ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Utilization of Waste Biomass in Energy, Environment and Catalysis

دانلود کتاب استفاده از زیست توده زباله در انرژی، محیط زیست و کاتالیز

Utilization of Waste Biomass in Energy, Environment and Catalysis

مشخصات کتاب

Utilization of Waste Biomass in Energy, Environment and Catalysis

دسته بندی: بیوتکنولوژی
ویرایش:  
نویسندگان:   
سری: Novel Biotechnological Applications for Waste to Value Conversion 
ISBN (شابک) : 1032051620, 9781032051628 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 357 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 29 مگابایت 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Utilization of Waste Biomass in Energy, Environment and Catalysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب استفاده از زیست توده زباله در انرژی، محیط زیست و کاتالیز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب استفاده از زیست توده زباله در انرژی، محیط زیست و کاتالیز



زیست توده به عنوان ماده اولیه برای تولید سوخت های زیستی و سایر محصولات با ارزش افزوده کاربرد پیدا می کند، که کاربرد آن در حوزه های انرژی و محیطی با تمرکز ویژه بر تولید انرژی زیستی از بیومس های مختلف و محصولات صنعتی با حجم بالا با ارزش متوسط ​​است. . این کتاب به بررسی مشکلات سنتز کنترل شده این مواد و تأثیر خصوصیات مورفولوژیکی، فیزیکی و شیمیایی آنها بر ظرفیت جذب یا دفع آنها و پیشرفت اخیر در کاتالیزورهای سبز مشتق شده از زیست توده برای کاربردهای مختلف کاتالیزوری می پردازد. اثرات اجتماعی-اقتصادی بر محیط و اقلیم در رابطه با زیست توده زباله نیز مورد بحث قرار گرفته است.

ویژگی ها:

  • پیشرفت اخیر در زمینه کاتالیزورهای سبز حاصل از آن را پوشش می دهد. زیست توده.
  • تبدیل زیست توده به منابع مختلف را بررسی می کند.
  • استفاده از زباله های زیستی را در جنبه های زیست محیطی معرفی می کند.< /li>
  • در مورد کاربردهای زیست توده در انواع مختلف انرژی بحث می کند.
  • بیومس زباله میکروبی را به عنوان منبع انرژی تجدید پذیر پیشنهاد می کند. li>

این کتاب برای حرفه ای ها، دانشجویان ارشد در رشته های علوم محیطی، مطالعات انرژی، محیط زیست و مهندسی شیمی هدف قرار می گیرد.


توضیحاتی درمورد کتاب به خارجی

Biomass finds its application as feedstock to produce biofuels and other value-added products, which finds usage in energy and environmental areas with particular focus on bio-energy production from different biomass and high-volume medium-value industrial products. This book investigates problems of controlled synthesis of these materials and the effect of their morphological, physical, and chemical characteristics on their adsorption or desorption capacity and recent progress in green catalysts derived from biomass for various catalytic applications. Socio-economic impacts on environment and climate regarding waste biomass are discussed as well.

Features:

  • Covers recent progress on green catalysts derived from biomass.
  • Explores the biomass conversion to different resources.
  • Introduces the utilization of bio-waste in environmental aspects.
  • Discusses the biomass applications in different types of energy.
  • Proposes microbial waste biomass as a resource of Renewable Energy.

This book aims at Professionals, Senior undergraduate students in Environmental Sciences, Energy Studies, Environmental and Chemical Engineering.



فهرست مطالب

Cover
Half Title
Series Information
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
1 Agricultural Waste Biomass Utilization as a Bio-Adsorbent: Activated Carbon for Dye Removal
	1.1 Introduction
	1.2 Dye
	1.3 Agricultural Waste Biomass Sources
		1.3.1 Peanut Shell
		1.3.2 Bagasse
		1.3.3 Peat
		1.3.4 Rice Husk
		1.3.5 Coconut Shell
		1.3.6 Activated Carbon
		1.3.7 Preparation of AC
	1.4 Adsorption Model
	1.5 Process Parameters, Decolorization and COD Reduction
	1.6 Adsorption Surface Characterization Technique
		1.6.1 X-Ray Spectroscopy (SEM/TEM)
	1.7 Conclusions
	References
2 Agricultural Waste Biomass Utilization in Waste Water Treatment
	2.1 Introduction
	2.2 Water Quality
	2.3 Natural Processes Affecting Water Quality
		2.3.1 Distance From Oceans
		2.3.2 Climate and Vegetation
		2.3.3 Rock Composition (Lithology)
		2.3.4 Terrestrial Vegetation
		2.3.5 Aquatic Vegetation
	2.4 Water Pollution
	2.5. Major Sources of Water Pollution
		2.5.1 Urbanization
		2.5.2 Sewerage and Other OD Wastes
		2.5.3 Industrial Effluent and Wastes
		2.5.4 Agro-Chemical Wastes
		2.5.5 Nutrient Enrichment
		2.5.6 Thermal Pollution
		2.5.7 Oil Spillage
		2.5.8 Disruption of Sediments
		2.5.9 Acid Rain Pollution
		2.5.10 Radioactive Waste
		2.5.11 Climate Change
	2.6 Categories of Water Pollutants
		2.6.1 Organic and Biotic Pollutants
		2.6.2 Inorganic Or Abiotic Pollutants
		2.6.3 Radiogenic Pollutants
		2.6.4 Suspended Material (Dissolved Solids)
		2.6.5 Pathogenic Organisms
		2.6.6 Nutrients and Agricultural Pollutants
		2.6.7 Thermal Pollution
	2.7 Control Measures for Water Pollution
	2.8 Effects of Water Pollution
	2.9 Role of Agricultural Waste Biomass in Treatments of Polluted Water
	2.10 Conclusion
	Acknowledgement
	References
3 Phytochemical Extraction From Waste Biomass
	3.1 Phytochemical Sources
	3.2 Classification
		3.2.1 Terpenoids
			3.2.1.1 Monoterpenoids
			3.2.1.2 Diterpenoids
			3.2.1.3 Triterpenoids
			3.2.1.4 Sesquiterpenoids
			3.2.1.5 Carotenoids
			3.2.1.6 Xanthophylls
		3.2.2 Polyphenols
			3.2.2.1 Phenolic Acids
			3.2.2.2 Flavonoids
			3.2.2.3 Anthocyanins
			3.2.2.4 Coumarins
			3.2.2.5 Xanthones
			3.2.2.6 Stillbenoids
			3.2.2.7 Lignans
		3.2.3 Alkaloids
			3.2.3.1 Indole Alkaloids
			3.2.3.2 Isoquinoline Alkaloids
			3.2.3.3 Steroidal Alkaloids
			3.2.3.4 Tropane Alkaloids
			3.2.3.5 Pyridine Alkaloids
			3.2.3.6 Pyrrolizidine Alkaloids
		3.2.4 Capsaicinoids
		3.2.5 Betalains
			3.2.5.1 Betacyanin
			3.2.5.2 Betaxanthin
		3.2.6 Allium Compounds
	3.3 Different Types of Extraction Techniques
		3.3.1 Conventional Extraction
			3.3.1.1 Soxhlet Extraction
			3.3.1.2 Maceration
			3.3.1.3 Hydrodistillation
			3.3.1.4 Percolation
			3.3.1.5 Decoction
			3.3.1.6 Reflux Extraction
		3.3.2 Non-Conventional Techniques
			3.3.2.1 Microwave Assisted Extraction
			3.3.2.2 Ultrasound Assisted Extraction
			3.3.2.3 Pulse Electric Field Extraction
			3.3.2.4 Supercritical Fluid Extraction
			3.3.2.5 Pressurized Liquid Extraction
			3.3.2.6 High Voltage Electrical Discharge Extraction
			3.3.2.7 High Pressure Processing Base Extraction
	3.4 Phytochemical Extraction From Different Sources
	3.5 Isolation, Purification and Characterization of Phytochemicals From Plant Biomass
		3.5.1 Phytochemical Purification From Extract
		3.5.2 Structural Elucidation of Phytochemicals
		3.5.3 UV-Visible Spectroscopy for Phytochemical Identification
		3.5.4 Infrared Spectroscopy of Phytochemicals
		3.5.5 Nuclear Magnetic Resonance Spectroscopy
		3.5.6 Mass Spectroscopy of Phytochemicals
	3.6 Conclusion
	References
4 Biomass (Agricultural Waste) as Sustainable Reinforcement in Polymer Composite
	4.1 Introduction
	4.2 Natural Fibres
		4.2.1 Properties and Characteristics of Natural (Plant) Fibres
	4.3 Natural Fibre-Polymer Composite
	4.4 Challenges
		4.4.1 Interface
		4.4.2 Water Absorption
		4.4.3 Chemical Modification
			4.4.3.1 Physical Treatment
			4.4.3.2 Chemical Treatment
	4.5 Processing Techniques
	4.6 Pros and Cons of Natural Fibres Compared to Conventional Fibres
	4.7 Applications
	4.8 Recent Developments and Future Trends
	4.9 Summary
	References
5 Biomass Accretion and Control Strategies in Gas Biofiltration
	5.1 Introduction
	5.2 Microbial Species in Biofilters
		5.2.1 Selection and Proliferation
		5.2.2 Inoculation of Biofilters
	5.3 Substrate Utilization
		5.3.1 Induction
		5.3.2 Substrate Interaction
		5.3.3 Acclimation
		5.3.4 Uptake of Dissolved Compounds
		5.3.5 Phagocytosis
		5.3.6 Exoenzymes
		5.3.7 Aerobic and Anaerobic Metabolism
		5.3.8 Toxicity
	5.4 The Microbial Community
		5.4.1 Longitudinal Stratification
		5.4.2 Biofilms in Biofilters
		5.4.3 Higher Organisms in Biofilters
	5.5 Biomass Clogging
	5.6 Conclusions
	References
6 Enzymatic Biodiesel Production From Biomass
	6.1 Introduction
	6.2 Biodiesel
		6.2.1 Physical Properties
		6.2.2 Chemical Properties
		6.2.3 Biodiesel Standards
	6.3 Biodiesel Production Processes
		6.3.1 Direct Use Blending
		6.3.2 Microemulsion Process
		6.3.3 Thermal Cracking (Pyrolysis)
		6.3.4 Reactive Distillation Process
		6.3.5 Dual Reactive Distillation
		6.3.6 Membrane Technology
		6.3.7 The Transesterification Process
			6.3.7.1 The Transesterification Process Using Alkali Catalyst
			6.3.7.2 The Transesterification Process Using Acid Catalyst
			6.3.7.3 Two-Step Transesterification Process
		6.3.8 Transesterification Through Enzymatic Technology
			6.3.8.1 Extracellular Lipase
			6.3.8.2 Intracellular Lipase
			6.3.8.3 Substrate
			6.3.8.4 Acyl Acceptor
			6.3.8.5 Bio-Reactor Design
	6.4 Effect of Solvents On the Production of Biodiesel
	6.5 Merits of Biodiesel
	6.6 De-Merits of Biodiesel
	6.7 Conclusion
	References
7 Catalytic Cracking of Jatropha Curcas Non-Edible Oil to Hydrocarbons of Gasoline Fraction: Optimization Studies Through …
	7.1 Introduction
	7.2 Literature Review
		7.2.1 Jatropha Curcas
		7.2.2 Catalysts
		7.2.3 Catalytic Cracking
		7.2.4 Biofuels
	7.3 Materials and Methods
		7.3.1 Materials and Characterization
		7.3.2 Experimental Set-Up and Methodology
		7.3.3 Mathematical Model and Design of Experiments
		7.3.4 Product Characterization
	7.4 Results and Discussions
		7.4.1 Catalyst Characterization
		7.4.2 Statistical Analysis for Gas, Liquid and Gasoline Fraction Hydrocarbons
		7.4.3 Response Surface Plots
		7.4.4 ANOVA Analysis
	7.5 Conclusions
	Acknowledgement
	References
8 Production of Hydrogen From Waste Biomass
	8.1 Introduction
	8.2 Biomass
	8.3 Biomass Feedstocks
	8.4 Biomass-Based Hydrogen Processing Methods
		8.4.1 Thermochemical Methods
			8.4.1.1 Biomass Pyrolysis
			8.4.1.2 Biomass Gasification
		8.4.2 Biological Methods
			8.4.2.1 Direct Biophotolysis
			8.4.2.2 Indirect Biophotolysis
			8.4.2.3 Biological Water–Gas Shift (BWGS) Reaction
			8.4.2.4 Photo Fermentation
			8.4.2.5 Dark Fermentation
	8.5 Separation of Hydrogen Produced
	8.6 Summary
	References
9 Microbial Mediated Waste Management and Bioenergy Production
	9.1 Introduction
		9.1.1 Microbial Mediated Biomass Production
		9.1.2 Micro-Algae Biomass
	9.2 Contributions of Microbes in Waste Management
		9.2.1 Microbes in Organic Waste Management
		9.2.2 Microbes in Inorganic Waste Management
			9.2.2.1 Mechanisms in Microbial Mediated Waste Management
	9.3 Microbial Mediated Bioenergy Production
	9.4 Contributions of Microbes to Waste Management and Bioenergy Production
		9.4.1 Role of Bacteria in Bioenergy Production
		9.4.2 Role of Fungus in Bioenergy Production
		9.4.3 Role of Algae in Bioenergy Production
	9.5 Microbial Fuel Cell (MFC)
	9.6 Conclusion
	References
10 Use of Waste Biomass as Remediator for Environmental Pollution
	10.1 Introduction
	10.2 A Brief Introduction of Waste Biomass
	10.3 Role of Biomass in Environmental Pollution
		10.3.1 Air
		10.3.2 Water
		10.3.3 Soil
	10.4 Overall Impact On Human Health
	10.5 Scope for Utilization of Biomass
	10.6 Conclusion
	Acknowledgement
	References
11 Recent Trends in Biomass Conservation and Management
	11.1 Statement of Problem and Objectives
	11.2 Biomass Potentials and Usage
	11.3 Electricity, Ethanol, and Hydrogen From Biomass
	11.4 Biomass, Energy, and Stakeholders in India
	11.5 Major Problems in Biomass Conservation and Management
	11.6 Recent Trends in Biomass Conservation
		11.6.1 Thermal Energy and Thermal Power
		11.6.2 Biogas
		11.6.3 Pellet and Briquette Manufacturing
	11.7 Biomass Supply Chain Management
	11.8 Summary
	11.9 Conclusions
	References
12 Revalorization of Waste Biomass for Preparing Biodegradable Composite Materials
	12.1 Introduction
		12.1.1 Plastic Waste
		12.1.2 Lignocellulosic Fibres
		12.1.3 Cellulose, Microcrystalline Cellulose, and Nanocellulose
	12.2 Pretreatments/Surface Modifications of Lignocellulosic Fibres
		12.2.1 Alkali Treatment
		12.2.2 Acetylation Treatment
		12.2.3 Silane Treatment
		12.2.4 Maleic Anhydride Grafting
	12.3 Biodegradable Polymers Used for Composite Preparation
		12.3.1 Polylactic Acid
		12.3.2 Polyhydroxyalkanoates
		12.3.3 Polybutylene Succinate
		12.3.4 Starch-Based Thermoplastics
		12.3.5 Polyvinyl Alcohol
	12.4 PVA Composite Films Reinforced With Lignocellulosic Fibres
	12.5 PVA-Starch Composite Films Reinforced With Lignocellulosic Fibres
	12.6 Nanocellulose From Agricultural Waste and Effect of Its Reinforcement in PVA Composite Films
		12.6.1 Methods of Extraction of Nanocellulose From Microcrystalline Cellulose
		12.6.2 Nanocellulose Reinforced PVA Composite Films
	12.7 Conclusion
	References
13 Biomass of Microalgae as Potential Biodiesel Source for Future Energy Needs
	13.1 Introduction
	13.2 Benefits of Biodiesel
	13.3 Microalgae
	13.4 Productivity of Microalgae
	13.5 Algae Cultivation
		13.5.1 Algal Cultivation in the Open Pond
			13.5.1.1 Photo-Bioreactors (PBRs)
			13.5.1.2 Vertical-Column PBRs
		13.5.2 Hydrodynamics and Mass Transfer in PBRs
		13.5.3 Productivity of Algae in Outdoor PBRs
		13.5.4 PBRs With Mixotrophic Mode of Microalgae Cultivation
	13.6 Microalgae Harvesting
	13.7 Oil Yield of Microalgae
	13.8 Biodiesel Production
		13.8.1 Extraction of Lipid
		13.8.2 Transesterification of the Lipid
	13.9 Production Methods
		13.9.1 Batch Process
		13.9.2 Supercritical Process
		13.9.3 Ultra- and High-Shear In-Line and Batch Reactors
		13.9.4 Ultrasonic-Reactor Method
		13.9.5 Microwave Method
		13.9.6 Lipase-Catalyzed Method
	13.10 Major Challenges in Algal Fuel Production
	13.11 Conclusion
	References
14 Waste Biomass Pretreatment Using Novel Materials
	14.1 Background
	14.2 Potential of Waste Biomass
	14.3 Structure of Biomass
		14.3.1 Cellulose
		14.3.2 Hemicellulose
		14.3.3 Lignin
	14.4 Biomass Pretreatment
		14.4.1 Water Treatments
			14.4.1.1 Temperature Between 150°C and 225°C
			14.4.1.2 Temperature Between 225°C and 350°C Range
			14.4.1.3 Temperature Between the 350°C to 400°C Range
		14.4.2 Chemical Pretreatments
			14.4.2.1 Acid Pretreatment
			14.4.2.2 Alkaline Hydrolysis
			14.4.2.3 Solvent Extraction/Organosolv
			14.4.2.4 Oxidation
			14.4.2.5 Ionic Liquids
		14.4.3 Physicochemical Pretreatments
			14.4.3.1 Explosion/Autohydrolysis
			14.4.3.2 Ammonia Pretreatment
			14.4.3.3 Supercritical Fluid Pretreatment
		14.4.4 Biological Pretreatments
			14.4.4.1 White-Rot Fungi
			14.4.4.2 Brown-Rot Fungi
			14.4.4.3 Soft-Rot Fungi
		14.4.5 Combined Pretreatments
			14.4.5.1 Oxidative Lime Pretreatment
			14.4.5.2 Supercritical CO2 With Steam Explosion
			14.4.5.3 Dilute Acid Pre-Soaking Before Organosolv
			14.4.5.4 Alkaline Peroxide Treatment Coupled With Steam Explosion
			14.4.5.5 Additional Combined Pretreatment Techniques
	14.5 Conclusions
	Contribution
	References
15 Corporate Social Accountability in Waste Production and Management
	15.1 Introduction
	15.2 Waste Generation and Management
		15.2.1 The Extractive Industry and Waste
		15.2.2 The Throwaway Society and the Accumulation of Waste
		15.2.3 Waste Management
		15.2.4 Plastic
		15.2.5 E-Waste
		15.2.6 Recycling
	15.3 Corporate Responsibility and Sustainable Development
		15.3.1 Recycling and the Role of Corporations
		15.3.2 Corporate Responsibility and Irresponsibility
		15.3.3 Companies and Profit-Seeking Events
	15.4 The Excess Production and Exchange Value of the Product Leading to Waste
		15.4.1 Excess Production
		15.4.2 Use Value and the Exchange Value of the New Economy
	15.5 The Concept of Circular Economy and Waste
		15.5.1 Zero Waste Circular Economy—Contradictions
		15.5.2 Green Economy and Greenwashing
		15.5.3 Apple IPhone and Waste
	15.6 The Waste Generation and Management—Requirement of a Comprehensive Method
	15.7 Concluding Remarks
	References
Index




نظرات کاربران