دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [16] نویسندگان: Kolli M., Davim J.P. (ed.) سری: Advanced Composites ISBN (شابک) : 9783110766400 ناشر: Walter de Gruyter سال نشر: 2023 تعداد صفحات: 208 [209] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Waste Residue Composites به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کامپوزیت های باقیمانده زباله نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد کامپوزیتی مواد مهندسی شدهای هستند که از دو یا چند جزء با خواص فیزیکی یا شیمیایی متفاوتی ساخته شدهاند که در سطح ماکروسکوپی در ساختار نهایی جدا باقی میمانند. به دلیل خواص مکانیکی و فیزیکی خاصی که دارند پتانسیل جایگزینی با مواد معمولی را دارند.
Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials.
Cover Advanced Composites Series: Volume 16 Also of interest Waste Residue Composites Copyright Contents Preface Contributing authors 1. Next-generation waste residue composite materials Abstract 1.1 Introduction 1.2 Particle-reinforced composites 1.3 Industrial waste 1.3.1 Mining and quarry wastes 1.3.1.1 Rock dust 1.3.1.2 Quarry dust 1.3.1.3 Marble dust 1.3.1.4 Granite dust 1.3.1.5 Coal dust 1.3.1.6 Red mud 1.3.2 Power plant wastes (energy): fly ash and boiler slag 1.3.2.1 Fly ash 1.3.2.2 Coal ash 1.3.2.3 Boiler slag 1.3.3 Manufacturing processing wastes 1.3.3.1 Blast furnace slag 1.3.3.2 Grinding sludge 1.3.3.3 Furnace dust 1.3.4 Food and electronics packing 1.3.4.1 Paper sludge 1.3.5 Textile and chemical: heavy metals, leather chips, and chemical solvents 1.3.5.1 Petroleum industry waste 1.4 Construction: slate, metals, glass, slag bricks 1.4.1 Welding slag 1.4.2 E-glass waste 1.5 Animal waste residue 1.5.1 Animal bone 1.5.2 Animal teeth 1.5.3 Animal horn 1.5.4 Leather waste 1.5.5 Cow dung waste 1.5.6 Mussel shell and sea shell 1.5.7 Periwinkle shell 1.5.8 Melon shell ash 1.6 Green waste residue 1.6.1 Leafs 1.6.1.1 Aloe vera 1.6.1.2 Bamboo leaf (BLA) 1.6.1.3 Lemon grass 1.6.1.4 Lemon leaf ash and tamarind leaf ash 1.6.1.5 Banana green waste 1.6.1.6 Shell waste residues 1.6.1.7 Cocoa bean shell 1.6.1.8 Palm kernel shell 1.6.1.9 Walnut shell 1.6.1.10 Wood apple shell 1.6.1.11 Groundnut shell 1.6.2 Husk and seed waste residues 1.6.2.1 Rice husk 1.6.2.2 Wheat husk 1.6.2.3 Horse eye bean seed 1.6.3 Stem waste residue 1.6.3.1 Sugarcane bagasse 1.6.3.2 Corn cobs 1.6.3.3 Wood stem 1.7 Household waste 1.7.1 Food waste 1.7.2 Vegetable waste 1.7.3 Plastic waste 1.7.4 Electronic waste 1.8 Conclusion 1.9 Future scope References 2. Emerging techniques for waste residue composites Abstract 2.1 Introduction 2.2 Composite fabrication methods 2.2.1 Vacuum bagging method 2.2.2 Pultrusion 2.2.3 Spray forming 2.2.4 Plasma spraying 2.2.5 Filament winding 2.2.6 Resin transfer molding or vacuum infusion method 2.2.7 Stir casting 2.2.8 Squeeze casting 2.2.9 Compocasting 2.2.10 Thermal decomposition method (chemical vapor deposition – CVD) 2.3 Summary References 3. Manufacturing of green waste-reinforced aluminum composites Abstract 3.1 Introduction 3.2 Methods of manufacturing the aluminum composites 3.2.1 Powder metallurgy process 3.2.1.1 Preparation of powders 3.2.1.2 Blending of powders 3.2.1.3 Sintering 3.2.1.4 Secondary treatment (sizing, machining, and other process) 3.2.1.5 Inspection 3.2.2 Stir casting process 3.2.2.1 Melting of matrix material 3.2.2.2 Mechanical stirring 3.2.2.3 Applications 3.3 Advanced method of manufacturing aluminum composites 3.3.1 Ultrasonic stir casting 3.3.1.1 Ultrasonic-probe-assisted stir casting method 3.3.2 Friction stir processing (FSP) 3.3.2.1 Fabrication of composite using FSP 3.3.3 3D printing or additive manufacturing 3.4 Conclusion References 4. Animal waste-based composites: a case study 4.1. Influence of animal tooth powder on mechanical and microstructural characteristics of Al6061 MMCs manufactured through ultrasonic-assisted stir casting 4.1.1 Introduction 4.1.2 Experimental procedure 4.1.2.1 Materials 4.1.2.2 Reinforcement 4.1.2.3 Preparation of composites 4.1.3 Results and discussions 4.1.3.1 Influence of bone powder particles on microstructure and XRD 4.1.3.2 Effect of bone powder on tensile strength 4.1.3.3 Influence of bone powder on microhardness 4.1.3.4 Influence of bone powder on impact strength 4.1.4 Conclusions References 4.2. Effect of reinforcement particle size on LM-13-snail shell ash–SiC hybrid metal matrix composite Abstract 4.2.1 Introduction 4.2.2 Experimental methods 4.2.2.1 Materials 4.2.2.2 Methods 4.2.2.3 Microstructural and metallographic characterization 4.2.2.4 Characterization of mechanical properties 4.2.2.5 Wear characterization 4.2.3 Results and discussion 4.2.3.1 Metallographic characteristics 4.2.3.2 Microstructural characterization 4.2.3.3 Mechanical characteristics 4.2.3.3.1 Hardness 4.2.3.3.2 Tensile strength 4.2.3.3.3 Wear results 4.2.4 Conclusion References 5. Industrial waste-based composites 5.1. Performance of economical aluminum MMC reinforced with welding slag particles produced using solid-state liquid metallurgical stir casting technique Abstract 5.1.1 Introduction 5.1.2 Experimental methods 5.1.2.1 Materials 5.1.2.2 Methods 5.1.2.3 Microstructural and metallographic characterization 5.1.2.4 Characterization of mechanical properties 5.1.3 Results and discussion 5.1.3.1 Metallographic characteristics 5.1.3.2 Microstructural characterization 5.1.3.3 Mechanical characteristics 5.1.3.3.1 Hardness 5.1.3.3.2 Tensile strength 5.1.3.3.3 Ductility 5.1.3.3.4 Impact strength 5.1.4 Conclusion References 5.2. Effect of ball milling on compacting characteristics of Al-10% Al2O3-fly ash composites Abstract 5.2.1 Introduction 5.2.2 Experimental details 5.2.2.1 Materials used 5.2.3 Preparation of composites 5.2.3.1 Weighing and mixing of powders 5.2.3.2 Milling of powders 5.2.3.3 Compaction of powders 5.2.4 Results 5.2.5 Discussions on results 5.2.5.1 Powder characteristics 5.2.5.2 Compacting characteristics 5.2.5.2.1 Ejection pressure 5.2.5.2.2 Green density 5.2.5.2.3 Percentage porosity 5.2.5.2.4 Compressive strength 5.2.6 Conclusions References 5.3. Effects of incorporation of rock dust particles to friction stir processed AA7075 on the microstructure and mechanical properties Abstract 5.3.1 Introduction 5.3.2 Experimental procedure 5.3.3 Results and discussions 5.3.3.1 Microstructural characterization of AMMCs 5.3.3.2 Effect of rock dust on hardness of AMMCs 5.3.3.3 Effect of rock dust on tensile strength of AMMCs 5.3.3.4 Influence of rock dust on the impact strength of AMMCs 5.3.4 Conclusion References 6. Agriculture waste composites 6.1. Effect on density and hardness of aluminum metal matrix composite with the addition of bamboo leaf ash Abstract 6.1.1 Introduction 6.1.2 Experimental particulars 6.1.2.1 Materials 6.1.2.2 BLA preparation 6.1.2.3 Composite fabrication 6.1.2.4 Particle density measurement 6.1.2.5 AMMCs density and porosity measurements 6.1.2.6 Hardness measurement 6.1.2.7 Analysis of microstructure and X-ray diffraction 6.1.3 Results and discussion 6.1.3.1 Characterization of bamboo leaf ash 6.1.3.2 Analysis of Al-4.5Cu-BLA by X-ray diffraction in AMMCs 6.1.3.3 Microstructure analysis 6.1.3.4 Density and porosity 6.1.3.5 Hardness 6.1.4 Conclusion References 6.2. Experimental investigations on coconut shell powder reinforcement in friction stir processed surfaces Abstract 6.2.1 Introduction 6.2.2 Experimentation 6.2.3 Results and discussion 6.2.4 Conclusions References 7. Challenges in green waste-reinforced aluminum composites Abstract 7.1 Introduction 7.2 Waste residues for reinforcement in MMCs 7.2.1 Agriculture waste residue 7.2.2 Coconut and coir fiber 7.2.2.1 Breadfruit seed hull ash 7.2.2.2 Sugarcane bagasse 7.2.2.3 Rice husk 7.2.2.4 Wood ceramic 7.2.2.5 Bamboo 7.2.2.6 Rattan 7.2.2.7 Kenaf 7.2.3 Industrial waste residue 7.2.3.1 Fly ash 7.2.3.2 Electric arc furnace dust 7.2.3.3 Red mud 7.2.3.4 Industrial sludge 7.2.3.5 Coal dust 7.2.3.6 Leather waste 7.2.4 Animal waste residue 7.2.4.1 Cow horn particles 7.2.4.2 Cow bones 7.2.4.3 Eggshell 7.3 Challenges in the development of MMCs from industry/agriculture waste 7.4 Conclusion References 8. Applications of green waste composite Abstract 8.1 Aluminum MMCs and waster residue applications 8.2 Industrial waste residue-based aluminum composites 8.3 Applications related to plant/agrowaste-based green composites References Index