دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [5 ed.] نویسندگان: E. T. Whittaker, G. N. Watson سری: ISBN (شابک) : 1316518930, 9781316518939 ناشر: Cambridge University Press سال نشر: 2021 تعداد صفحات: 700 [721] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب A Course of Modern Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دوره ای از تحلیل مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این اثر کلاسیک از زمان اولین ظهور خود در سال 1902 منبع منحصر به فردی برای هزاران ریاضیدان، دانشمند و مهندس بوده است. هرگز چاپ نشد، ارزش مستمر آن در بررسی کامل و جامع توابع ویژه فیزیک ریاضی و تجزیه و تحلیل معادلات دیفرانسیل است. که از آن بیرون می آیند. این کتاب همچنین دارای ارزش تاریخی است زیرا اولین کتاب به زبان انگلیسی است که روش های مدرن آن زمان تجزیه و تحلیل پیچیده را معرفی می کند. این ویرایش پنجم سبک و محتوای نسخه اصلی را حفظ می کند، اما در صورت لزوم با نتایج و مراجع جدیدتر تکمیل شده است. تمام فرمول ها بررسی شده و اصلاحات زیادی انجام شده است. یک جستجوی کتابشناختی کامل برای ارائه منابع به شکل مدرن برای سهولت استفاده انجام شده است. این یک افزودنی خوشآمد به قفسه کتابهای هر ریاضیدانی است، این به نسل جدید اجازه میدهد زیباییهای موجود در این متن را تجربه کنند.
This classic work has been a unique resource for thousands of mathematicians, scientists and engineers since its first appearance in 1902. Never out of print, its continuing value lies in its thorough and exhaustive treatment of special functions of mathematical physics and the analysis of differential equations from which they emerge. The book also is of historical value as it was the first book in English to introduce the then modern methods of complex analysis. This fifth edition preserves the style and content of the original, but it has been supplemented with more recent results and references where appropriate. All the formulas have been checked and many corrections made. A complete bibliographical search has been conducted to present the references in modern form for ease of use. A welcome addition to any mathematician's bookshelf, this will allow a whole new generation to experience the beauty contained in this text.
Edmund Taylor Whittaker (1873–1956); George Neville Watson(1886–1965) Contents Foreword S.J. Patterson Preface to the Fifth Edition Preface to the Fourth Edition Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Introduction Part I. The Process of Analysis 1. Complex Numbers 1.1 Rational numbers 1.2 Dedekind’s theory of irrational numbers 1.3 Complex numbers 1.4 The modulus of a complex number 1.5 The Argand diagram 1.6 Miscellaneous examples 2. The Theory of Convergence 2.1 The definition of the limit of a sequence 2.2 The limit of an increasing sequence 2.3 Convergence of an infinite series 2.4 Effect of changing the order of the terms in a series 2.5 Double series 2.6 Power series 2.7 Infinite products 2.8 Infinite determinants 2.9 Miscellaneous examples 3. Continuous Functions and Uniform Convergence 3.1 The dependence of one complex number on another 3.2 Continuity of functions of real variables 3.3 Series of variable terms. Uniformity of convergence 3.4 Discussion of a particular double series 3.5 The concept of uniformity 3.6 The modified Heine–Borel theorem 3.7 Uniformity of convergence of power series 3.8 Miscellaneous examples 4. The Theory of Riemann Integration 4.1 The concept of integration 4.2 Differentiation of integrals containing a parameter 4.3 Double integrals and repeated integrals 4.4 Infinite integrals 4.5 Improper integrals. Principal values 4.6 Complex integration 4.7 Integration of infinite series 4.8 Miscellaneous examples 5. The Fundamental Properties of Analytic Functions; Taylor’s, Laurent’s and Liouville’s Theorems 5.1 Property of the elementary functions 5.2 Cauchy’s theorem on the integral of a function round a contour 5.3 Analytic functions represented by uniformly convergent series 5.4 Taylor’s theorem 5.5 The process of continuation 5.6 Laurent’s theorem 5.7 Many-valued functions 5.8 Miscellaneous examples 6. The Theory of Residues; Application to the Evaluation of Definite Integrals 6.1 Residues 6.2 The evaluation of definite integrals 6.3 Cauchy’s integral 6.4 Connexion between the zeros of a function and the zeros of its derivative 6.5 Miscellaneous examples 7. The Expansion of Functions in Infinite Series 7.1 A formula due to Darboux 7.2 The Bernoullian numbers and the Bernoullian polynomials 7.3 Bürmann’s theorem 7.4 The expansion of a class of functions in rational fractions 7.5 The expansion of a class of functions as infinite products 7.6 The factor theorem of Weierstrass 7.7 The expansion of a class of periodic functions in a series of cotangents 7.8 Borel’s theorem 7.9 Miscellaneous examples 8. Asymptotic Expansions and Summable Series 8.1 Simple example of an asymptotic expansion 8.2 Definition of an asymptotic expansion 8.3 Multiplication of asymptotic expansions 8.4 Methods of summing series 8.5 Hardy’s convergence theorem 8.6 Miscellaneous examples 9. Fourier Series and Trigonometric Series 9.1 Definition of Fourier series 9.2 On Dirichlet’s conditions and Fourier’s theorem 9.3 The nature of the coefficients in a Fourier series 9.4 Fejér’s theorem 9.5 The Hurwitz–Liapounoff theorem concerning Fourier constants 9.6 Riemann’s theory of trigonometrical series 9.7 Fourier’s representation of a function by an integral 9.8 Miscellaneous examples 10. Linear Differential Equations 10.1 Linear differential equations 10.2 Solution of a differential equation valid in the vicinity of an ordinary point 10.3 Points which are regular for a differential equation 10.4 Solutions valid for large values of |z| 10.5 Irregular singularities and confluence 10.6 The differential equations of mathematical physics 10.7 Linear differential equations with three singularities 10.8 Linear differential equations with two singularities 10.9 Miscellaneous examples 11. Integral Equations 11.1 Definition of an integral equation 11.2 Fredholm’s equation and its tentative solution 11.3 Integral equations of the first and second kinds 11.4 The Liouville–Neumann method of successive substitutions 11.5 Symmetric nuclei 11.6 Orthogonal functions 11.7 The development of a symmetric nucleus 11.8 Solution of Abel’s integral equation 11.9 Miscellaneous examples Part II. The Transcendental Functions 12. The Gamma-Function 12.1 Definitions of the Gamma-function. The Weierstrassian product 12.2 Euler’s expression of Γ(z) as an infinite integral 12.3 Gauss’ expression for the logarithmic derivate of the Gamma-function as an infinite integral 12.4 The Eulerian integral of the first kind 12.5 Dirichlet’s integral 12.6 Miscellaneous examples 13. The Zeta-Function of Riemann 13.1 Definition of the zeta-function 13.2 Hermite’s formula for ζ(s,a) 13.3 Euler’s product for ζ(s) 13.4 Riemann’s integral for ζ(s) 13.5 Inequalities satisfied by ζ(s,a) when σ>0 13.6 The asymptotic expansion of log Γ(z+a) 13.7 Miscellaneous examples 14. The Hypergeometric Function 14.1 The hypergeometric series 14.2 The differential equation satisfied by F(a,b; c; z) 14.3 Solutions of Riemann’s P-equation by hypergeometric functions 14.4 Relations between particular solutions of the hypergeometric equation 14.5 Barnes’ contour integrals for the hypergeometric function 14.6 Solution of Riemann’s equation by a contour integral 14.7 Relations between contiguous hypergeometric functions 14.8 Miscellaneous examples 15. Legendre Functions 15.1 Definition of Legendre polynomials 15.2 Legendre functions 15.3 Legendre functions of the second kind 15.4 Heine’s development of (t-z)^(-1) as a series of Legendre polynomials in z 15.5 Ferrers’ associated Legendre functions P^m_n (z) and Q^m_n (z) 15.6 Hobson’s definition of the associated Legendre functions 15.7 The addition-theorem for the Legendre polynomials 15.8 The function C^v_n (z) 15.9 Miscellaneous examples 16. The Confluent Hypergeometric Function 16.1 The confluence of two singularities of Riemann’s equation 16.2 Expression of various functions by functions of the type W_{k,m}(z) 16.3 The asymptotic expansion of W_{k,m} (z), when |z| is large 16.4 Contour integrals of the Mellin–Barnes type for W_{k,m} (z) 16.5 The parabolic cylinder functions. Weber’s equation 16.6 A contour integral for D_n (z) 16.7 Properties of D_n (z) when n is an integer 16.8 Miscellaneous examples 17. Bessel Functions 17.1 The Bessel coefficients 17.2 The solution of Bessel’s equation when n is not necessarily an integer 17.3 Hankel’s contour integral for J_n (z) 17.4 Connexion between Bessel coefficients and Legendre functions 17.5 Asymptotic series for J_n (z) when |z| is large 17.6 The second solution of Bessel’s equation when the order is an integer 17.7 Bessel functions with purely imaginary argument 17.8 Neumann’s expansion of an analytic function in a series of Bessel coefficients 17.9 Tabulation of Bessel functions 17.10 Miscellaneous examples 18. The Equations of Mathematical Physics 18.1 The differential equations of mathematical physics 18.2 Boundary conditions 18.3 A general solution of Laplace’s equation 18.4 The solution of Laplace’s equation which satisfies assigned boundary conditions at the surface of a sphere 18.5 Solutions of Laplace’s equation which involve Bessel coefficients 18.6 A general solution of the equation of wave motions 18.7 Miscellaneous examples 19. Mathieu Functions 19.1 The differential equation of Mathieu 19.2 Periodic solutions of Mathieu’s equation 19.3 The construction of Mathieu functions 19.4 The nature of the solution of Mathieu’s general equation; Floquet’s theory 19.5 The Lindemann–Stieltjes theory of Mathieu’s general equation 19.6 A second method of constructing the Mathieu function 19.7 The method of change of parameter 19.8 The asymptotic solution of Mathieu’s equation 19.9 Miscellaneous examples 20. Elliptic Functions. General Theorems and the Weierstrassian Functions 20.1 Doubly-periodic functions 20.2 The construction of an elliptic function. Definition of ℘(z) 20.3 The addition-theorem for the function ℘(z) 20.4 Quasi-periodic functions. The function ζ(z) 20.5 Formulae expressing any elliptic function in terms of Weierstrassian functions with the same periods 20.6 On the integration of (a₀x⁴ + 4a₁x³ + 6a₂x² + 4a₃x + a₄) ^{-1/2} 20.7 The uniformisation of curves of genus unity 20.8 Miscellaneous examples 21. The Theta-Functions 21.1 The definition of a theta-function 21.2 The relations between the squares of the theta-functions 21.3 Jacobi’s expressions for the theta-functions as infinite products 21.4 The differential equation satisfied by the theta-functions 21.5 The expression of elliptic functions by means of theta-functions 21.6 The differential equations satisfied by quotients of theta-functions 21.7 The problem of inversion 21.8 The numerical computation of elliptic functions 21.9 The notations employed for the theta-functions 21.10 Miscellaneous examples 22. The Jacobian Elliptic Functions 22.1 Elliptic functions with two simple poles 22.2 The addition-theorem for the function sn u 22.3 The constant K 22.4 Jacobi’s imaginary transformation 22.5 Infinite products for the Jacobian elliptic functions 22.6 Fourier series for the Jacobian elliptic functions 22.7 Elliptic integrals 22.8 The lemniscate functions 22.9 Miscellaneous examples 23. Ellipsoidal Harmonics and Lamé’s Equation 23.1 The definition of ellipsoidal harmonics 23.2 The four species of ellipsoidal harmonics 23.3 Confocal coordinates 23.4 Various forms of Lamé’s differential equation 23.5 Lamé’s equation in association with Jacobian elliptic functions 23.6 The integral equation satisfied by Lamé functions of the first and second species 23.7 Generalisations of Lamé’s equation 23.8 Miscellaneous examples Appendix. The Elementary Transcendental Functions A.1 On certain results assumed in Chapters 1 to 4 A.2 The exponential function exp z A.3 Logarithms of positive numbers A.4 The definition of the sine and cosine A.5 The periodicity of the exponential function A.6 Logarithms of complex numbers A.7 The analytical definition of an angle References [28] [59] [90] [118] [148] [176] [204] [235] [273] [304] [334] [364] [394] [427] [455] [484] [514] [545] [577] [609] [640] [669] Author index Subject index