ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Wastewater-based epidemiology: estimation of community consumption of drugs and diets

دانلود کتاب اپیدمیولوژی مبتنی بر فاضلاب: برآورد مصرف جامعه از داروها و رژیم های غذایی

Wastewater-based epidemiology: estimation of community consumption of drugs and diets

مشخصات کتاب

Wastewater-based epidemiology: estimation of community consumption of drugs and diets

ویرایش:  
نویسندگان: , , ,   
سری: ACS symposium series 1319 
ISBN (شابک) : 9780841234406, 084123440X 
ناشر: American Chemical Society 
سال نشر: 2019 
تعداد صفحات: 218 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Wastewater-based epidemiology: estimation of community consumption of drugs and diets به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اپیدمیولوژی مبتنی بر فاضلاب: برآورد مصرف جامعه از داروها و رژیم های غذایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Wastewater-Based Epidemiology: Estimation of Community Consumption of Drugs and Diets......Page 2
Wastewater-Based Epidemiology: Estimation of Community Consumption of Drugs and Diets......Page 4
Library of Congress Cataloging-in-Publication Data......Page 5
Foreword......Page 6
Utilizing Wastewater-Based Epidemiology To Determine Temporal Trends in Illicit Stimulant Use in Seattle, Washington......Page 8
Subject Index......Page 9
Preface......Page 10
Methodology......Page 12
Drugs of Abuse—A Global Concern......Page 14
Conventional Estimation of the Prevalence of Substance Use......Page 15
Applications for the Determination of the Prevalence of Substance Abuse......Page 17
Figure 3. Per capita consumption rates of illicit drugs in a community in Western Kentucky during special events. Standard errors representing daily variation could not be presented because single-day special events were monitored. THC-COOH: (±)-11-nor-9-carboxy-Δ9-tetrahydrocannabinol; THC-COOH is reported as THC-COOH/100. Source: Data from reference 12.......Page 18
Methodological Challenges......Page 19
Strategic Challenges Associated with WBE......Page 21
WBE—Potential Tool for an Early Warning System for Drugs and Narcotics or Psychoactive Substances......Page 22
WBE—Potential Tool for an Early Warning System for Public Health Biomarkers......Page 24
WBE—Complementary to the Conventional Survey-Based Approaches......Page 25
References......Page 26
Introduction......Page 34
Stability of Collected Samples......Page 35
Figure 1. Flowchart of the main analytical steps in wastewater analysis.......Page 36
Extraction......Page 38
Direct Injection Methods......Page 47
Gas Chromatography–Mass Spectrometry (GC-MS)......Page 48
Liquid Chromatography–Tandem Mass Spectrometry (LC-MSMS)......Page 49
Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS)......Page 50
Method Validation and Quality Assurance/Quality Control......Page 52
Chiral Analysis......Page 53
Conclusion......Page 54
References......Page 55
Introduction......Page 62
Wastewater—Validated Methods......Page 63
Sample Preparation and Preconcentration......Page 73
Figure 1. Schematic showing the three principal derivatization pathways (silylation, acylation, and esterification/carbamation) for an aliphatic amine group, as used in studies covered in this review. Amphetamine is used as a representative drug biomarker.......Page 74
Phenethylamine Stimulants......Page 75
Cannabis......Page 79
Chromatographic Separation......Page 80
Comparison with LC-Based Techniques......Page 81
Conclusion......Page 84
References......Page 85
Introduction......Page 90
Sample Collection......Page 92
Containers......Page 93
Stability of Drug Residues in Wastewater......Page 94
Figure 2. Stability (percentage change) of select drugs in wastewater at different conditions (24 h, 4 °C, pH 7.5; 12 h, 20 °C, pH 7.5; 12 h, 2 °C, pH 7.4; 24 h, 2 °C, pH 7.4; 12 h, 19 °C, pH 7.4; 24 h, 19 °C, pH 7.4; 12 h, 2 °C, pH 7.4, filtered; 24 h, 2 °C, pH 7.4, filtered; 12 h, 19 °C, pH 7.4, filtered; 24 h, 19 °C, pH 7.4, filtered) (14232731). THC-COOH: 11-nor-9-carboxy-Δ 9-tetrahydrocannnabinol. Circles represent data points ≥50%.......Page 95
Analysis of Drugs in SPM......Page 96
Need for Best-Practice Analytical Protocols......Page 97
Uncertainties with Analytical Data Treatment......Page 98
Uncertainties with Population Dynamics......Page 99
Figure 4. Structure of select chemical markers used for the near-accurate estimation of population in WWTP catchments. Sol: solubility at 25 °C estimate from Log Kow; t1/2: environmental half-life estimated from a fugacity model. (Source: ChemSpider).......Page 100
Uncertainties with Pharmacokinetic Measures......Page 101
Figure 5. The variation in percentage excretion rates of parent illicit drugs or metabolites in urine with the different routes, forms, or doses of administration (1257). I.M.: intramuscular; I.V.: intravenous. Smoked* indicates use of a high-dose delivery apparatus; Smoked** indicates use as cigarettes. Reference lines represent an average or a range of percentage excretion without considering variable routes, forms, or doses of administered drugs 13.......Page 102
Insights and Future Perspectives......Page 103
References......Page 104
Wastewater-Based Epidemiological Engineering—Modeling Illicit Drug Biomarker Fate in Sewer Systems as a Means To Back-Calculate Urban Chemical Consumption Rates......Page 110
Introduction......Page 111
Figure 1. Overview of back-calculating chemical consumption rates in WBE engineering. Masses of biomarkers are quantified and used as input to simulation models to back-calculate chemical ingestion rates and population sizes in urban areas. Biomarkers contained in sewage samples (representing a combined urine sample) are collected at the influent of a given WWTP. Areas shown with red are those addressed in detail in this chapter.......Page 112
Laboratory-Scale Batch Experiments—With In-Sewer Suspended Solids......Page 113
Suspended Solids......Page 114
Figure 2. Diffusion and sorption of trace xenobiotic chemicals into biofilms. Biofilm shown as porous medium that can be simulated using spatially discretized simulation models. Chemical transport through diffusion in the bulk and through the boundary layer (1), and within biofilm pores (2), and sorption onto biofilm solids (3) 22.......Page 115
Figure 3. Relative abiotic transformation and biotransformation rates obtained under aerobic and anaerobic conditions. Unidentified transformation rate values are indicated with an asterisk (*). T. P.: transformation product(s) 19.......Page 116
Modeling Biomarker Fate in Sewer Biofilm......Page 117
Figure 5. Values of biotransformation rate coefficients for drug biomarkers in raw wastewater 19 including COE and NCOE transfromations 23 and in sewer biofilm 20 under aerobic (a) and anaerobic (b) conditions using pseudo-first-order kinetic equations. Error bars identify the upper bound of the 95% credibility interval of estimated parameters.......Page 118
Figure 7. Values of effective diffusivity coefficient (f) estimated from experimental data obtained using biofilm grown with fixed thickness of 50, 200, and 500 μm (symbols), calculated (lines) using Eq. 1 for eight positively charged pharmaceutical trace organics, and plotted as a function of biofilm thickness (three different levels) and corresponding log KOW values 24.......Page 119
Figure 8. A comparison of chemical transformation pathway identification methods for HER and COE biomarkers. Posterior distribution of estimated parameter values (histograms) were obtained under abiotic and biotic conditions using the methodology proposed—Method 1 (in red), Method 2 (dotted blue line, upper X axis), and Method 3 (solid black line). T. P.: unknown transformation product. Solid arrows are pathways identified from the literature according to human metabolic pathways, and new identified pathways are shown with dashed arrows 23.......Page 120
Figure 9. Chemical transformation pathway identification for (a) HER–6-MAM and (b) MORG–MOR biomarkers considering human metabolism as prior knowledge. Simulation results are demonstrated for highlighted chemicals using calibration Methods 1 through 3. Posterior parameter probability distribution calculated using Method 1 (in red), Method 2 (dotted blue line plotted on upper X axis), and Method 3 (solid black line). T. P.: unknown transformation product. (c) Measured and simulated biomarker concentration data with uncertainty bands obtained using Methods 1 through 3. Markers are measured data, and lines are simulation results. The shaded area reflects the 95% confidence interval of model prediction (red area and full line: Method 1; grey area and dashed line: Method 2; blue area and dotted line: Method 3) 23.......Page 121
Figure 10. Values of the estimated transformation rate coefficient k (d−1) (full and empty dots, collected from literature) plotted as a function of temperature (°C) and approximated with the Arrhenius equation. Line denotes best fit, and the shaded band is the 95% confidence interval of the prediction. Values of k are estimated at standard temperature (25 °C), and Arrhenius coefficients θ are estimated with the 95% confidence interval.......Page 122
Outlook and Perspectives on the Back-Calculation of Chemical Consumption in Urban Areas......Page 123
References......Page 124
Applications......Page 128
Introduction......Page 130
Sample Collection and Analysis......Page 132
Figure 1. Mean influent loads of METH in major Chinese cities between 2014 and 2016.......Page 135
METH and KET Use in Beijing and Shenzhen (2012–2016)......Page 137
Figure 3. Mean influent loads of METH in Beijing and Shenzhen from 2012 to 2016.......Page 138
Figure 4. Mean influent loads of KET in Shenzhen from 2012 to 2016.......Page 139
WBE Monitoring by Drug Control Authorities in China......Page 140
Conclusions......Page 142
References......Page 143
Background......Page 148
Section 2—WBE Estimation of Cannabis Consumption—A Pilot Test......Page 149
Area-Frame Design......Page 150
Sampling Strategy......Page 151
Figure 1. Daily total flow (blue line) and hourly peak flow (orange line) from June to December, 2017, for one of the participating sites.......Page 152
Section 3—Supplemental Research Questions......Page 153
Chemical Analysis......Page 154
Counterintuitive Findings......Page 155
Figure 2. Weekly load of THC-COOH per inhabitant over four consecutive months for the whole population included in the study (8.4 million people).......Page 156
Figure 4. Indexed flow and THC-COOH concentration over six consecutive months for two large sewersheds (100 = average monthly flow or concentration).......Page 157
Figure 5. Average THC-COOH load per week for each site over the period of March to August, 2018. Data adapted with permission from 18.......Page 158
Using Wastewater Drug Loads to Estimate Consumption......Page 159
1 Wastewater Sampling Techniques......Page 161
Acknowledgments......Page 162
References......Page 163
Introduction......Page 166
Materials......Page 167
Chemical Analysis......Page 168
QA/QC......Page 169
Scope of Illicit Drugs in Seattle Wastewater......Page 170
Figure 1. The weekly average of illicit drug loads for all weeks sampled with day of week mass load averages for all analytes in (A) and expanded MDMA in (B). Each day had between n=8 and n=11. Uncertainty bars are represented by the 95% confidence interval around the mean day of week loads.......Page 171
Figure 2. Mass load of MDMA in Seattle wastewater during Pride weekends compared to other (non-Pride) weeks. Uncertainty bars are represented by the 95% confidence interval for the non-Pride week averages.......Page 172
Figure 3. Mass load of BZE over Pride Week. The mass load of BZE to represent COC use during Seattle Pride weekend is compared to the mass load of a non-Pride weekends (2015–2018). Error bars are represented by the 95% confidence interval.......Page 173
Conclusion......Page 174
References......Page 175
Detection in Sewage and Community Consumption of Stimulant Drugs in Northeastern United States......Page 178
Introduction......Page 179
Sample Collection......Page 180
Sample Extraction and Analysis......Page 181
Wastewater-Based Epidemiology Back Calculation......Page 182
Wastewater Characteristics and Population Estimates......Page 183
Figure 1. Measured concentration of stimulant drugs at the WWTPs.......Page 184
References......Page 189
WBE Applications beyond Drugs......Page 196
Assessing the Potential To Monitor Plant-Based Diet Trends in Communities Using a Wastewater-Based Epidemiology Approach......Page 198
Introduction......Page 199
Sewage Samples......Page 200
Quality Assurance and Quality Control......Page 201
Concentration and Mass Loading of Phytoestrogens in Influent Wastewater from Two U.S. Cities......Page 202
Estimated per Capita Phytoestrogen Consumption in Two U.S. Cities......Page 204
Figure 2. Estimated per capita consumption of phytoestrogens in Cities 1 and 2.......Page 205
Conclusions......Page 206
References......Page 207
Bommanna G. Loganathan......Page 210
Indexes......Page 212
Author Index......Page 214
M......Page 216
W......Page 217




نظرات کاربران