ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Unifying Physics of Accelerators Lasers and Plasma

دانلود کتاب یکپارچه سازی فیزیک شتاب دهنده های لیزر و پلاسما

Unifying Physics of Accelerators Lasers and Plasma

مشخصات کتاب

Unifying Physics of Accelerators Lasers and Plasma

ویرایش: [2 ed.] 
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781032350356, 9781003326076 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: 449
[450] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 Mb 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Unifying Physics of Accelerators Lasers and Plasma به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یکپارچه سازی فیزیک شتاب دهنده های لیزر و پلاسما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Contents
List of Figures
List of Tables
Foreword to the Second Edition
Foreword to First Edition
Preface to the Second Edition
Preface to First Edition
Authors
Chapter 1: Basics of Accelerators and of the Art of Inventiveness
	1.1. Accelerators and society
	1.2. Acceleration of what and how
		1.2.1. Uses, actions and the evolution of accelerators
		1.2.2. Livingston plot and competition of technologies
	1.3. Accelerators and inventions
	1.4. How to invent
		1.4.1. How to invent— evolution of the methods
	1.5. TRIZ method
		1.5.1. TRIZ in action— examples
	1.6. TRIZ method for science
	1.7. AS-TRIZ
	1.8. TRIZ and creativity
	1.9. The art of scientific predictions
	1.10. The art of estimations
	1.11. Breakthrough by design approach
Chapter 2: Transverse Dynamics
	2.1. Maxwell equations and units
	2.2. Simplest accelerator
	2.3. Equations of motion
		2.3.1. Motion of charged particles in EM fields
		2.3.2. Drift in crossed E×B fields
		2.3.3. Motion in quadrupole fields
		2.3.4. Linear betatron equations of motion
	2.4. Matrix formalism
		2.4.1. Pseudo-harmonic oscillations
		2.4.2. Principal trajectories
		2.4.3. Examples of transfer matrices
		2.4.4. Matrix formalism for transfer lines
		2.4.5. Analogy with geometric optics
		2.4.6. An example of a FODO lattice
		2.4.7. Twiss functions and matrix formalism
		2.4.8. Stability of betatron motion
		2.4.9. Stability of a FODO lattice
		2.4.10. Propagation of optics functions
	2.5. Phase space
		2.5.1. Phase space ellipse and Courant-Snyder invariant
	2.6. Dispersion and tunes
		2.6.1. Dispersion
		2.6.2. Betatron tunes and resonances
	2.7. Aberrations and coupling
		2.7.1. Chromaticity
		2.7.2. Coupling
		2.7.3. Higher orders
	2.8. Tail Folding Octupoles— Invention Case Study
Chapter 3: Synchrotron Radiation
	3.1. SR on the back of an envelope
		3.1.1. SR power loss
		3.1.2. Cooling time
		3.1.3. Cooling time and partition
		3.1.4. SR photon energy
		3.1.5. SR— number of photons
	3.2. SR effects on the beam
		3.2.1. SR-induced energy spread
		3.2.2. SR-induced emittance growth
		3.2.3. Equilibrium emittance
	3.3. SR features
		3.3.1. Emittance of single radiated photon
		3.3.2. SR spectrum
		3.3.3. Brightness or brilliance
		3.3.4. Ultimate brightness
		3.3.5. Wiggler and undulator radiation
		3.3.6. SR quantum regime
	3.4. LEP Energy Increase— Invention Case Study
Chapter 4: Synergies between Accelerators, Lasers and Plasma
	4.1. Create
		4.1.1. Beam sources
		4.1.2. Lasers
		4.1.3. Plasma generation
	4.2. Energize
		4.2.1. Beam acceleration
		4.2.2. Laser amplifiers
		4.2.3. Laser repetition rate and efficiency
		4.2.4. Fiber lasers and slab lasers
		4.2.5. CPA— chirped pulse amplification
		4.2.6. OPCPA— optical parametric CPA
		4.2.7. Plasma oscillations
		4.2.8. Critical density and surface
	4.3. Manipulate
		4.3.1. Beam and laser focusing
		4.3.2. Weak and strong focusing
		4.3.3. Aberrations for light and beam
		4.3.4. Compression of beam and laser pulses
	4.4. Interact
	4.5. Creation of Mak Telescope— Invention Case Study
Chapter 5: Conventional Acceleration
	5.1. Historical introduction
		5.1.1. Electrostatic accelerators
		5.1.2. Synchrotrons and linacs
		5.1.3. WiderÖe linear accelerator
		5.1.4. Alvarez drift tube linac
		5.1.5. Phase focusing
		5.1.6. Synchrotron oscillations
	5.2. Waveguides
		5.2.1. Waves in free space
		5.2.2. Conducting surfaces
		5.2.3. Group velocity
		5.2.4. Dispersion diagram for a waveguide
		5.2.5. Iris-loaded structures
	5.3. Cavities
		5.3.1. Waves in resonant cavities
		5.3.2. Pill-box cavity
		5.3.3. Quality factor of a resonator
		5.3.4. Shunt impedance— Rs
		5.3.5. Energy gain and transit-time factor
		5.3.6. Kilpatrick limit
	5.4. Longitudinal dynamics
		5.4.1. Acceleration in RF structures
		5.4.2. Longitudinal dynamics in a traveling wave
		5.4.3. Longitudinal dynamics in a synchrotron
		5.4.4. RF potential— nonlinearity and adiabaticity
		5.4.5. Synchrotron tune and betatron tune
		5.4.6. Accelerator technologies and applications
	5.5. Focusing in Drift Tube Linac — Invention Case Study
Chapter 6: Plasma Acceleration
	6.1. Motivations
		6.1.1. Maximum field in plasma
	6.2. Early steps of plasma acceleration
	6.3. Laser intensity and ionization
		6.3.1. Laser pulse intensity
		6.3.2. Atomic intensity
		6.3.3. Progress in laser peak intensity
		6.3.4. Types of ionization
		6.3.5. Barrier suppression ionization
		6.3.6. Normalized vector potential
		6.3.7. Laser contrast ratio
		6.3.8. Schwinger intensity limit
	6.4. The concept of laser acceleration
		6.4.1. Ponderomotive force
		6.4.2. Laser plasma acceleration in nonlinear regime
		6.4.3. Wave breaking
		6.4.4. Importance of laser guidance
	6.5. Betatron radiation sources
		6.5.1. Transverse fields in the bubble
		6.5.2. Estimations of betatron radiation parameters
	6.6. Glimpse into the future
		6.6.1. Laser plasma acceleration— rapid progress
		6.6.2. Compact radiation sources
		6.6.3. Evolution of computers and light sources
	6.7. Plasma acceleration aiming at TeV
		6.7.1. Multi-stage laser plasma acceleration
		6.7.2. Beam-driven plasma acceleration
	6.8. Laser-plasma and protons
	6.9. LWFA Downramp Injection— Invention Case Study
Chapter 7: Light Sources
	7.1. SR properties and history
		7.1.1. Electromagnetic spectrum
		7.1.2. Brief history of synchrotron radiation
	7.2. Evolution and parameters of SR sources
		7.2.1. Generations of synchrotron radiation sources
		7.2.2. Basic SR properties and parameters of SR sources
	7.3. SR source layouts and experiments
		7.3.1. Layout of a synchrotron radiation source
		7.3.2. Experiments using SR
	7.4. Compton and Thomson scattering of photons
		7.4.1. Thomson scattering
		7.4.2. Compton scattering
		7.4.3. Compton scattering characteristics
	7.5. Compton light sources
	7.6. Hybrid Multi-Bend Achromat— Invention Case Study
Chapter 8: Free Electron Lasers
	8.1. FEL conceptually
	8.2. FEL history— invention case study
	8.3. SR from bends, wigglers and undulators
		8.3.1. Radiation from sequence of bends
		8.3.2. SR spectra from wiggler and undulator
		8.3.3. Motion and radiation in sine-like field
	8.4. Basics of FEL Operation
		8.4.1. Average longitudinal velocity in an undulator
		8.4.2. Particle and field energy exchange
		8.4.3. Resonance condition
		8.4.4. Number of photons emitted
		8.4.5. Microbunching conceptually
	8.5. FEL types
		8.5.1. Multi-pass FEL
		8.5.2. Single-pass FEL
	8.6. Microbunching and gain
		8.6.1. Microbunching in helical undulator
		8.6.2. FEL low-gain curve
		8.6.3. High-gain FELs
	8.7. FEL designs and properties
		8.7.1. FEL beam emittance requirements
		8.7.2. FEL and laser comparison
		8.7.3. FEL radiation properties
		8.7.4. Typical FEL design and accelerator challenges
	8.8. Beyond the fourth-generation light sources
	8.9. EUV Light Generation— Invention Case Study
Chapter 9: Proton and Ion Laser Plasma Acceleration
	9.1. Bragg peak
	9.2. DNA response to radiation
	9.3. Conventional proton therapy facilities
		9.3.1. Beam generation and handling at proton facilities
		9.3.2. Beam injectors in proton facilities
	9.4. Plasma acceleration of protons and ions— motivation
	9.5. Regimes of proton laser plasma acceleration
		9.5.1. Sheath acceleration regime
		9.5.2. Hole-boring radiation pressure acceleration
		9.5.3. Light-sail radiation pressure acceleration
		9.5.4. Emerging mechanisms of acceleration
	9.6. Glimpse into the future
	9.7. Boosted Frame LWFA — Invention Case Study
Chapter 10: Beam Cooling and Final Focusing
	10.1. Beam Cooling
		10.1.1. Electron and stochastic beam cooling
		10.1.2. Optical stochastic cooling
		10.1.3. Ionisation cooling
		10.1.4. Cooling rates estimate
		10.1.5. Electron cooling, electron lens and Gabor lens
		10.1.6. Laser cooling
	10.2. Local correction
		10.2.1. Final focus local corrections
		10.2.2. Interaction region corrections
		10.2.3. Traveling focus
		10.2.4. Crabbed collisions
		10.2.5. Round-to-flat beam transfer
	10.3. Local Chromatic Correction— Invention Case Study
Chapter 11: Beam Stability and Energy Recovery
	11.1. Stability of beams
		11.1.1. Stability of relativistic beams
		11.1.2. Beam–beam effects
		11.1.3. Beam break-up and BNS damping
		11.1.4. Landau damping
		11.1.5. Stability and spectral approach
	11.2. Energy Recovery
		11.2.1. Energy Recovery in Electron Cooling
		11.2.2. Energy Recovery in Free Electron Lasers
		11.2.3. Energy Recovery in Colliders
		11.2.4. Energy Recovery in Plasma Acceleration
	11.3. Higher-Energy Cooling— Invention Case Study
Chapter 12: Advanced Beam Manipulation
	12.1. Short and narrow-band
		12.1.1. Bunch compression
		12.1.2. CSR — coherent synchrotron radiation
		12.1.3. CSR effects on the beam longitudinal phase space
		12.1.4. Short laser pulse and Q-switching techniques
		12.1.5. Q-switching methods
		12.1.6. Regenerative amplifiers
		12.1.7. Mode locking
		12.1.8. Self-seeded FEL
	12.2. Laser–beam interaction
		12.2.1. Beam laser heating
		12.2.2. Beam laser slicing
		12.2.3. Beam laser harmonic generation
	12.3. Beam or pulse addition
		12.3.1. Optical cavities
		12.3.2. Accumulation of charged particle bunches
	12.4. Polarization
	12.5. Positron Plasma Acceleration— Invention Case Study
Chapter 13: Advanced Technologies
	13.1. Power sources
		13.1.1. IOT — inductive output tubes
		13.1.2. Klystron
		13.1.3. Magnetron
		13.1.4. Powering the accelerating structure
	13.2. Lasers and plasma
		13.2.1. Coherent addition of laser pulses
		13.2.2. Resonant plasma excitation
		13.2.3. Toward plasma-based CPA
	13.3. Top-up and nonlinear injection
	13.4. Medical systems
	13.5. Superconducting systems
		13.5.1. Superconducting magnets
		13.5.2. Superconducting RF
	13.6. Systems engineering
	13.7. Superlattice Photocathode— Invention Case Study
Chapter 14: Inventions and Innovations in Science
	14.1. Accelerating science TRIZ
	14.2. Trends and principles
		14.2.1. TRIZ laws of technical system evolution
		14.2.2. From radar to high-power lasers
		14.2.3. Modern laws of system evolution
	14.3. Engineering, TRIZ and science
		14.3.1. Weak, strong and cool
		14.3.2. Higgs, superconductivity and TRIZ
		14.3.3. Garin, matreshka and Nobel
	14.4. Aiming for Pasteur quadrant
	14.5. How to cross the Valley of Death
	14.6. How to learn TRIZ in science
	14.7. Destined to Invent
	14.8. Let us be challenged
	14.9. The Year 2050 predictions
Chapter 15: Forty Inventive Principles
	15.1. Segmentation
	15.2. Taking out
	15.3. Local quality
	15.4. Asymmetry
	15.5. Merging
	15.6. Universality
	15.7. “Nested Doll”
	15.8. Anti-force
	15.9. Preliminary anti-action
	15.10. Preliminary action
	15.11. Beforehand cushioning
	15.12. Equipotentiality
	15.13. The other way around
	15.14. Spheroidality— Curvature
	15.15. Dynamics
	15.16. Partial or excessive actions
	15.17. Another dimension
	15.18. Oscillations and resonances
	15.19. Periodic action
	15.20. Continuity of useful action
	15.21. Skipping
	15.22. Blessing in disguise
	15.23. Feedback
	15.24. Intermediary
	15.25. Self-service
	15.26. Copying
	15.27. Cheap, short-lived objects
	15.28. Mechanics substitution
	15.29. Pneumatics and hydraulics
	15.30. Flexible shells and thin films
	15.31. Porous materials
	15.32. Color changes
	15.33. Homogeneity
	15.34. Discarding and recovering
	15.35. Parameter changes
	15.36. Phase transitions
	15.37. Thermal/electrical expansion or property change
	15.38. Strong oxidants
	15.39. Inert atmosphere
	15.40. Composite materials
Final Words
Appendix A: Guide to Solutions of the Exercises
Bibliography
Index




نظرات کاربران