دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Chongjian Wu سری: Springer Tracts in Mechanical Engineering ISBN (شابک) : 9789811572364 ناشر: Springer سال نشر: 2020 تعداد صفحات: 288 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Wave Propagation Approach for Structural Vibration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکرد انتشار موج برای ارتعاش ساختاری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب برای محققان، دانشجویان فارغ التحصیل و مهندسین در زمینههای صدای سازهای، دینامیک سازه و کنترل نویز و ارتعاش در نظر گرفته شده است. بر اساس معادلات دیفرانسیل ارتعاش، معادلات به دست آمده از تابع نمایی در حوزه زمان را ارائه میکند و چارچوبی یکپارچه برای تحلیل ارتعاشات ساختاری ارائه میکند که آن را منظمتر و نرمالتر میکند. این رویکرد انتشار موج (WPA) ساختارها را در "نقاط ناپیوستگی" تقسیم میکند و امواج ویژگیهای انتشار، بازتاب، تضعیف و تبدیل شکل موج را نشان میدهند. در هر بخش از سیستم بین دو "نقطه ناپیوستگی"، معادله حاکم و محدودیت به طور دقیق بیان میشوند و اجازه میدهند تا ویژگیهای دینامیکی سیستمهای پیچیده دقیقاً بهدست آیند. این کتاب با شروع ساختارهای اساسی مانند تیرها و صفحات، سپس تحقیقات نظری در مورد سیستمهای دینامیکی پیچیده و ترکیبی را مورد بحث قرار میدهد و نشان میدهد که ارتعاش ساختاری را میتوان از منظر امواج الاستیک با استفاده از WPA تحلیل کرد.
This book is intended for researchers, graduate students and engineers in the fields of structure-borne sound, structural dynamics, and noise and vibration control. Based on vibration differential equations, it presents equations derived from the exponential function in the time domain, providing a unified framework for structural vibration analysis, which makes it more regular and normalized. This wave propagation approach (WPA) divides structures at “discontinuity points,” and the waves show characteristics of propagation, reflection, attenuation, and waveform conversion. In each segment of the system between two “discontinuity points,” the governing equation and constraint are expressed accurately, allowing the dynamic properties of complex systems to be precisely obtained. Starting with basic structures such as beams and plates, the book then discusses theoretical research on complicated and hybrid dynamical systems, and demonstrates that structural vibration can be analyzed from the perspective of elastic waves by applying WPA.
Foreword Preface Introduction Contents About the Author Symbols 1 The Basic Theory of Structure–Borne Noise 1.1 The Vibration Modes of Beams 1.1.1 Basic Equations 1.1.2 MATLAB Examples 1.2 The Vibration Modes of Plates 1.2.1 Basic Equations 1.2.2 Calculation Examples for Plates 1.2.3 The Natural Frequencies of Plates 1.3 Sound Pressure, Sound Power, and Sound Radiation Efficiency 1.3.1 Far-Field Sound Pressure 1.3.2 The Wave Number Transform Solution 1.3.3 Volume Velocity and Sound Pressure 1.4 Sound Power and Sound Radiation Efficiency 1.4.1 Basic Equations for the Radiation Mode Theory 1.4.2 Examples of Beam and Plate Structures 1.4.3 Radiation Efficiency in Terms of Radiation Modes 1.4.4 Radiation Efficiency in Terms of Structural Modes 1.4.5 Examples of the Calculation of Radiation Efficiency References 2 Basic Theory of WPA 2.1 Challenges and Evolution of Analytical Method 2.2 Mathematical Description of WPA 2.2.1 Development History of WPA 2.2.2 Characteristic Function Expressed by Exponential Function 2.2.3 Coefficients of Response Function of Point Harmonic Force 2.2.4 Coefficients of Point Harmonic Bending Moment Response Function 2.2.5 Boundary Conditions 2.2.6 Analytical Reconstruction of Finite Beam 2.3 WPA for Analysis of Finite Simple Structures 2.3.1 WPA Expressions of Displacement, Shear Force, and Bending Moment 2.3.2 S–S Beam 2.3.3 C–C Beam 2.3.4 C-F Beam 2.3.5 Comparison Between WPA and Classical Analytical Method 2.4 Traceability and Characteristic Analysis of WPA 2.4.1 Traceability of WPA 2.4.2 Characteristics of WPA 2.5 Introduction to the Various “Parameters” in WPA 2.5.1 WPA and Mechanism Analysis 2.6 Shortcomings of WPA 2.7 Summary References 3 Analysis of Plate Structure Using WPA Method 3.1 Introduction 3.2 Bending Vibration and Wave of Uniform Plate 3.3 Response of Infinite Plate Under Harmonic Force (Moment) 3.3.1 Response of an Infinite Plate Under Harmonic Force 3.3.2 Response of Infinite Plate Under Harmonic Moment 3.4 Wave Propagation in Infinite Plate at the Vertical Incidence of Bending Wave in Discontinuous Interface 3.4.1 Plate Simply Supported at the Middle 3.4.2 Plate Simply Supported at One End 3.4.3 Plate Firmly Supported at One End 3.4.4 Plate Free at One End 3.5 Wave Propagation When Bending Wave of Infinite Plate Is Incident on Discontinuous Interface 3.6 Forced Vibration of a Rectangular Plate with Both Ends Simply Supported 3.7 Analytical Solution Example for Vibration of a Plate Using WPA 3.8 WPA Method for Solving Structure Power Flow of Plate 3.9 Summary References 4 WPA for Analyzing Complex Beam Structures 4.1 Research History and Methods of Complex Beam Structures 4.2 WPA Analysis of Elastic Coupled Beams 4.2.1 Establishment of WPA Expression 4.2.2 Boundary Conditions and Consistency Conditions 4.2.3 Vibration Response of Elastic Coupled Beam 4.3 Finite Arbitrary Multi-Supported Elastic Beam 4.3.1 Mechanical Model and WPA Expression 4.3.2 WPA Superposition Under Multi-Harmonic Force Excitation 4.4 Dynamic Response and Stress of Four-Supported Mast 4.4.1 Mechanical Model and WPA Expression 4.4.2 Analysis of Dynamic Stress of Four-Supported Mast 4.5 Periodic and Quasi-Periodic Structures 4.5.1 Properties of Periodic Structure 4.5.2 Properties of Quasi-Periodic Structure 4.6 Energy Transmission Loss Due to Flexible Tubes 4.6.1 Establishment of WPA Expression 4.6.2 Boundary Conditions and Consistency Conditions 4.6.3 Analysis of Dynamic Characteristics of Pipe Sections with Flexible Tubes 4.7 “Double-Stage Vibration Isolation” Device for Pipeline 4.7.1 Establishment of WPA Expression 4.7.2 Boundary Conditions and Consistency Conditions 4.8 Summary References 5 WPA for Analyzing Hybrid Dynamic Systems 5.1 Hybrid Power Systems 5.2 The Continuous Elastic Beam System with Lumped Mass 5.2.1 The Mechanical Model and Derivation of the WPA Formula 5.2.2 The Dynamic Characteristics of the Multi-support Mast with a Heavy End 5.3 The Analysis of the Dynamic Characteristics of Multi-supported Beams with Dynamic Vibration Absorbers 5.3.1 The General Equation of WPA 5.3.2 Dynamic Flow Expression 5.3.3 Calculation and Discussion 5.3.4 Summary of the Analysis 5.4 The Analysis of Mast Retrofitting with TMD Using the WPA Method 5.4.1 The Physical Model 5.4.2 Calculation Example 5.5 Summary References 6 WPA for Calculating Response Under Distributed Force Excitation 6.1 Introduction 6.2 Mechanical Model and Formula Deduction 6.3 Simple Cantilever Beam Structure 6.4 Comparison Between Examples of WAP Method and Classical Analytical Method 6.5 Summary References 7 Discrete Distributed Tuned Mass Damper 7.1 Introduction 7.2 The Velocity Impedance of MTMD 7.3 The Vibration Absorption Characteristics of MTMD 7.4 Analysis, Calculation, and Discussion 7.4.1 The Basic Parameter Analysis 7.4.2 The Comparison Between MTMD and TMD 7.4.3 The Comparison in Under/Over-Tuned States 7.4.4 Influence of the Mass Ratio 7.5 The Actual Vibration Elimination Effect 7.6 Summary References 8 Analysis of Raft Using WPA Method 8.1 Single-Stage and Double-Stage Vibration Isolation 8.1.1 Vibration Isolation System Model and Basic Transmission Characteristics 8.1.2 Influence of Mass Ratio 8.2 Raft Vibration Isolation System 8.2.1 History of Raft Research 8.2.2 Definition, Modeling, and Basic Characteristics of Rafts 8.2.3 Physical Modeling and Coordination Conditions 8.2.4 Analysis of Basic Transfer Characteristics 8.3 System Thinking and Consideration of Rafts 8.3.1 Raft Application Paradox 8.3.2 Definition of Emergence 8.3.3 Several Inferences 8.3.4 Large Raft and Small Raft 8.4 Analysis of Rafts Using the WPA Method 8.4.1 Internal Coupling Force Acting on the Raft 8.4.2 Vibration Displacement of the Raft Beam 8.4.3 Boundary Conditions and Compatibility Conditions 8.4.4 WPA Expression of Vibration Isolation Effect of Raft 8.5 “Mass Effect” Analysis of Raft 8.5.1 Basic Parameters 8.5.2 Comparative Study of Rigid Installation of Equipment 8.5.3 Impact of Equipment Location on the Effect of Vibration Isolation 8.6 “Mixing Effect” Analysis of Rafts 8.6.1 Offset of Two Structural Waves 8.6.2 Offset of Multisource Structural Waves 8.6.3 External and Internal Mixing Effects 8.6.4 Equal-Master Rafts and Master-Slave Rafts 8.6.5 Impact of Raft Frame Damping 8.7 “Tuning Effect” of Rafts 8.8 WPA Analysis and Test 8.8.1 Raft Test Device 8.8.2 Analysis of Test Results 8.9 Summary References 9 Vibration Power Flow and Experimental Investigation 9.1 Basic Theory of Vibration Power Flow 9.1.1 Research Review of Power Flow 9.1.2 Basic Characteristics of Power Flow 9.1.3 Development and Focus of Power Flow 9.1.4 Input Power 9.1.5 Transmitted Power 9.2 Power Flow Test of Structure 9.2.1 Summary of Test and Measurement Research 9.2.2 Input Power Measurement 9.2.3 Transmitted Power Measurement 9.3 Testing and Measurement 9.3.1 Test Structure and Parameters 9.3.2 Test Procedure 9.3.3 Input Power Measurement 9.3.4 Transmitted Power Measurement 9.4 Control Power Measurement Accuracy 9.5 Summary References Afterword Flood Control Must Be Undertaken Personally