دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Bharat Bhushan
سری:
ISBN (شابک) : 9781394286997
ناشر:
سال نشر: 2025
تعداد صفحات: [431]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 26 Mb
در صورت تبدیل فایل کتاب Wellness Management Powered by AI Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Chapter 1 Exploring Functional Modules Using Co-Clustering of Protein Interaction Networks 1.1 Introduction 1.2 Related Works 1.3 Basic Terminologies 1.3.1 Scientific Terms Used 1.4 Existing Methods 1.4.1 Binary Co-Clustering Approaches 1.4.1.1 Binary Inclusion-Maximal Algorithm 1.4.1.2 xMotif Algorithm 1.5 About Dataset 1.5.1 Protein Interaction Networks 1.5.1.1 STRING Repository 1.5.2 Protein Complex Dataset 1.5.2.1 CORUM Database 1.6 Experimental Environment 1.6.1 MapReduce Framework 1.7 Validation Measures 1.7.1 Match Score Measure 1.7.2 Functional Coherence 1.8 Biological Significances 1.9 Proposed Co-Clustering Approach: MR-CoC 1.9.1 SCoC for Non-Symmetric Matrix 1.9.1.1 Toy Example: SCoCnsym 1.9.1.2 Synthetic Dataset Description 1.9.1.3 Experimental Analysis: SCoCnsym 1.9.2 Randomized SCoC 1.9.2.1 Synthetic Dataset Description 1.9.2.2 Experimental Analysis: SCoCrand 1.9.3 SCoC with MapReduce (MR-CoC) 1.9.3.1 Synthetic Dataset Description 1.9.3.2 Experimental Analysis: MR-CoC 1.10 Functional Module Mining Using MR-CoC 1.11 Conclusion Appendix References Chapter 2 Natural Language Processing in Healthcare: Enhancing Wellbeing through a COVID-19 Case Study 2.1 Introduction 2.2 NLP Approaches 2.3 NLP Pipeline for Smart Healthcare 2.3.1 Preprocessing 2.3.2 Feature Extraction 2.3.3 Classification 2.3.4 Model Interpretability 2.4 Applications of NLP in Healthcare 2.4.1 Clinical Records 2.4.2 Information Extraction 2.4.3 Decision Support 2.4.4 Health Assistance 2.4.5 Opinion Mining 2.5 COVID Detection Using NLP 2.5.1 Data Collection 2.5.2 Preprocessing 2.5.3 Feature Engineering 2.5.4 Classification 2.5.5 Ensemble Classification 2.6 Results and Discussion 2.6.1 Traditional Machine Learning 2.6.2 Ensemble Machine Learning 2.7 Conclusion References Chapter 3 Artificial Intelligence Assisted Internet of Medical Things (AIoMTs) in Sustainable Healthcare Ecosystem 3.1 Introduction 3.1.1 Key Contributions of the Chapter 3.1.2 Chapter Organization 3.2 Medical Wearable Electronics 3.2.1 Electronic Sensor Traits 3.2.2 Disposable Health Sensors 3.2.3 Ingestible Sensors 3.2.4 Patch Sensors 3.2.5 Connected Health Sensors 3.2.6 Wearables 3.2.7 Smart Clothing 3.2.8 Implantable Sensors 3.3 Electronic Signals in Sensors 3.3.1 Gait Analysis 3.3.2 Photoplethysmography 3.3.3 Electromyography 3.3.4 Auscultation 3.4 Electronic Devices Challenges in the AIoMT 3.4.1 Data Security Threats 3.4.2 Data Interoperability 3.4.3 Regulatory Challenges 3.4.4 High Infrastructure Costs 3.4.5 Standardization Challenges 3.4.6 Cybersecurity 3.4.7 Device Mobility 3.4.8 Adoption Scale 3.4.9 Advanced Analytics 3.4.10 Trust Maintenance 3.4.11 Data Security 3.4.12 Licensing Challenge 3.5 AIoMT Benefits 3.5.1 Medical Diagnosis 3.5.2 Medical Treatment 3.5.3 Patie nt Empowerment 3.5.4 Reduction in Medical Costs 3.5.5 Reduction in Human Error 3.6 AIoMTs Challenges 3.6.1 Privacy Concerns 3.6.2 Missteps and Errors 3.6.3 Data Management and Power Issues 3.6.4 Bias 3.7 AIoMT Limitations 3.8 Future Research Direction 3.9 Conclusions and Future Scope References Chapter 4 An Online Platform for Timely Access to Medical Care with the Help of Real-Time Data Analysis 4.1 Introduction 4.1.1 Research Questions 4.1.2 Inspiration Drawn 4.1.3 Limitations 4.1.4 Importance of Machine Learning in this Research Work 4.2 What Happened 4.3 Literature Review 4.4 Methodology 4.4.1 Dataset Collection 4.4.2 Data Preprocessing 4.4.3 Model Building 4.4.4 Clustering Algorithm 4.4.5 A* Algorithm 4.5 Hardware Component 4.5.1 Blockchain in Health Care 4.6 Conclusion 4.7 Future Work References Chapter 5 A Comprehensive Review of Cardiac Image Analysis for Precise Heart Disease Diagnosis Using Deep Learning Techniques 5.1 Introduction and Major Contribution 5.2 Literature Review 5.3 Machine Learning Methods 5.4 Proposed System 5.4.1 Dataset 5.4.2 Preprocessing 5.4.3 Network Architecture 5.5 Mathematical Model 5.6 Data Preparation 5.7 Model Training and Evaluation 5.8 Results and Discussion 5.9 Conclusion and Future Work References Chapter 6 A Hybrid Machine Learning Model for an Efficient Detection of Liver Inflammation Abbreviations 6.1 Introduction 6.1.1 Novelty of Detection of NAFLD Using Conglomeration of Machine Learning Techniques 6.2 Machine Learning for Liver Disease Prediction 6.2.1 Data Collection and Pre-Processing 6.2.2 Feature Selection 6.2.3 Modeling with Algorithms 6.2.4 Evaluating the Models 6.3 Related Works 6.3.1 Method 6.3.2 Detecting Liver Inflammation with Random Forest Classifier 6.4 Experimental Analysis 6.5 Result Evaluation 6.6 Conclusion 6.7 Enhancement of PCA Over Other Dimensionality Reductions References Chapter 7 Advancements in Parkinson’s Disease Diagnosis through Automated Speech Analysis 7.1 Introduction 7.1.1 Overview 7.1.2 Traditional Diagnostic Methods 7.1.3 Emergence of Automated Speech Analysis 7.1.4 Major Contributions of the Work 7.2 Speech Characteristics in Parkinson’s Disease 7.2.1 Speech-Related Difficulties 7.2.2 Specific Speech Features 7.3 Technological Advances in Speech Analysis 7.3.1 Digital Signal Processing 7.3.2 Machine Learning and Artificial Intelligence 7.4 Integration of Multimodal Data 7.4.1 Complementary Modalities 7.4.2 Improved Diagnostic Precision 7.5 Related Works 7.6 Building a Machine Learning (ML) Model 7.6.1 Dataset Description 7.6.2 Preprocessing 7.6.3 Feature Extraction 7.6.4 Classification 7.7 Experimental Analysis and Performance Measures 7.7.1 Evaluating Classifiers 7.7.2 Tuning Hyperparameters 7.8 Future Directions 7.8.1 Advancements in Technology 7.8.2 Personalized Medicine 7.9 Challenges and Limitations 7.9.1 Influencing Factors 7.9.2 Ethical Considerations 7.9.3 Standardization and Validation 7.10 Conclusion and Implications 7.10.1 Implications for Clinical Practice References Chapter 8 Public Opinion Segmentation on COVID-19 Vaccination and Its Impact on Wellbeing 8.1 Introduction 8.2 Background and Related Work 8.3 Machine Learning Techniques 8.3.1 Logistic Regression 8.3.2 Multinomial Naïve Bayes 8.3.3 Support Vector Machine (SVM) 8.3.4 Decision Trees 8.4 Ensemble Machine Learning Algorithms 8.4.1 Bagging 8.4.2 AdaBoost 8.4.3 Random Forest Classifier 8.4.4 Stochastic Gradient Boosting 8.5 Methodology 8.5.1 Data Collection 8.5.2 Data Preprocessing 8.5.3 Feature Engineering 8.5.4 Classification 8.6 Results and Discussion 8.7 Impact on Wellbeing 8.8 Conclusion References Chapter 9 Revolutionizing Healthcare with IoT in Cardiology 9.1 Introduction 9.1.1 Characteristics of IoT 9.1.2 Healthcare 9.1.3 Components of Healthcare 9.1.4 The Role of IoT in Healthcare 9.1.4.1 Remote Monitoring and Management 9.1.4.2 Personalized Healthcare 9.1.4.3 Enhancing Hospital Efficiency and Patient Experience 9.1.4.4 Telemedicine and Remote Consultations 9.1.4.5 Improving Emergency Responses 9.1.4.6 Drug Management and Supply Chain Optimization 9.2 Background 9.3 Motivation 9.3.1 Access to Healthcare 9.3.2 Cost and Affordability 9.3.3 Quality of Care 9.3.4 Aging Population and Chronic Diseases 9.3.5 Healthcare Infrastructure 9.3.6 Healthcare Technology and Innovation 9.3.7 Global Health Threats 9.3.8 Mental Health 9.4 Primary Diseases Globally 9.5 IoT Revolutionizes Healthcare 9.6 IoT Patient Monitoring Devices and Early Detection of Heart-Related Problems 9.7 An IoT-Based Heart Disease Monitoring System 9.7.1 Photoplethysmography 9.7.2 Software Requirements 9.7.3 Hardware Prerequisite 9.8 Conclusions References Chapter 10 Human Biological Analysis Through Fitness Watch Using Deep Learning Algorithm 10.1 Introduction 10.2 Literature Survey 10.3 Methodology 10.4 Results and Discussion 10.5 Limitation of the Work 10.6 Validation and Comparative Analysis 10.7 Conclusion References Chapter 11 Decoding Kidney Health: Effectiveness of Machine Learning Techniques in Diagnosis of Chronic Kidney Disease 11.1 Introduction 11.2 Methods 11.2.1 Data and Features 11.2.2 Preprocessing 11.3 Methodology 11.3.1 Logistic Regression 11.3.2 Random Forest 11.3.3 KNN 11.3.4 Support Vector Machine (SVM) 11.3.5 Decision Tree 11.3.6 Adjusting Hyperparameters 11.3.7 Boosting Algorithm 11.4 Results and Discussion 11.4.1 Discussion 11.5 Conclusion References Chapter 12 Integrating Metaheuristics and Machine Learning for Wellbeing Management: Case of COVID-19 12.1 Introduction 12.2 Related Work 12.2.1 Modeling Non-Pharmaceutical COVID-19 Responses Cross Sectors 12.2.2 Modeling COVID-19 Responses for Schools’ Management 12.2.3 Modeling the Impact of Vaccines in Curbing the Outbreak 12.3 Background Knowledge 12.3.1 Machine Learning Techniques 12.3.2 Deep Learning 12.3.3 Genetic Algorithms 12.4 Methodology 12.4.1 Data Preparation 12.4.2 Feature Engineering 12.4.3 Model Selection 12.5 Results and Discussions 12.5.1 Model Validation 12.6 Conclusion References Chapter 13 Fusing Sentiment Analysis with Hybrid Collaborative Algorithms for Enhanced Recommender Systems 13.1 Introduction 13.1.1 Analysis of Sentiment 13.1.2 Collaboration Filtering 13.1.2.1 HCF-Based Recommender System 13.2 Literature Survey 13.3 Comparative Result Study 13.4 Conclusion and Future Scope References Chapter 14 The Future of Well-Being: AI-Powered Health Management with Privacy at its Core 14.1 Introduction 14.1.1 Challenges in Traditional Wellness Management 14.1.2 AI Accelerators: A Game-Changer 14.1.3 The Privacy Revolution of Federated Learning 14.1.4 Objectives 14.1.5 Contributions 14.2 Related Works 14.3 Proposed Work 14.3.1 Secure Data Access with Federated Identity 14.3.2 Blockchain-Powered Data Sharing: Revolutionizing Patient Data Management 14.3.3 AI-Powered Analytics for Personalized Care 14.3.4 Privacy-Preserving AI Through Federated Learning 14.4 Performance Evaluation 14.4.1 Model Accuracy 14.4.2 Privacy Preservation 14.4.3 Metrics Comparison Across Systems 14.5 Conclusion and Future Work References Chapter 15 Artificial Pancreas: Enhancing Glucose Control and Overall Well-Being 15.1 Introduction 15.1.1 Glucose Monitoring 15.1.2 Insulin Pumps 15.2 Closed-Loop Diabetes Control System 15.3 Testing and Regulatory Approvals 15.4 Safety Requirements in the Design of Artificial Pancreas 15.4.1 General Safety Requirements 15.4.2 Sensor Disturbance 15.4.3 Insulin Pumps 15.4.4 Control Algorithm 15.4.5 Software/Network Vulnerabilities 15.4.6 Profusion Site 15.4.7 Meal and Other Disturbances 15.4.8 Insulin Sensitivity Conclusion References Index