ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Advanced Materials: An Introduction to Modern Materials Science

دانلود کتاب مواد پیشرفته: مقدمه ای بر علم مواد مدرن

Advanced Materials: An Introduction to Modern Materials Science

مشخصات کتاب

Advanced Materials: An Introduction to Modern Materials Science

دسته بندی: مواد
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3030803589, 9783030803582 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 762 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 37 مگابایت 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Advanced Materials: An Introduction to Modern Materials Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد پیشرفته: مقدمه ای بر علم مواد مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد پیشرفته: مقدمه ای بر علم مواد مدرن



این کتاب مقدمه ای کامل بر موضوعات ضروری در علم مواد مدرن ارائه می دهد. طیفی از موضوعات علم مواد، مواد معدنی و آلی، نانومواد، بیومواد و آلیاژها را در یک منبع منسجم و جامع گرد هم می‌آورد. تکنیک‌های سنتز و پردازش، پیکربندی‌های ساختاری و کریستالوگرافی، خواص، طبقه‌بندی، مکانیسم‌های فرآیند، کاربردها و مسائل عددی مرتبط در هر فصل مورد بحث قرار می‌گیرند. خلاصه‌ها و مشکلات انتهای فصل برای عمیق‌تر کردن و تقویت درک خواننده گنجانده شده است.

  • یک مرجع منسجم و جامع در مورد طیف وسیعی از مطالب ارائه می‌کند. و فرآیندها در علم مواد مدرن؛
  • موضوع را به شیوه ای جذاب برای تشویق شیوه ها و دیدگاه های نوآورانه ارائه می دهد؛
  • شامل خلاصه فصل ها و مشکلات در پایان هر فصل برای تقویت مفاهیم است.

توضیحاتی درمورد کتاب به خارجی

This book provides a thorough introduction to the essential topics in modern materials science. It brings together the spectrum of materials science topics, spanning inorganic and organic materials, nanomaterials, biomaterials, and alloys within a single cohesive and comprehensive resource. Synthesis and processing techniques, structural and crystallographic configurations, properties, classifications, process mechanisms, applications, and related numerical problems are discussed in each chapter. End-of-chapter summaries and problems are included to deepen and reinforce the reader's comprehension.

  • Provides a cohesive and comprehensive reference on a wide range of materials and processes in modern materials science;
  • Presents material in an engaging manner to encourage innovative practices and perspectives;
  • Includes chapter summaries and problems at the end of every chapter for reinforcement of concepts.


فهرست مطالب

About the Book
Contents
About the Author
Chapter 1: Shape-Memory Materials
	1.1 Introduction
	1.2 Shape Memory Alloy
		1.2.1 Historical Background of SMAs
		1.2.2 Fabrication Processes of SMAs
			1.2.2.1 Vacuum Melting
			1.2.2.2 Powder Metallurgy
			1.2.2.3 Additive Manufacturing
			1.2.2.4 Thermal Spray
			1.2.2.5 Plasma Melting
			1.2.2.6 Magnetron Sputtering Deposition
			1.2.2.7 Post Fabrication Process
		1.2.3 Shape Memory Effect
		1.2.4 Superelasticity or Pseudoelasticity
		1.2.5 Phase Transformation Phenomenon in SMA
		1.2.6 Martensite Reorientation
		1.2.7 Crystallography of Phases
		1.2.8 Thermodynamics of Phase Transformation
		1.2.9 Training and Stability of SMA
		1.2.10 Heating Methods of Temperature-Induced SMA
		1.2.11 Types of Shape Memory Alloys
			1.2.11.1 One-Way Shape Memory Alloy
			1.2.11.2 Two-Way Shape Memory
		1.2.12 Different Parameters of NiTi SMA
			1.2.12.1 Effect of Thermomechanical Treatment
			1.2.12.2 Effects of Aging
			1.2.12.3 Effect of Grain Size
			1.2.12.4 Effect of Deviation from Equiatomic Stoichiometry
			1.2.12.5 Effect of Additive Elements
			1.2.12.6 Effect of Precipitation
		1.2.13 Potential Applications
			1.2.13.1 In Space and Aero-Industries
			1.2.13.2 In Automobile Industries
			1.2.13.3 In Electrical and Electronics
			1.2.13.4 In Biomedical Industries
			1.2.13.5 Other Industries
		1.2.14 Advantages of Shape Memory Alloy
	1.3 Shape Memory Polymer
		1.3.1 Thermo-Stimulated SMP
		1.3.2 Electric-Stimulated SMP
		1.3.3 Light-Stimulated SMP
		1.3.4 Magnetically Stimulated SMP
		1.3.5 Humid-Stimulated SMP
		1.3.6 Shape Memory Effect of SMP
		1.3.7 Basics of Reinforcement in SMP
		1.3.8 Fabrication and Shaping Techniques of SMP
		1.3.9 Application of SMPs
			1.3.9.1 Medical Applications
			1.3.9.2 In Aerospace
			1.3.9.3 In Textile Industries
			1.3.9.4 Automobile
			1.3.9.5 Electric, Electronics, and Robotics
			1.3.9.6 Other Industrial Applications
		1.3.10 Advantages and Disadvantages of SMP
	1.4 Shape Memory Ceramic
		1.4.1 Various Shape-Memory Ceramics
			1.4.1.1 Zirconia-Based SMC
			1.4.1.2 Lanthanum-Niobium oxide SMC
			1.4.1.3 Advantage and Disadvantage of SMCs
	1.5 Shape Memory Hybrids
		1.5.1 Basic Mechanism Behind SHM
		1.5.2 Responses in SMH
	1.6 Summary
	References
Chapter 2: Piezoelectric Materials
	2.1 Introduction
	2.2 History of Piezoelectric
	2.3 Piezoelectric Effect
		2.3.1 Direct Piezoelectric Effect
		2.3.2 Inverse Piezoelectric Effect
	2.4 Mechanism and Working of Piezoelectric Effect
	2.5 Various Piezoelectric Constants
	2.6 Piezoelectric Charge Constant
	2.7 Piezoelectric Voltage Constant
	2.8 Permittivity Constant
	2.9 Elastic and Compliance
		2.9.1 Electromechanical Coupling Factor
		2.9.2 Young´s Modulus
		2.9.3 Dielectric Dissipation Factor
		2.9.4 Piezoelectric Frequency Constant
	2.10 Materials Used for Piezoelectricity
		2.10.1 Ceramics Piezoelectric Materials
		2.10.2 Polymer Piezoelectric Materials
		2.10.3 Composite Piezoelectric Materials
		2.10.4 Single Crystal Piezoelectric
		2.10.5 Thin Films Piezoelectric Materials
		2.10.6 Piezoelectric Material Properties
		2.10.7 Electric Behavior
		2.10.8 Dielectric Behavior
		2.10.9 Elasticity Behavior
		2.10.10 Electromechanical Behavior
		2.10.11 Coupling Coefficient
		2.10.12 Material Damping
		2.10.13 Mechanical Loss
		2.10.14 Sound Velocity
		2.10.15 Acoustic Impedance
		2.10.16 Two-port Description
	2.11 Piezoelectric Material Parameter
		2.11.1 Temperature
		2.11.2 Accuracy/Linearity
		2.11.3 Resolution
		2.11.4 Stiffness
		2.11.5 Resonant Frequency
		2.11.6 Mechanical Amplification
		2.11.7 Quality Factor
		2.11.8 Bandwidth
		2.11.9 Frequency Constant
		2.11.10 Humidity
		2.11.11 Load Ratings
		2.11.12 Vacuum
	2.12 Manufacturing of Piezoelectric Components
		2.12.1 Bulk Ceramics: Disks, Rings, Plates
		2.12.2 Benders: Unimorphs and Bimorphs-Actuators and Sensors
		2.12.3 Multilayer Actuators
		2.12.4 Thin Films for Piezo-MEMS
	2.13 Difference Between Piezoelectric and Electrostrictive Materials
	2.14 Applications of Piezoelectric Devices
		2.14.1 Aero Industries
		2.14.2 Marine Industries
		2.14.3 Automobiles
		2.14.4 Electrical and Electronics
		2.14.5 Biomedical
		2.14.6 Energy Harvest
		2.14.7 Household and Other Application
	2.15 Advantages of Piezoelectric Materials
	2.16 Limitations of Piezoelectric Materials
	2.17 Summary and Future Prospects
	References
Chapter 3: Nanomaterials
	3.1 Introduction to Nanoscale World
	3.2 History of Nanotechnology
	3.3 Can We Make Small Devices?
	3.4 Size Effects
	3.5 Properties of Nanomaterials
		3.5.1 Structure Properties
		3.5.2 Thermal Properties
		3.5.3 Mechanical Properties
		3.5.4 Chemical Properties
		3.5.5 Optical Properties
		3.5.6 Electrical Properties
		3.5.7 Magnetic Properties
	3.6 Classification of Nanomaterials
		3.6.1 Classification on the Basis of Dimension
			3.6.1.1 Zero-Dimension (0-D)
			3.6.1.2 One-Dimensional (1D)
			3.6.1.3 Two-Dimensional (2D)
			3.6.1.4 Three-Dimensional (3D)
	3.7 Synthesis of Nanomaterials
		3.7.1 Gas-Phase Processes
		3.7.2 Liquid-Phase Processes
		3.7.3 Solid-Phase Processes
	3.8 Classification Based on Composition
		3.8.1 Carbon-Based Materials
			3.8.1.1 Graphene
			3.8.1.2 Fullerene
				3.8.1.2.1 Structure of Fullerene
				3.8.1.2.2 Synthesis of Fullerene
				3.8.1.2.3 Properties of Fullerene
				3.8.1.2.4 Applications
			3.8.1.3 Carbon Nanotube
				3.8.1.3.1 Synthesis of CNT
				3.8.1.3.2 Classification of CNT
				3.8.1.3.3 Properties of CNT
				3.8.1.3.4 Application of CNTs
			3.8.1.4 Other Forms of Carbon-Based Nanomaterials
			3.8.1.5 Metal-Based Nanomaterials
				3.8.1.5.1 Synthesis of Some Metal-Based Nanomaterials
			3.8.1.6 Polymer-Based Nanomaterials
				3.8.1.6.1 Synthesis of Dendrimer
				3.8.1.6.2 Applications
				3.8.1.6.3 Nanocomposites
				3.8.1.6.4 Metal Matrix Nanocomposites (MMNC)
				3.8.1.6.5 Ceramic Matrix Nanocomposites (CMNC)
				3.8.1.6.6 Polymer Matrix Nanocomposites (PMNC)
				3.8.1.6.7 Synthesis of Nanocomposite
				3.8.1.6.8 Application of Nanocomposite
			3.8.1.7 Nanoporous Materials
				3.8.1.7.1 Synthesis of Porous Materials
				3.8.1.7.2 Applications of Nanoporous Materials
	3.9 Emerging Application of Nanomaterials
		3.9.1 Aero Industries
		3.9.2 Automotive and Naval Industry
		3.9.3 Electronic Industry
		3.9.4 Medical Industries
		3.9.5 Energy Harvest Industries
		3.9.6 Food Industries
		3.9.7 Textile Industries
		3.9.8 Household Application
		3.9.9 Others
	3.10 Current Problems/Difficulties Associated With Nanomaterials
	3.11 Opportunities and Challenges
	References
Chapter 4: Magnetostrictive Materials
	4.1 Magnetostrictive Materials
	4.2 History of Magnetostrictive Materials
	4.3 Mechanism of Magnetostrictive Effect
	4.4 Magnetostrictive Sensors Construction and Working
	4.5 Electromagnetic Properties
		4.5.1 Permittivity
		4.5.2 Permeability
		4.5.3 Magnetic Materials
		4.5.4 Diamagnetic Material
		4.5.5 Paramagnetic Material
		4.5.6 Ferromagnetic Material
		4.5.7 Antiferromagnetic Material and Ferrimagnetic Material
		4.5.8 Curie Temperature
		4.5.9 Generation of Magnetic Fields
		4.5.10 Hysteresis
		4.5.11 Inductance
	4.6 Magnetostrictive Effects
		4.6.1 Joul Effect
		4.6.2 Villari Effect
		4.6.3 ΔE Effect
		4.6.4 Wiedemann Effect
		4.6.5 Matteucci Effect
		4.6.6 Barret Effect
		4.6.7 Nagaoka-Honda Effect
	4.7 Materials for Magnetostrictive Effects
		4.7.1 Iron-Based Alloys
		4.7.2 Ni-based Alloys
		4.7.3 Terfenol-D
		4.7.4 Metglas
		4.7.5 Ferromagnetic Shape Memory Alloys
		4.7.6 Other Materials
	4.8 Material Behavior
		4.8.1 Magnetic Anisotropy
		4.8.2 Mechanical Behaviors
	4.9 Kinetics in Magnetostrictive Operation
	4.10 Potential Applications
		4.10.1 Magnetostriction in Mechanical Industries
		4.10.2 Magnetostriction in Aero-Industries
		4.10.3 Magnetostriction in Automotive Industries
		4.10.4 Magnetostriction in Biomedical Industries
		4.10.5 Magnetostriction in Construction Industries
		4.10.6 Magnetostriction in Energy Harvesting Materials
		4.10.7 Magnetostrictive Materials in Other Industries
	4.11 Advantages/Disadvantages of MS Materials
	4.12 Summary
	References
Chapter 5: Chromogenic Materials
	5.1 Introduction
	5.2 History of Chomogenic Materials
	5.3 Concept of Chromogenic Materials
	5.4 Classification of Chromogenic Materials
	5.5 Photochromic Materials
		5.5.1 Mechanism of Photochromic Materials
		5.5.2 Materials Used in Photochromic Materials
		5.5.3 Limitations of Photochromic Glasses
		5.5.4 Applications of Photochromic Materials
	5.6 Thermochromic and Thermotropic Materials
		5.6.1 Mechanism in Thermochromic Materials
		5.6.2 Materials used in Thermochromic Materials
		5.6.3 Advantages and Limitations of Thermochromic Materials
		5.6.4 Applications
	5.7 Electrochromic Materials
		5.7.1 Mechanism of Electrochromic Materials
		5.7.2 Materials Used
		5.7.3 Applications
	5.8 Gasochromic Materials
		5.8.1 Mechanism of Gasochromic Materials
		5.8.2 Applications of Gasochromic Materials
	5.9 Mechanochromic/Piezochromicmaterials
		5.9.1 Mechanism of Mechanochromism in Materials
		5.9.2 Materials Used
		5.9.3 Applications
	5.10 Chemochromic Materials
		5.10.1 Applications
		5.10.2 Limitations
	5.11 Biochromic Materials
		5.11.1 Application
	5.12 Magnetochromic Materials
		5.12.1 Applications
	5.13 Phosphorescent Materials
	5.14 Ionochromic
	5.15 Vapochromism
	5.16 Radiochromism
	5.17 Sorptiochromism
	5.18 Aggregachromism
	5.19 Chronochromism
	5.20 Concentratochromism
	5.21 Cryochromism
	5.22 Summary
	References
Chapter 6: Smart Fluid
	6.1 Introduction
	6.2 Electro-Rheological fluid
		6.2.1 Materials Used in ER Fluid
		6.2.2 Preparation of ER Fluids
		6.2.3 Strengthening Mechanisms of Smart Fluid
		6.2.4 Giant ER
		6.2.5 Microstructure and Properties
		6.2.6 Modes of ER Fluid
		6.2.7 Applications
			6.2.7.1 Automobile Application
			6.2.7.2 Electronic Industries
			6.2.7.3 Other Applications
		6.2.8 Advantages/Disadvantages
	6.3 Magneto-Rheological Fluid
		6.3.1 Materials Used in MR fluid
		6.3.2 Preparation of MR fluid
		6.3.3 Mechanism of Strengthening of MR Fluid
		6.3.4 Microstructure and Properties of MR Fluid
		6.3.5 Typical Modes of Application of MR Fluid
		6.3.6 Applications
			6.3.6.1 Automobile and Heavy Machinery Industries
			6.3.6.2 Military and Defense Industries
			6.3.6.3 Biomedical Industries
			6.3.6.4 Other Industries
		6.3.7 Advantages and Disadvantages of MR Fluid
	6.4 Ferrofluid
		6.4.1 Mechanism
		6.4.2 Preparation of Ferrofluid
		6.4.3 Applications
			6.4.3.1 Aero-Industries
			6.4.3.2 Electronics Engineering
			6.4.3.3 Medical Applications
			6.4.3.4 Other Industries
	6.5 Magneto-rheological Elastomers
		6.5.1 Materials Used
		6.5.2 Preparation of MRE
		6.5.3 Application
	6.6 Electro-Conjugate Liquids
		6.6.1 Application
	6.7 Photo-Rheological Fluid
		6.7.1 PR Fluid Preparation
		6.7.2 Applications
	6.8 Summary
	References
Chapter 7: Superalloys
	7.1 Superalloy
	7.2 History of Superalloys
	7.3 Basic Metallurgy of Superalloys
	7.4 Strengthening Mechanisms of Superalloys
		7.4.1 Solid Solution Strengthening
		7.4.2 Precipitation Strengthening
		7.4.3 Oxide Dispersion Strengthening
		7.4.4 Grain Boundary Strengthening
		7.4.5 Antiphase Boundary Strengthening
	7.5 Types of Superalloys
		7.5.1 Ni-based Superalloys
			7.5.1.1 Phases of Ni-based Superalloys
			7.5.1.2 Properties of Ni-based Superalloys
		7.5.2 Co-based Superalloys
			7.5.2.1 Phases of Co-based Superalloys
		7.5.3 Fe-based Superalloys
			7.5.3.1 Phases of Fe-based Superalloys
	7.6 Single-crystal Superalloys
	7.7 Processing of Superalloys
		7.7.1 Casting and Forging
		7.7.2 Powder Metallurgy Process
		7.7.3 Additive Manufacturing
		7.7.4 Directional Solidification Process
		7.7.5 Single Crystal Growth
		7.7.6 Post-fabrication Processing
	7.8 Problem Persist on Prepared Superalloy
		7.8.1 Oxidation Effects
		7.8.2 Hot Corrosion Effects
	7.9 Coating for Superalloy
		7.9.1 Thermal Barrier Coatings
		7.9.2 Pack Cementation Process
		7.9.3 Bond Coats
			7.9.3.1 Auminides Bond Coats
			7.9.3.2 Pt-Aluminides Bond Coats
			7.9.3.3 MCrAlY Bond Coats
	7.10 Applications of Superalloys
		7.10.1 Gas Turbine Engines
		7.10.2 Turbine Blades
		7.10.3 Turbine Discs
		7.10.4 Turbine Nozzle Guide Vanes
		7.10.5 Turbochargers
		7.10.6 Combustion Cans
		7.10.7 Steam Turbines and Nuclear Application
		7.10.8 Aero and Land Turbines
		7.10.9 Oil and Gas Industry
		7.10.10 Engine of Y2K Superbike
		7.10.11 Pressurized Water Reactor Vessel Head
		7.10.12 Reactor Vessel
		7.10.13 Tube Exchanger
		7.10.14 Ti-Tubed Salt Evaporator for Table Salt
		7.10.15 Casting Shell
	7.11 Summary
	References
Chapter 8: Bulk Metallic Glass
	8.1 Introduction on BMG
	8.2 History on BMG
	8.3 Mechanism of BMG Formation
	8.4 Thermodynamic and Kinetic Aspects of Glass Formation in Metallic Liquids
	8.5 Empirical Rules
	8.6 BMG Structure
	8.7 Dynamics of BMG Structure Formation
	8.8 Plasticity or Brittleness
	8.9 Classification of BMG
		8.9.1 Metal-Metal-Type Alloys
		8.9.2 Metal-Metalloid-Type Alloys
		8.9.3 Pd-Metalloid-Type Alloys
	8.10 Processing of Metallic Glasses
		8.10.1 Liquid State Processes
			8.10.1.1 Direct Casting
			8.10.1.2 Rapid Solidification Processing
			8.10.1.3 Arc Melting and Drop/Suction Casting
			8.10.1.4 Centrifugal Casting Method
			8.10.1.5 Thermoplastic Forming
			8.10.1.6 Extrusion
			8.10.1.7 Rolling
			8.10.1.8 Blow Molding
		8.10.2 Vapor Deposition Process
			8.10.2.1 Physical Vapor Deposition (PVD)
			8.10.2.2 Chemical Vapor Deposition (CVD)
		8.10.3 Solid-State Processes
			8.10.3.1 Mechanical Alloying
			8.10.3.2 Additive Manufacturing
			8.10.3.3 Spark Plasma Sintering
			8.10.3.4 Lithography Technique
	8.11 Fundamental Characteristics of BMG Alloys
		8.11.1 Mechanical Properties
		8.11.2 Tribological Properties
		8.11.3 Magnetic Properties
		8.11.4 Chemical Properties
		8.11.5 Electrical Property
	8.12 Forming and Jointing of BMG
	8.13 Metallic Glass Foam
	8.14 Metallic Glass Coatings
	8.15 Application
		8.15.1 Aerospace Industries
		8.15.2 Automobiles Industries
		8.15.3 Electrical and Electronic Industries
		8.15.4 Biomedical Industries
		8.15.5 Other Applications
	8.16 Summary
	References
Chapter 9: High Entropy Materials
	9.1 Introduction
	9.2 High Entropy Alloys
	9.3 Historical Development of High Entropy Alloy
	9.4 The Key Concept of Multicomponent HEA
	9.5 Thermodynamics of Solid Solution in HEA
	9.6 Core Effects of HEA
		9.6.1 The High Entropy Effect
		9.6.2 The Lattice Distortion Effect
		9.6.3 The Sluggish Diffusion Effect
		9.6.4 The `Cocktail´ Effect
	9.7 Transformations in HEA
	9.8 Phase Selection Approach in HEA
	9.9 Fabrication Routes of HEA
		9.9.1 HEA Preparation by Liquid-State Route
		9.9.2 HEA Preparation by Solid-State Route
		9.9.3 HEA Preparation by Gas-State Route
		9.9.4 HEA Preparation by Electrochemical Process
		9.9.5 Additive Manufacturing Process
	9.10 Strengthening Mechanisms
		9.10.1 Strain Hardening
		9.10.2 Grain-Boundary Hardening
		9.10.3 Solid-Solution Hardening
		9.10.4 Precipitation Hardening
	9.11 High-Entropy Superalloys (HESA)
	9.12 High-Entropy Bulk Metallic Glasses
	9.13 Light Materials HEAs
	9.14 High-Entropy Flexible Materials
	9.15 High-Entropy Coatings
	9.16 Typical Properties of HEA
		9.16.1 Strength and Hardness
		9.16.2 Wear Resistance
		9.16.3 Fatigue
		9.16.4 Chemical Properties
		9.16.5 Electrical Properties
		9.16.6 Thermal Properties
		9.16.7 Magnetic Properties
		9.16.8 Hydrogen Storage Properties
		9.16.9 Irradiation Properties
		9.16.10 Diffusion Barrier Properties
	9.17 Difference between BMG and HEA
	9.18 Complex Concentrated Alloys (CCAs), Multi-Principal Element Alloys (MPEAs)
	9.19 Application of HEA
		9.19.1 Automobile Industries
		9.19.2 Aero-Vehicle Industries
		9.19.3 Machineries
		9.19.4 Nuclear Application
		9.19.5 Electrical and Electronics
		9.19.6 Biomedical Applications
		9.19.7 Other Applications
	9.20 High Entropy Ceramics
	9.21 High Entropy Polymer
	9.22 High Entropy Hybrid
	9.23 Summary
	References
Chapter 10: Self-Healing Materials
	10.1 Introduction and Overview
	10.2 History of Self-Healing Materials
	10.3 Types of Self-Healing Processes
	10.4 Autonomic Self-Repair Materials
	10.5 Non-autonomic Self-Repair Materials
	10.6 Materials for Self-Healing Purposes
		10.6.1 Self-Healing in Metals
			10.6.1.1 Precipitation From Supersaturated Solid Solutions
			10.6.1.2 Reinforcement of Metallic Matrices With Shape Memory Alloy Wires
			10.6.1.3 Reinforcement of Metallic Matrices with Low Melting Temperature Alloy
		10.6.2 Classification of Self-Healing Metals
		10.6.3 Proposed Self-Healing Concepts in Metals
			10.6.3.1 High-T Precipitation
			10.6.3.2 Low-T Precipitation
			10.6.3.3 Nano SMA Dispersoids
			10.6.3.4 SMA-Clamp and Melt
			10.6.3.5 Solder Tubes/Capsules
			10.6.3.6 Coating Agent
			10.6.3.7 Electro-Healing
	10.7 Self-Healing Ceramics
	10.8 Self-Healing Polymers
		10.8.1 Mechanically Triggered Self-Healing
		10.8.2 Ballistic Impact Self-Healing
		10.8.3 Thermally Triggered Self-Healing
		10.8.4 Optically Triggered Healing
		10.8.5 Other Methods for Triggering Healing
		10.8.6 Stages of Passive Self-Healing in Polymer
		10.8.7 Damage and Healing Theories
			10.8.7.1 Percolation Theory of Damage and Healing
			10.8.7.2 Fracture and Healing by Bond Rupture and Repair
			10.8.7.3 Fracture and Healing of an Ideal Rubber
			10.8.7.4 Fracture and Healing of Thermosets
		10.8.8 Healing of Polymer-Polymer Interfaces
		10.8.9 Fatigue Healing
		10.8.10 The Hard-to-Soft Matter Transition
			10.8.10.1 Twinkling Fractal Theory of Tg
			10.8.10.2 Healing below the Glass Transition Temperature
			10.8.10.3 Twinkling Fractal Theory of Yield Stress
		10.8.11 Fracture Mechanics of Polymeric Materials
		10.8.12 Self-Healing of Thermoplastic Materials
			10.8.12.1 Healing by Molecular Interdiffusion Approach
			10.8.12.2 Healing by Recombination of Chain-Ends Approach
			10.8.12.3 Self-Healing Via Reversible Bond Formation
			10.8.12.4 Healing by Photo-Induced Approach
			10.8.12.5 Living Polymer Approach
			10.8.12.6 Self-Healing by Nanoparticles Approach
		10.8.13 Self-Healing of Thermoset Materials
			10.8.13.1 Hollow Glass Fiber Systems
			10.8.13.2 Based on Microencapsulated Healing System
			10.8.13.3 Based on Fatigue Cracks Retardation Self-Healing System
			10.8.13.4 Three-Dimensional Microchannel Structure Self-Healing Systems
			10.8.13.5 Inclusion of Thermoplastic Additives System
			10.8.13.6 Thermally Reversible Cross-Linked Approach
			10.8.13.7 Chain Rearrangement Approach
			10.8.13.8 Metal-Ion-Mediated Healing Approach
			10.8.13.9 Other Approaches of Thermoset Self-Healing Approach
	10.9 Self-Healing Coatings
	10.10 Self-Healing Hydrogels
	10.11 Applications
	10.12 Summary
	References
Chapter 11: Self-Cleaning Materials
	11.1 What Is Self-Cleaning Property of Materials?
	11.2 History of Self-Cleaning Materials
	11.3 Classification of Self-Cleaning Materials
	11.4 Surface Characteristics of Self-Cleaning Materials
		11.4.1 Wettability
			11.4.1.1 Young´s Model of Wetting
			11.4.1.2 Wenzel´s Model of Wetting
			11.4.1.3 Cassie-Baxter´s Model of Wetting
			11.4.1.4 Transition between Cassie and Wenzel States
		11.4.2 Drag Reduction
		11.4.3 Surface Tension and Surface Energy
		11.4.4 Surface Roughness and Air Pockets
	11.5 Act of Self-Cleaning Surfaces
	11.6 Hydrophobic and Superhydrophobic Surfaces
		11.6.1 History of Hydrophobic Materials
			11.6.1.1 Direction of Hydrophobicity From Nature
		11.6.2 Type of Superhydrophobic Surface in Plant Leaves
	11.7 Hydrophilic and Superhydrophilic Self-Cleaning Surfaces
	11.8 Photocatalysis Self-Cleaning Materials
	11.9 Materials Used for Synthesis of Superhydrophobic Surfaces
	11.10 Synthesis of Self-Cleaning Surfaces
		11.10.1 Microlithography and Nanolithography
		11.10.2 Chemical Vapor Deposition
		11.10.3 Physical Vapor Deposition (PVD)
		11.10.4 Electrochemical Deposition
		11.10.5 Electrospinning Method
		11.10.6 Wet Chemical Reaction
		11.10.7 Templating
		11.10.8 Solution Immersion Process
		11.10.9 Self-Assembly and Layer-by-Layer Methods
		11.10.10 Plasma Treatment
		11.10.11 Sol-Gel Method
		11.10.12 Flame Treatment
		11.10.13 Nanocasting
		11.10.14 3D Printing
		11.10.15 Fabrication of Hydrophilic Materials
		11.10.16 Deposited Molecular Structures
		11.10.17 Modification of Surface Chemistry
	11.11 Properties of Superhydrophobic Materials
	11.12 Other Terminology with Phobic and Philic
	11.13 Applications of Self-Cleaning Materials
		11.13.1 Aero-Industries
		11.13.2 Maritime Industry
		11.13.3 Automobile Industries
		11.13.4 Electronic Industries
		11.13.5 Medical Industries
		11.13.6 Textile Industries
		11.13.7 Other Industries
	11.14 Limitations of Self-Cleaning Materials
	11.15 Summary
	References
Chapter 12: Ultralight Materials
	12.1 Introduction of Ultralight Materials
	12.2 Aerogel
		12.2.1 Classification of Aerogel
		12.2.2 Fabrication of Aerogel
			12.2.2.1 Sol-gel Process
			12.2.2.2 3D Printing
			12.2.2.3 Properties of Aerogel
			12.2.2.4 Applications of Aerogel
	12.3 Aerographite
		12.3.1 Synthesis of Aerographite
		12.3.2 Properties of Aerographite
		12.3.3 Applications of Aerographite
	12.4 Aerographene
		12.4.1 Synthesis
		12.4.2 Properties
		12.4.3 Applications
	12.5 3D Graphene
		12.5.1 Synthesis of 3D graphene
		12.5.2 Template-Assisted Processes
			12.5.2.1 Chemical Vapor Deposition (CVD)
			12.5.2.2 Carbonization of Polymeric Structure
			12.5.2.3 Lithography
			12.5.2.4 Template-assisted Freeze-Drying
			12.5.2.5 Template-assisted Hydrothermal Process
			12.5.2.6 Powder Metallurgy Synthesis
		12.5.3 Template-Free Processes
			12.5.3.1 Sugar Blowing Technique
			12.5.3.2 Plasma-enhanced CVD (PE-CVD)
			12.5.3.3 Assembly of GO by Reduction Process
			12.5.3.4 Freeze-Drying
			12.5.3.5 Cross-linking Assembly
			12.5.3.6 3D Printing
		12.5.4 Factors Influencing the Synthesis
		12.5.5 Properties of 3D Graphene
		12.5.6 Application
	12.6 Carbyne
		12.6.1 History of Development
		12.6.2 Synthesis of Carbyne
			12.6.2.1 Polycondensation of Carbon Suboxide with Bis(Bromomagnesium) Acetylide
			12.6.2.2 Dehydrohalogenation of Polymers
			12.6.2.3 Dehydrogenation of Polyacetylene
			12.6.2.4 Synthesis of Carbyne in Plasma
			12.6.2.5 Laser-induced Sublimation of Carbon
			12.6.2.6 Deposition of Carbyne from an Electric Arc
			12.6.2.7 Ion-assisted Condensation of Carbyne
		12.6.3 Properties
		12.6.4 Applications of Carbyne
	12.7 Microlattice Materials
		12.7.1 Metallic Microlattice
			12.7.1.1 Manufacturing of Metallic Lattice Structure
			12.7.1.2 Properties
			12.7.1.3 Applications of Metallic Microlattice
		12.7.2 Polymer Microlattice
			12.7.2.1 Applications of Polymer Microlattice
		12.7.3 Ceramic MicroLattice
		12.7.4 Composite Microlattice
	12.8 Foams
		12.8.1 Metallic Foams
			12.8.1.1 Classification of Metallic Foam
			12.8.1.2 Synthesis of Metallic Foam
				12.8.1.2.1 Powder Metallurgy (P/M) Rout
				12.8.1.2.2 Liquid Metallurgy Route
			12.8.1.3 Foaming by Rapid Prototyping Technique
			12.8.1.4 Electro-Deposition Technique
			12.8.1.5 Vapor Deposition Technique
			12.8.1.6 Based on Polymer Sponge Structure
			12.8.1.7 Properties
			12.8.1.8 Application
		12.8.2 Ceramic Foam
			12.8.2.1 Synthesis
				12.8.2.1.1 Direct Foaming Technique
				12.8.2.1.2 Replica Technique
				12.8.2.1.3 Sacrificial Template Method
			12.8.2.2 Polymeric Foam
				12.8.2.2.1 Classification of Polymer Foams
				12.8.2.2.2 Synthesis of Polymeric Foam
			12.8.2.3 Application
	12.9 Summary and Perspectives
	References
Chapter 13: Biomaterials
	13.1 Introduction
	13.2 History of Biomaterials
	13.3 The Body Environment
	13.4 Governing Factors of Biomaterials
		13.4.1 Biocompatibility
		13.4.2 Wettability
		13.4.3 Porosity
		13.4.4 Stability
	13.5 Classification of Biomaterials
		13.5.1 Metallic Biomaterials
			13.5.1.1 Materials in Metallic Biomaterials
			13.5.1.2 Advantages/Disadvantages of Metallic Biomaterials
		13.5.2 Ceramic Biomaterials
			13.5.2.1 Materials in Ceramic Biomaterials
			13.5.2.2 Advantages and Disadvantages of Ceramic Biomaterials
		13.5.3 Polymeric Biomaterials
			13.5.3.1 Materials in Polymeric Biomaterials
			13.5.3.2 Advantages and Disadvantage of Polymeric Biomaterials
		13.5.4 Biocomposite
			13.5.4.1 Advantages and Disadvantages of Composite Biomaterials
		13.5.5 Biologically Derived Biomaterials
			13.5.5.1 Protein
			13.5.5.2 Polysaccharide
	13.6 Various Synthesis Techniques of Biomaterials
		13.6.1 Solvent Casting
		13.6.2 Particulate Leaching
		13.6.3 Polymer Sponge Replication Method
		13.6.4 Gas Foaming
		13.6.5 Phase Separation
		13.6.6 Freeze Drying
		13.6.7 Electrodeposition
		13.6.8 Rapid Prototyping
	13.7 Surface Modification of Biomaterials
		13.7.1 Biocompatible Coating
		13.7.2 Surface Treatment
	13.8 Summary
	References
Chapter 14: Advanced Plastic Materials
	14.1 Introduction to Advanced Plastic
	14.2 High-Temperature Plastics
		14.2.1 High-Temperature Thermoplastics Structures and Stability
		14.2.2 High-Temperature Plastic Materials
		14.2.3 Application of High-Temperature Plastic
		14.2.4 Advantages and Disadvantages of High-Temperature Plastics Over Metals
	14.3 Conducting Plastic
		14.3.1 Historical Background
		14.3.2 Industrial Market Status
		14.3.3 Classification of Conducting Polymer
		14.3.4 How Can Polymer Conduct Electricity?
		14.3.5 Materials in Conducting Polymer
		14.3.6 Preparation of Conducting Polymers
		14.3.7 Applications of Conductive Polymer
	14.4 Magnetic Plastic
		14.4.1 Applications
	14.5 Transparent Plastic
		14.5.1 Major Factors of Transparency
		14.5.2 Transparent Plastic Materials
		14.5.3 Influence of Nano-metal Oxides in Polymer Transparency
		14.5.4 Application
	14.6 Bioplastic
		14.6.1 Market Growth of Bioplastic
		14.6.2 Biodegradation of Bioplastics
		14.6.3 Types of Bioplastics
			14.6.3.1 Polysaccharides Bioplastic
			14.6.3.2 Proteins Bioplastic
			14.6.3.3 Poly(hydroxybutyrate) (PHB) Bioplastic
			14.6.3.4 Poly(lactic acid) (PLA) Bioplastic
			14.6.3.5 Poly(butylene succinate) (PBS) Bioplastic
			14.6.3.6 Poly(trimethylene terephthalate) (PTT) Bioplastic
			14.6.3.7 Polyhydroxyalkanoates (PHA) Bioplastic
			14.6.3.8 Poly(glycolic acid) (PGA) Bioplastic
			14.6.3.9 Poly(caprolactone) (PCL) Bioplastic
			14.6.3.10 Poly(butylene succinate-co-terephthalate) (PBST) Bioplastic
			14.6.3.11 Poly(butylene adipate-terephthalate) (PBAT) Bioplastic
			14.6.3.12 Poly(vinyl alcohol) Bioplastic
			14.6.3.13 Bio-PET Bioplastic
			14.6.3.14 Bio-PE Bioplastic
		14.6.4 Impact of Bioplastic on the Environmental
		14.6.5 Applications
	14.7 Summary and Future Prospects
	References
Chapter 15: Energy Harvesting and Storing Materials
	15.1 Introduction
	15.2 Types of Ambient Energy Sources
		15.2.1 Photo-Energy Harvest
			15.2.1.1 Basic principles of Solar Collector System
		15.2.2 Thermal Energy Harvest
		15.2.3 Mechanical Energy/Vibrational Energy Harvest
		15.2.4 Electromagnetic Energy Harvesting
		15.2.5 Electrostrictive Energy Harvesting
		15.2.6 Magnetostrictive Energy Harvesters
		15.2.7 Chemical Energy
		15.2.8 Wind Energy Harvest
		15.2.9 Tide Energy
			15.2.9.1 Types of Tide Energy to Harvest
				15.2.9.1.1 Tidal Stream Turbines
				15.2.9.1.2 Archimedes Screws
				15.2.9.1.3 Tidal Dams/Barrages
				15.2.9.1.4 Floating Structures
				15.2.9.1.5 Tidal Kites
				15.2.9.1.6 Wave Riding Arms
				15.2.9.1.7 Artificially Intelligent Turbines
			15.2.9.2 Tidal Energy Generation
			15.2.9.3 Advantages and Disadvantages of Tidal Energy
	15.3 Energy Storage
		15.3.1 Types of Energy Storage
		15.3.2 Batteries
			15.3.2.1 Lithium-Ion Batteries
			15.3.2.2 Lithium-Air Batteries
				15.3.2.2.1 Acidic Electrolyte
				15.3.2.2.2 Alkaline Aqueous Electrolyte
				15.3.2.2.3 Aprotic Electrolyte
			15.3.2.3 Lithium-Polymer Battery
			15.3.2.4 Sodium-Ion Batteries
			15.3.2.5 Magnesium Batteries
			15.3.2.6 Zinc-Ion Batteries
			15.3.2.7 Zinc-Air Batteries
			15.3.2.8 K-Ion Batteries
			15.3.2.9 Aluminum-Ion Batteries
			15.3.2.10 Nickel-Bismuth Batteries
			15.3.2.11 Organic Batteries
	15.4 Summary
	References
Chapter 16: Advanced Semiconductor/Conductor Materials
	16.1 Supercapacitor
	16.2 History of Supercapacitor
	16.3 Batteries, Fuel Cells, and Supercapacitors
	16.4 Work and Processing of Ultracapacitor
		16.4.1 Basic Design
		16.4.2 Storage Principles
		16.4.3 Potential Distribution
		16.4.4 Types of Supercapacitor
			16.4.4.1 Electrostatic Double-layer Capacitance
			16.4.4.2 Electrochemical Pseudocapacitance
			16.4.4.3 Hybrid Capacitors
		16.4.5 Electrodes Materials
			16.4.5.1 Electrodes for EDLC
			16.4.5.2 Electrodes for Pseudocapacitors
			16.4.5.3 Electrodes for Hybrid Capacitors
		16.4.6 Electrolytes
		16.4.7 Separators
		16.4.8 Collectors and Housing
		16.4.9 Synthesis Approach for Electrode Materials
			16.4.9.1 Solgel Method
			16.4.9.2 Electro-polymerization/Electrodeposition
			16.4.9.3 In Situ Polymerization
			16.4.9.4 Direct Coating
			16.4.9.5 Chemical Vapour Deposition (CVD)
			16.4.9.6 Vacuum Filtration Technique
			16.4.9.7 Hydrothermal/Solvothermal Method
			16.4.9.8 Coprecipitation Method
			16.4.9.9 Dealloying Method
			16.4.9.10 Other Synthesis Methods
		16.4.10 Selection of Supercapacitor
		16.4.11 Comparative analysis of Supercapacitor and Other Storage Devices
		16.4.12 Applications
		16.4.13 Advantages and Limitations of Supercapacitor
	16.5 Superconducting Materials
		16.5.1 History of Superconductor
		16.5.2 Classification of Superconducting Materials
			16.5.2.1 Type I Superconductors
			16.5.2.2 Type II Superconductors
		16.5.3 Applications of Superconductors
	16.6 Advanced Semiconductor Materials
		16.6.1 Classification of Semiconductor Materials
		16.6.2 Semiconducting Devices
		16.6.3 Alloy of II-VI Semiconductors with Magnetic Materials
		16.6.4 Alloys of III-V Semiconductors with Ferromagnetic Properties
		16.6.5 Polymer Semiconductor Crystals
		16.6.6 Oxide Semiconductor
		16.6.7 Semiconductor Materials for Magnetoelectronics at Room Temperature
		16.6.8 Spintronics and Spintronic Semiconductor Materials
		16.6.9 Application of Advanced Semiconducting Materials
	16.7 High-mobility Organic Transistors
		16.7.1 P-type Semiconductors
		16.7.2 n-type Semiconductors
	16.8 Summary
	References
Chapter 17: Ultrafine-Grained Materials
	17.1 What Is Ultrafine-Grained Materials
	17.2 Historical Background to UFG Metals
	17.3 Concept on Ultrafine-Grained Materials
	17.4 Methods for Producing UFG Materials
		17.4.1 Equal-Channel Angular Pressing
		17.4.2 High-Pressure Torsion
		17.4.3 Accumulative Roll Bonding
		17.4.4 Friction Stir Processing (FSP)
		17.4.5 Multi-Directional Forging
		17.4.6 Cyclic Extrusion and Compression
		17.4.7 Repetitive Corrugation and Straightening
		17.4.8 Twist Extrusion
		17.4.9 Machining
	17.5 Role of Grain Size
	17.6 Role of Grain Boundaries
	17.7 Diffusion along Grain Boundaries
	17.8 Influence of Second Phases
	17.9 Effect of Internal Stress
	17.10 Effect on Mechanical Behavior
	17.11 Corrosion Behavior
	17.12 Applications
	17.13 Summary
	References
Chapter 18: Alloys Based on Intermetallic Compounds
	18.1 What Is an Intermetallic Alloy?
	18.2 Structure of IMC
		18.2.1 Hume-Rothery Phases
		18.2.2 Frank-Kasper Phases
			18.2.2.1 A15 Phase
			18.2.2.2 Laves Phases
			18.2.2.3 Sigma Phase
			18.2.2.4 Mu Phase
		18.2.3 Kurnakov Phases
		18.2.4 Zintl Phases
		18.2.5 Nowotny Phases
		18.2.6 B2 Phase
		18.2.7 L12 Phase
	18.3 Structure Defects of IMC
		18.3.1 Point Defects
		18.3.2 Structure of Antiphase Boundaries and Domains
		18.3.3 Superlattice Dislocations
	18.4 Structure of Grain Boundaries and Brittleness of IMC
	18.5 Optical Properties of Intermetallic Compound
	18.6 Processing of IMC
	18.7 Most Used Intermetallic Compounds
		18.7.1 NiAl Intermetallics
		18.7.2 FeAl Intermetallics
		18.7.3 TiAl Intermetallics
		18.7.4 CrAl Intermetallics
		18.7.5 NiTi Intermetallics
		18.7.6 Compounds Containing Lanthanide Metals and Yttrium
	18.8 Application Fields of IMC Alloys
	18.9 Summary
	References
Chapter 19: Metal-Organic Frameworks
	19.1 What Is Metal-Organic Framework
	19.2 History and Background of MOF
	19.3 Structure of MOF
	19.4 Synthesis of MOF
		19.4.1 Solvothermal or Hydrothermal Techniques
			19.4.1.1 Microwave-Assisted Synthesis
			19.4.1.2 Sonochemical Synthesis
			19.4.1.3 Mechanochemical Synthesis
			19.4.1.4 Electrochemical Synthesis
			19.4.1.5 Surfactant-Assisted Synthesis
			19.4.1.6 Microfluidic MOF Synthesis
	19.5 Post-Synthetic Modification
	19.6 Separation With MOF Materials
		19.6.1 Adsorptive Separation
		19.6.2 Membrane Separation
	19.7 MOFs for Gas-Phase Adsorptive Separations
		19.7.1 Selective Adsorptions and Separations of Gas
			19.7.1.1 Carbon Dioxide (CO2)
			19.7.1.2 Oxygen (O2)
			19.7.1.3 Hydrogen (H2)
			19.7.1.4 Gaseous Olefin and Paraffin
			19.7.1.5 Harmful and Unsafe Gases
			19.7.1.6 Nobel Gases and Others
		19.7.2 Selective Adsorptions and Separations of Chemical in Vapor Phase
			19.7.2.1 Small Solvent Molecules
			19.7.2.2 C8 Alkylaromatic Isomers
			19.7.2.3 Aliphatic Isomers
			19.7.2.4 Others
	19.8 MOFs for Liquid-Phase Adsorptive Separations
		19.8.1 Selective Adsorptions and Separations of Chemically Different Species
			19.8.1.1 Organic Molecules with Different Properties/Functional Group
			19.8.1.2 Organic Molecules With Different Shape and Size
			19.8.1.3 Organosulfur Compound
			19.8.1.4 Cations and Anions
		19.8.2 Selective Adsorptions and Separations of Structural Isomer
			19.8.2.1 Aromatic Compound
			19.8.2.2 Aliphatic Compound
		19.8.3 Selective Adsorptions and Separations of Stereoisomer
			19.8.3.1 Enantiomers (Enantio-Separation)
			19.8.3.2 Cis-Trans Isomer
	19.9 MOFs Membrane-Based Separations
		19.9.1 Separations with MoF Thin Film
			19.9.1.1 H2 Separation
			19.9.1.2 CO2 Separation
			19.9.1.3 Other Gas and Vapor Separation
		19.9.2 Separation with Mixed-Matrix MOF Membrane
			19.9.2.1 Gas Separation
			19.9.2.2 Liquid Separation
	19.10 Potential Application of MOF
		19.10.1 As a Catalyst
		19.10.2 For Pollution Control
		19.10.3 MOF Sensors
		19.10.4 Energy Storage Materials
		19.10.5 Biomedical Application
		19.10.6 Other Applications
	19.11 Summary
	References
Chapter 20: Additive Manufacturing Materials
	20.1 Introduction
	20.2 Additive Manufacturing Market
	20.3 Additive Manufacturing Advantages Over Conventional Manufacturing
	20.4 Steps Involved in AM Processes
		20.4.1 Step 1: Conceptualization and CAD Designing a 3D Model
		20.4.2 Step 2: Conversion of Digital Design of STL File
		20.4.3 Step 3: Slicing Using a 3D Printer Slicer Software and Manipulation of STL File
		20.4.4 Step 4: Machine Parametric Setup
		20.4.5 Step 5: Build
		20.4.6 Step 6: Removal of Product
		20.4.7 Step 7: Post-Processing
	20.5 Classification of AM Processes
		20.5.1 Material Extrusion
		20.5.2 VAT Photopolymerization
		20.5.3 Material Jetting
		20.5.4 Powder Bed Fusion
		20.5.5 Directed Energy Deposition
		20.5.6 Binder Jetting
		20.5.7 Sheet Lamination
	20.6 Materials for AM Processes
		20.6.1 Metal
		20.6.2 Ceramic
		20.6.3 Polymer
		20.6.4 Composite
		20.6.5 Intermetallic Compound
		20.6.6 High Entropy Alloys and Bulk Metallic Glass
	20.7 Processability in AM
	20.8 4D Printing
	20.9 5D Printing
	20.10 Differences Between 3D, 4D, 5D Printing, and Other
	20.11 Advantages and Limitations of Additive Manufacturing
	20.12 Applications of AM
		20.12.1 Aero Industries
		20.12.2 Automobile
		20.12.3 Electrical Industries
		20.12.4 Biomedical Industries
		20.12.5 Energy Harvesting Industries
		20.12.6 Other Industries
	20.13 Summary
	References
Index




نظرات کاربران