ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Wireless Communication Systems in MATLAB

دانلود کتاب سیستم های ارتباطی بی سیم در متلب

Wireless Communication Systems in MATLAB

مشخصات کتاب

Wireless Communication Systems in MATLAB

دسته بندی: موجک و پردازش سیگنال
ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 9798648350779, 9798648523210 
ناشر: Gaussian Waves 
سال نشر: 2020 
تعداد صفحات: 382 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 40,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



کلمات کلیدی مربوط به کتاب سیستم های ارتباطی بی سیم در متلب: مهندسی برق



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Wireless Communication Systems in MATLAB به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم های ارتباطی بی سیم در متلب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سیستم های ارتباطی بی سیم در متلب

در این کتاب جنبه‌های نظری چگونگی تبدیل یک سیستم ارتباطی بی‌سیم به مدل‌های شبیه‌سازی با استفاده از عملیات ماتریس ابتدایی در Matlab نشان داده شده است. اکثر مدل های شبیه سازی نشان داده شده در این کتاب، از هیچ یک از توابع جعبه ابزار ارتباطی داخلی استفاده نمی کنند. این فرصتی را برای یک مهندس مجرب فراهم می‌کند تا جنبه‌های پیاده‌سازی اولیه مدل‌سازی بلوک‌های ساختمانی مختلف یک سیستم بی‌سیم را درک کند. این کتاب عمدتاً برای دانشجویان کارشناسی و کارشناسی ارشد در رشته مهندسی برق، که مایل به یادگیری جنبه‌های اجرای اساسی یک سیستم بی‌سیم هستند، در نظر گرفته شده است.


توضیحاتی درمورد کتاب به خارجی

In this book shows the theoretical aspects of how a wireless communication system can be translated into simulation models, using elementary matrix operations in Matlab. Most of the simulation models shown in this book, will not use any of the inbuilt communication toolbox functions. This provides an opportunity for a practicing engineer to understand the basic implementation aspects of modeling various building blocks of a wireless system. The book is intended to be used primarily by undergraduate and graduate students in electrical engineering discipline, who wish to learn the basic implementation aspects of a wireless system.



فهرست مطالب

Part I Fundamental Concepts
	Essentials of Signal Processing
		Generating standard test signals
			Sinusoidal signals
			Square wave
			Rectangular pulse
			Gaussian pulse
			Chirp signal
		Interpreting FFT results - complex DFT, frequency bins and FFTShift
			Real and complex DFT
			Fast Fourier Transform (FFT)
			Interpreting the FFT results
			FFTShift
			IFFTShift
			Some observations on FFTShift and IFFTShift
		Obtaining magnitude and phase information from FFT
			Discrete-time domain representation
			Representing the signal in frequency domain using FFT
			Reconstructing the time domain signal from the frequency domain samples
			Plotting frequency response
		Power spectral density
		Power and energy of a signal
			Energy of a signal
			Power of a signal
			Classification of signals
			Computation of power of a signal - simulation and verification
		Polynomials, convolution and Toeplitz matrices
			Polynomial functions
			Representing single variable polynomial functions
			Multiplication of polynomials and linear convolution
			Toeplitz matrix and convolution
		Methods to compute convolution
			Method 1: Brute-force method
			Method 2: Using Toeplitz matrix
			Method 3: Using FFT to compute convolution
			Miscellaneous methods
		Analytic signal and its applications
			Analytic signal and Fourier transform
			Applications of analytic signal
		Choosing a filter : FIR or IIR : understanding the design perspective
			Design specification
			General considerations in design
		References
	Random Variables - Simulating Probabilistic Systems
		Introduction
		Plotting the estimated PDF
		Univariate random variables
			Uniform random variable
			Bernoulli random variable
			Binomial random variable
			Exponential random variable
			Poisson process
			Gaussian random variable
			Chi-squared random variable
			Non-central Chi-Squared random variable
			Chi distributed random variable
			Rayleigh random variable
			Ricean random variable
			Nakagami-m distributed random variable
		Central limit theorem - a demonstration
		Generating correlated random variables
			Generating two sequences of correlated random variables
			Generating multiple sequences of correlated random variables using Cholesky decomposition
		Generating correlated Gaussian sequences
			Spectral factorization method
			Auto-Regressive (AR) model
		References
Part II Channel Capacity and Coding Theory
	Channel Capacity
		Introduction
		Shannon's noisy channel coding theorem
		Unconstrained capacity for bandlimited AWGN channel
		Shannon's limit on spectral efficiency
		Shannon's limit on power efficiency
		Generic capacity equation for discrete memoryless channel (DMC)
			Capacity over binary symmetric channel (BSC)
			Capacity over binary erasure channel (BEC)
		Constrained capacity of discrete input continuous output memoryless AWGN channel
		Ergodic capacity over a fading channel
		References
	Linear Block Coding
		Introduction to error control coding
			Error control schemes
			Channel coding – metrics
		Overview of block codes
			Error-detection and error-correction capability
			Decoders for block codes
			Classification of block codes
		Theory of linear block codes
		Optimum soft-decision decoding of linear block codes for AWGN channel
		Sub-optimal hard-decision decoding of linear block codes for AWGN channel
			Standard array decoder
			Syndrome decoding
		Some classes of linear block codes
			Repetition codes
			Hamming codes
			Maximum-length codes
			Hadamard codes
		Performance simulation of soft and hard decision decoding of hamming codes
		References
Part III Digital Modulations
	Digital Modulators and Demodulators : Complex Baseband Equivalent Models
		Passband and complex baseband equivalent model
			Complex baseband representation of modulated signal
		Complex baseband representation of channel response
		Modulators for amplitude and phase modulations
			Pulse Amplitude Modulation (M-PAM)
			Phase Shift Keying Modulation (M-PSK)
			Quadrature Amplitude Modulation (M-QAM)
		Demodulators for amplitude and phase modulations
			M-PAM detection
			M-PSK detection
			M-QAM detection
			Optimum detector on IQ plane using minimum Euclidean distance
		M-ary FSK modulation and detection
			Modulator for M orthogonal signals
			M-FSK detection
		References
	Performance of Digital Modulations over Wireless Channels
		AWGN channel
			Signal to noise ratio (SNR) definitions
			AWGN channel model
			Theoretical symbol error rates
			Unified simulation model for performance simulation
		Fading channels
			Linear time invariant channel model and FIR filters
			Simulation model for detection in flat fading channel
			Rayleigh flat-fading channel
			Ricean flat-fading channel
		References
Part IV Intersymbol Interference and Equalizers
	Pulse Shaping, Matched Filtering and Partial Response Signaling
		Introduction
		Nyquist criterion for zero ISI
		Discrete-time model for a system with pulse shaping and matched filtering
			Rectangular pulse shaping
			Sinc pulse shaping
			Raised-cosine pulse shaping
			Square-root raised-cosine pulse shaping
		Eye diagram
		Implementing a matched filter system with SRRC filtering
			Plotting the eye diagram
			Performance simulation
		Partial response (PR) signaling models
			Impulse response and frequency response of PR signaling schemes
		Precoding
			Implementing a modulo-M precoder
			Simulation and results
		References
	Linear Equalizers
		Introduction
		Linear equalizers
		Symbol-spaced linear equalizer channel model
		Zero-forcing equalizer
			Least squares solution
			Noise enhancement
			Design and simulation of zero-forcing equalizer
			Drawbacks of zero-forcing equalizer
		Minimum mean square error (MMSE) equalizer
			Alternative solution
			Design and simulation of MMSE equalizer
		Equalizer delay optimization
		BPSK modulation with zero-forcing and MMSE equalizers
		Adaptive equalizer: Least mean square (LMS) algorithm
		References
	Receiver Impairments and Compensation
		Introduction
		DC offsets and compensation
		IQ imbalance model
		IQ imbalance estimation and compensation
			Blind estimation and compensation
			Pilot based estimation and compensation
		Visualizing the effect of receiver impairments
		Performance of M-QAM modulation with receiver impairments
		References
Part V Wireless Channel Models
	Large-scale Propagation Models
		Introduction
		Friis free space propagation model
		Log distance path loss model
		Two ray ground reflection model
		Modeling diffraction loss
			Single knife-edge diffraction model
			Fresnel zones
		Hata Okumura model for outdoor propagation
		References
	Small-scale Models for Multipath Effects
		Introduction
		Statistical characteristics of multipath channels
			Mutipath channel models
			Scattering function
			Power delay profile
			Doppler power spectrum
			Classification of small-scale fading
		Rayleigh and Rice processes
			Probability density function of amplitude
			Probability density function of frequency
		Modeling frequency flat channel
		Modeling frequency selective channel
			Method of equal distances (MED) to model specified power delay profiles
			Simulating a frequency selective channel using TDL model
		References
	Multiple Antenna Systems - Spatial Diversity
		Introduction
			Diversity techniques
			Single input single output (SISO) channel model
			Multiple antenna systems channel model
		Diversity and spatial multiplexing
			Classification with respect to antenna configuration
			Two flavors of multiple antenna systems
			Spatial diversity
			Spatial multiplexing
		Receive diversity
			Received signal model
			Maximum ratio combining (MRC)
			Equal gain combining (EGC)
			Selection combining (SC)
			Performance simulation
			Array gain and diversity gain
		Transmit diversity
			Transmit beamforming with CSIT
			Alamouti code for CSIT unknown
		References
Part VI Multiuser and Multitone Communication Systems
	Spread Spectrum Techniques
		Introduction
		Code sequences
			Sequence correlations
			Maximum-length sequences (m-sequences)
			Gold codes
		Direct sequence spread spectrum
			Simulation of DSSS system
			Performance of direct sequence spread spectrum over AWGN channel
			Performance of direct sequence spread spectrum in the presence of a Jammer
		Frequency hopping spread spectrum
			Simulation model
			Binary frequency shift keying (BFSK)
			Allocation of frequency channels
			Frequency hopping generator
			Fast and slow frequency hopping
			Simulation code for BFSK-FHSS
		References
	Orthogonal Frequency Division Multiplexing (OFDM)
		Introduction
		Understanding the role of cyclic prefix in a CP-OFDM system
			Circular convolution and designing a simple frequency domain equalizer
			Demonstrating the role of cyclic prefix
			Verifying DFT property
		Discrete-time implementation of baseband CP-OFDM
		Performance of MPSK-CP-OFDM and MQAM-CP-OFDM on AWGN channel
		Performance of MPSK-CP-OFDM and MQAM-CP-OFDM on frequency selective Rayleigh channel
		References
	Index




نظرات کاربران