ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Waste-to-Energy: Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking

دانلود کتاب زباله به انرژی: تجزیه و تحلیل تصمیم چند معیاره برای ارزیابی و رتبه بندی پایداری

Waste-to-Energy: Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking

مشخصات کتاب

Waste-to-Energy: Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0128163941, 9780128163948 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 402 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Waste-to-Energy: Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زباله به انرژی: تجزیه و تحلیل تصمیم چند معیاره برای ارزیابی و رتبه بندی پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب زباله به انرژی: تجزیه و تحلیل تصمیم چند معیاره برای ارزیابی و رتبه بندی پایداری



تحلیل پسماند به انرژی: تجزیه و تحلیل تصمیم چند معیاره برای ارزیابی و رتبه‌بندی پایداری نگاهی جامع از فناوری‌ها و فرآیندهای تولید انرژی به عنوان مسیری برای تصفیه زباله ارائه می‌دهد و تمام اطلاعات لازم را ارائه می‌کند. و ابزارهایی برای انتخاب پایدارترین راه حل زباله به انرژی در شرایط مختلف. این کتاب روش هایی مانند ارزیابی چرخه عمر، ارزیابی پایداری، تصمیم گیری چند معیاره و حالت های بهینه سازی چند هدفه را با هم ترکیب می کند. علاوه بر این، یک نمای کلی از مواد اولیه زباله به انرژی، فناوری‌ها و پیاده‌سازی ارائه می‌دهد، سپس به بررسی عوامل حیاتی و توانمندسازهای کلیدی که بر توسعه پایدار صنعت زباله به انرژی تأثیر می‌گذارند، می‌پردازد.

این کتاب چندین روش تصمیم‌گیری را برای رتبه‌بندی و انتخاب سناریوهای اتلاف به انرژی تحت سطوح مختلف اطمینان و در دسترس بودن اطلاعات، از جمله روش‌های چند معیاره، چند عاملی و چند ویژگی پیشنهاد می‌کند. در نهایت، این کتاب از ابزارهای چرخه حیات استفاده می کند که امکان ارزیابی پایداری اقتصادی، زیست محیطی و اجتماعی سیستم های زباله به انرژی را فراهم می کند.


توضیحاتی درمورد کتاب به خارجی

Waste-to-Energy: Multi-criteria Decision Analysis for Sustainability Assessment and Ranking offers a comprehensive view of the technologies and processes for energy generation as a path for waste treatment, presenting all the necessary information and tools for selecting the most sustainable waste-to-energy solution under varying conditions. The book combines methods such as lifecycle assessment, sustainability assessment, multi-criteria decision-making, and multi-objective optimization modes. In addition, it provides an overview of waste-to-energy feedstocks, technologies and implementation, then goes on to investigate the critical factors and key enablers that influence the sustainable development of the waste-to-energy industry.

The book proposes several decision-making methods for the ranking and selection of waste-to-energy scenarios under different levels of certainty and information availability, including multi-criteria, multi-actor and multi-attribute methods. Finally, the book employs lifecycle tools that allow the assessment of economic, environmental and social sustainability of waste-to-energy systems.



فهرست مطالب

Cover
WASTE-TO-ENERGY: MULTI-CRITERIA DECISION ANALYSIS FOR SUSTAINABILITY ASSESSMENT AND RANKING
Copyright
Contents
List of contributors
1 An overview of waste-to-energy: feedstocks, technologies and implementations
	1.1 Introduction
	1.2 Methodology and date sources
		1.2.1 Bibliometric analysis and visualization tools
		1.2.2 Data sources and processing
	1.3 Results
		1.3.1 Publication characteristics
			1.3.1.1 Primary analyses of the selected publications
			1.3.1.2 The most frequently cited articles
		1.3.2 The characteristics of different countries/territories
			1.3.2.1 The contributions of different countries/territories
			1.3.2.2 The contributions of different institutions
		1.3.3 Coauthorship analysis
		1.3.4 Research hotspots
			1.3.4.1 Keywords analysis
			1.3.4.2 Research prospects
	1.4 Discussion
	1.5 Conclusion
	Acknowledgment
	References
2 Waste to energy in a circular economy approach for better sustainability: a comprehensive review and SWOT analysis
	2.1 Introduction
	2.2 Method and data
		2.2.1 Method
		2.2.2 Data
	2.3 Results analysis
		2.3.1 The framework of waste to energy in a circular economy
		2.3.2 Status of China’s waste management
		2.3.3 Reviews and challenges of municipal solid waste management
	2.4 Discussion
	2.5 Conclusion
	References
3 Waste-to-wealth by sludge-to-energy: a comprehensive literature reviews
	3.1 Introduction
	3.2 Biological processes
		3.2.1 Anaerobic digestion
		3.2.2 Anaerobic fermentation
		3.2.3 Microbial fuel cells for electricity production
	3.3 Thermochemical processes
		3.3.1 Pyrolysis and gasification
		3.3.2 Incineration
		3.3.3 Combustion
		3.3.4 Supercritical water oxidation and supercritical water gasification
	3.4 Resources recovery from posttreatment
	3.5 Discussion
		3.5.1 Summarization of energy and resource recovery from sludge treatment
		3.5.2 Comparison and assessment
	3.6 Conclusion
	Acknowledgment
	References
4 3R for food waste management: fuzzy multi-criteria decision-making for technology selection
	4.1 Introduction
	4.2 Literature reviews
		4.2.1 3R methods for food waste treatment
		4.2.2 Basics of multi-criteria decision analysis methods
		4.2.3 Research gaps
	4.3 Fuzzy multi-criteria decision analysis
		4.3.1 Criteria system and decision matrix
		4.3.2 Criteria weighting method
		4.3.3 Ranking methods
			4.3.3.1 Fuzzy technique for order of preference by similarity to ideal solution
			4.3.3.2 Fuzzy gray relational analysis
	4.4 Case study
		4.4.1 Background
		4.4.2 Result
			4.4.2.1 Fuzzy analytic hierarchy process
			4.4.2.2 Fuzzy technique for order of preference by similarity to ideal solution
			4.4.2.3 Fuzzy gray relational analysis
		4.4.3 Sensitivity analysis
	4.5 Discussion and conclusion
	References
5 Life cycle environmental assessment of thermal waste-to-energy technologies and energy–environment–economy model development
	5.1 Pyrolysis, gasification, and incineration waste-to-energy technologies: process overview and potential applications
		5.1.1 Pyrolysis and gasification process overview
		5.1.2 Potential benefits of pyrolysis and gasification
		5.1.3 Pyrolysis and gasification: process configuration of current applications
	5.2 Life cycle environmental assessment of pyrolysis, gasification and incineration WtE technologies: theoretical compariso...
		5.2.1 System definition
		5.2.2 Data source and life cycle inventory
			5.2.2.1 Municipal solid waste feedstock characteristics
			5.2.2.2 Municipal solid waste pretreatment
			5.2.2.3 Thermal conversion
			5.2.2.4 Energy utilization cycles
			5.2.2.5 Emissions at the stack
			5.2.2.6 Ash and air pollution control residues management
			5.2.2.7 Life cycle inventory
		5.2.3 Life cycle impact assessment
		5.2.4 Interpretation of results
	5.3 Life cycle environmental assessment of pyrolysis, gasification and incineration WtE technologies: comparisons of four t...
		5.3.1 System definition
		5.3.2 Life cycle inventory and impact assessment
		5.3.3 Interpretation of results
	5.4 Life cycle Energy–Environment–Economy assessment model development and application
		5.4.1 Conceptual model formulation
			5.4.1.1 Life cycle cost is applied for economic assessment
			5.4.1.2 Multi-criteria decision-making is implemented to integrate all factors
		5.4.2 Mathematical model formulation
			5.4.2.1 Life cycle assessment calculation
			5.4.2.2 Life cycle cost calculation
			5.4.2.3 Multi-criteria decision-making calculation
			5.4.2.4 Sensitivity analysis
		5.4.3 Case study: application of Energy–Environment–Economy model to compare municipal solid waste treatment technologies
			5.4.3.1 System boundaries and functional unit
			5.4.3.2 Data source
			5.4.3.3 Allocation method
			5.4.3.4 Interpretation of results
				5.4.3.4.1 Energy analysis results
				5.4.3.4.2 Environmental analysis results
				5.4.3.4.3 Economic analysis results
				5.4.3.4.4 Energy–Environment–Economy analysis results
			5.4.3.5 Sensitivity analysis
	5.5 Future prospects
	References
6 Sustainability assessment framework for the prioritization of urban sewage treatment technologies
	6.1 Introduction
	6.2 Literature review
	6.3 Criteria for sustainability assessment of urban sewage treatment
	6.4 Methods
		6.4.1 Weighting method
		6.4.2 Priorities of the alternatives compared to soft criteria
		6.4.3 Weighted sum method and sensitivity analysis
		6.4.4 TODIM method
	6.5 Case study
	6.6 Conclusion
	Acknowledgment
	References
7 Municipal solid waste to electricity development and future trend in China: a special life cycle assessment case study of...
	7.1 Municipal solid waste incineration situation in developed countries
		7.1.1 European Union countries
		7.1.2 Japan
		7.1.3 United States
	7.2 Municipal solid waste incineration situation in China
		7.2.1 Municipal solid waste incineration in China
		7.2.2 Typical provinces and regions
			7.2.2.1 Guangdong province
			7.2.2.2 Zhejiang province
			7.2.2.3 Taiwan
			7.2.2.4 Macau
			7.2.2.5 Hong Kong
		7.2.3 Thermal conversion technology
	7.3 Environmental performance of municipal solid waste strategies based on the life cycle assessment method: a case study o...
		7.3.1 Macau municipal solid waste incineration
		7.3.2 Materials and methods
			7.3.2.1 Municipal solid waste management scenarios
				7.3.2.1.1 Scenario 0 (current system)
				7.3.2.1.2 Scenario 1—landfill only
				7.3.2.1.3 Scenario 2—source separation, composting, and landfill
				7.3.2.1.4 Scenario 3—incineration and composting
				7.3.2.1.5 Scenario 4—source separation and incineration
				7.3.2.1.6 Scenario 5—integrated waste management (source separation, composting, and incineration)
			7.3.2.2 Life cycle assessment
				7.3.2.2.1 Goals, functional unit, and system boundary
				7.3.2.2.2 Life cycle inventory
				7.3.2.2.3 Allocation
				7.3.2.2.4 Life cycle impact assessment and sensitivity analysis
		7.3.3 Results and discussion
			7.3.3.1 Environmental impacts of the five scenarios
				7.3.3.1.1 Scenario 0—current system
				7.3.3.1.2 Scenario 1—landfill (prior system)
				7.3.3.1.3 Scenario 2—source separation, composting, and landfill
				7.3.3.1.4 Scenario 3—incineration and composting
				7.3.3.1.5 Scenario 4—source separation and incineration
				7.3.3.1.6 Scenario 5—integrated waste management (source separation, composting, and incineration)
				7.3.3.1.7 Comparison of scenarios
			7.3.3.2 Sensitivity analysis to recycling rates
		7.3.4 Discussion
	7.4 Conclusion
	Acknowledgment
	References
8 Life cycle analysis of waste-to-energy pathways
	8.1 Introduction
	8.2 Life cycle analysis of waste-to-energy pathways
	8.3 Relevant waste-to-energy life cycle analysis studies
		8.3.1 Organic waste
		8.3.2 Waste plastics
		8.3.3 Waste gas
	8.4 Conclusion
	Acknowledgments
	References
9 Sustainability assessment: focusing on different technologies recovering energy from waste
	9.1 Introduction
	9.2 Current technologies for waste-to-energy and resources
		9.2.1 Thermal/thermochemical technology
			9.2.1.1 Incineration
			9.2.1.2 Gasification
			9.2.1.3 Pyrolysis
			9.2.1.4 Liquefaction
		9.2.2 Biological technologies
			9.2.2.1 Anaerobic digestion
			9.2.2.2 Fermentation
		9.2.3 Chemical technology
			9.2.3.1 Transesterification
	9.3 Sustainable assessment methodology
		9.3.1 Life cycle sustainability assessment
			9.3.1.1 Environmental life cycle assessment
			9.3.1.2 Life cycle costing
			9.3.1.3 Social life cycle assessment
		9.3.2 Life cycle sustainability assessment in waste-to-energy
		9.3.3 Environmental life cycle assessment in waste-to-energy technologies
			9.3.3.1 In thermal/thermochemical technology
			9.3.3.2 In biological technology
			9.3.3.3 In chemical technology
		9.3.4 Life cycle costing in waste-to-energy technologies
		9.3.5 Social life cycle assessment in waste-to-energy technologies
	9.4 Conclusion and recommendation
	Acknowledgments
	References
10 Multi-criteria decision analysis of waste-to-energy technologies
	10.1 Introduction
	10.2 Waste-to-energy technologies
		10.2.1 Thermochemical technologies
		10.2.1.1 Incineration
			10.2.1.1.1 Type of feedstock
			10.2.1.1.2 Benefits of incinerator
			10.2.1.1.3 Drawbacks of incineration
		10.2.1.2 Gasification
			10.2.1.2.1 Type of feedstock
			10.2.1.2.2 Benefits of gasification
			10.2.1.2.3 Drawbacks of gasification
		10.2.1.3 Pyrolysis
			10.2.1.3.1 Type of feedstock
			10.2.1.3.2 Benefits of pyrolysis
			10.2.1.3.3 Drawbacks of pyrolysis
		10.2.1.4 Plasma arc gasification
			10.2.1.4.1 Type of feedstock
			10.2.1.4.2 Benefits of plasma arc gasification
			10.2.1.4.3 Drawbacks of plasma arc gasification
		10.2.1.5 Thermal depolymerization
			10.2.1.5.1 Type of feedstock
			10.2.1.5.2 Benefits of thermal depolymerization
			10.2.1.5.3 Drawbacks of thermal depolymerization
		10.2.1.6 Hydrothermal carbonization
			10.2.1.6.1 Type of feedstock
			10.2.1.6.2 Benefits of hydrothermal carbonization
			10.2.1.6.3 Drawbacks of hydrothermal carbonization
		10.2.2 Biochemical technologies
		10.2.2.1 Anaerobic digestion
			10.2.2.1.1 Type of feedstock
			10.2.2.1.2 Benefits of anaerobic digestion
			10.2.2.1.3 Drawbacks of anaerobic digestion
		10.2.2.2 Fermentation
			10.2.2.2.1 Type of feedstock
			10.2.2.2.2 Benefits of fermentation
			10.2.2.2.3 Drawbacks of fermentation
	10.3 Selection criteria of waste-to-energy technologies
		10.3.1 Waste quality and quantity
		10.3.2 Economical
		10.3.2.1 Capital cost
		10.3.2.2 Operation and maintenance cost
		10.3.2.3 Revenues from products
		10.3.2.4 Land requirement
		10.3.2.5 Market prospects of products
		10.3.3 Environmental
		10.3.3.1 Greenhouse gas emissions
		10.3.3.2 Wastewater generation
		10.3.3.3 Water consumption
		10.3.3.4 Production of nonhazardous solid waste residues
		10.3.3.5 Production of hazardous residues
		10.3.4 Technical
		10.3.4.1 Adaptability to local conditions
		10.3.4.2 Flexibility
		10.3.4.3 Energy consumption
		10.3.4.4 Energy production
		10.3.5 Social
		10.3.5.1 Social acceptance
		10.3.5.2 Risk perception
		10.3.5.3 Potential for the creation of new jobs
	10.4 Multi-criteria decision-making
		10.4.1 Analytical hierarchy process
		10.4.1.1 Analytical hierarchy process model development
		10.4.1.2 Pairwise comparison matrix and priority vectors
		10.4.1.3 Consistency check
		10.4.1.4 Synthesis of judgments
		10.4.2 Analytical network process
		10.4.2.1 Analytical network process network construction
		10.4.2.2 Pairwise comparison matrix and priority vectors
		10.4.2.3 Supermatrix formation
		10.4.2.4 Selection of the best alternatives
	10.5 Conclusion
	References
11 Sustainability prioritization of sludge-to-energy technologies based on an improved DS/AHP method
	11.1 Introduction
	11.2 Criteria for sustainability assessment
	11.3 Improved Dempster–Shafer/analytic hierarchy process method
		11.3.1 Gray numbers for uncertainties
		11.3.2 Linguistics for uncertainties
		11.3.3 Data processing
		11.3.4 Improved Dempster–Shafer/analytic hierarchy process method
	11.4 Case study
	11.5 Conclusion
	Acknowledgment
	References
12 Life cycle sustainability prioritization of alternative technologies for food waste to energy: a multi-actor multi-crite...
	12.1 Introduction
	12.2 Literature reviews
	12.3 Group multi-criteria decision-making model
		12.3.1 Group best–worst method
		12.3.2 Multi-criteria decision-making
	12.4 Case study
	12.5 Sensitivity analysis and discussions
	12.6 Conclusion
	Acknowledgment
	References
Index
Back Cover




نظرات کاربران