparticles (SPIONs)
			7.5.4 Smart Contrast Agents
		7.6 Conclusion and Future Prospects
		References
	8 Scheelite Materials in Cell Imaging and Bioanalysis
		8.1 Introduction
		8.2 Synthesis Strategy
		8.3 Particle Growth Mechanism
			8.3.1 Influence of Organic Ligands
			8.3.2 The Influence of PH
			8.3.3 The Influence of Reaction Temperature
			8.3.4 The Influence of Reaction Time
			8.3.5 The Influence of the Rare Earth Source
			8.3.6 The Influence of Tungstate/Molybdate Amount
		8.4 Application of Scheelites in Bioanalysis
			8.4.1 Scheelites as a Sensor for Biological System
				8.4.1.1 Temperature Sensing Using Scheelites
				8.4.1.2 Detection of Drugs
			8.4.2 Scheelites With Antibacterial Activity
			8.4.3 Scheelites With Anticancer Activity
			8.4.4 Scheelites in Water Treatment
			8.4.5 Scheelites in the Food Industry
			8.4.6 Effect On Cells: Cytotoxicity, Cellular Uptake, and Drug Loading
			8.4.7 Scheelites for Cell Imaging
		8.5 Conclusion
		References
Index




نظرات کاربران