دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Andrzej Sokolowski
سری:
ISBN (شابک) : 9783030802042, 9783030802059
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 208
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Understanding Physics Using Mathematical Reasoning: A Modeling Approach for Practitioners and Researchers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب درک فیزیک با استفاده از استدلال ریاضی: یک رویکرد مدل سازی برای پزشکان و محققان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface The Book Structure Contents Part I: Conceptual Background Chapter 1: Physics Constructs Viewed Through the Prism of Mathematics 1.1 Mathematics as an Indispensable Part of Physics Inquiry 1.2 Laws of Physics and Their Mathematical Embodiments 1.3 Principles and Their Relations to Laws 1.4 Theories and Laws 1.5 Theories and Theorems References Chapter 2: The Interface Between the Contents of Physics and Mathematics 2.1 Mathematics as a Language in Physics Classroom 2.2 Philosophy and the Substance of the Knowledge of Mathematics 2.3 Procedural and Conceptual Mathematical Knowledge 2.4 Unifying Classification of Math Knowledge Used in Physics Education 2.5 Arrays of Applying Mathematics in Physics 2.6 Search for Tools and Methods 2.7 Mathematical and Scientific Reasoning; Are These Mental Actions Equivalent? 2.8 Synthesis of Students’ Challenges with Math Knowledge Transfer References Part II: Designing Learning Environments to Promote Math Reasoning in Physics Chapter 3: Modeling as an Environment Nurturing Knowledge Transfer 3.1 Scientific Modeling and Models 3.2 Modeling Cycles in Physics Education 3.3 Merging Mathematics and Physics Representations References Chapter 4: Proposed Empirical-Mathematical Learning Model 4.1 Didactical Underpinnings of the Design 4.2 Description of the Learning Phases 4.3 Hypotheses as Learners’ Proposed Theories 4.4 Mainstream of the Inquiry and Its Confirmation 4.5 Methods of Enacting Mathematical Structures 4.6 Concluding Phases of the Learning Process References Chapter 5: Covariational Reasoning – Theoretical Background 5.1 Quantities, Parameters, and Variables 5.2 Formulas in Science and Mathematics 5.3 Covariational Reasoning in Mathematics Education 5.4 Covariational Reasoning in Physics Education 5.4.1 Viewing Phenomena as Covariations of Their Parameters 5.4.2 Proposed Categories of Covariations Embedded in Physics Formulas 5.4.3 Discussing Covariations of Parameters in Experiments 5.5 Limiting Case Analysis 5.5.1 Evaluating Limits when the Variable Parameter Is Getting Very Large; x→∞ 5.5.2 Evaluating Limits when the Variable Parameter Is Close to a Specific Value; x→a 5.5.3 Is Limiting Case Analysis Really “Limiting”? References Part III: From Research to Practice Chapter 6: Extending the Inquiry of Newton’s Second Law by Using Limiting Case Analysis 6.1 Limits - Tools for Extending Scientific Inquiry 6.2 Research Methods 6.2.1 Research Questions, Logistics, and Participants 6.2.2 Criteria for the Study Content Selection 6.2.3 Discussion of the Applied Algebraic Tools 6.3 Description of the Instructional Unit 6.3.1 Analyzing Acceleration of the System in the Function of Mass m2 6.3.2 Analyzing Acceleration of the System in the Function of Mass m1 6.4 Data Analysis 6.4.1 Analysis of the Pretest Results 6.4.2 Analysis of the Posttest Results 6.5 Conclusions References Chapter 7: Reconstructing Newton’s Law of Universal Gravity as a Covariate Relation 7.1 Prior Research Findings 7.2 Theoretical Framework 7.2.1 Historical Perspective 7.2.2 Contemporary Presentations of the Law of Universal Gravity 7.3 Methods 7.4 Didactical Underpinnings of the Instructional Unit 7.5 The Lecture Component 7.5.1 Gravitational Field Intensity and the Effects of Covariate Quantities 7.5.2 Reconstructing the Formula to Calculate Mutual Gravitational Force 7.6 Analysis of Pretest - Posttest Results 7.6.1 Analysis of the Pretest Results 7.6.2 Analysis of the Posttest Results 7.7 Conclusions and Suggestions for Further Research References Chapter 8: Parametrization of Projectile Motion 8.1 Prior Research Findings 8.2 Theoretical Framework 8.2.1 Categories of Motion Studied in High School and Undergraduate Physics Courses 8.2.2 Why Parametric Equations? 8.2.3 Foundations of Constructivist Learning Theory 8.3 Methods 8.3.1 Study Description and the Research Question 8.3.2 The Participants 8.3.3 Lecture Component Sequencing 8.3.4 Topics Embedded within the Curriculum to Enhance the Treatment 8.4 General Lab Description 8.4.1 Lab Logistics 8.4.2 Gathering Data to Construct Positions Functions for a Projected Object 8.4.3 Constructing Representations of the Position Functions 8.4.4 Finding Velocities and Acceleration Functions 8.4.5 Verification Process 8.5 Treatment Evaluation 8.6 Summary and Conclusions References Chapter 9: Reimaging Lens Equation as a Dynamic Representation 9.1 Introduction 9.2 Prompts Used for the Instructional Unit Design 9.2.1 Mathematical Background 9.2.2 Lab Equipment 9.2.3 Conversion of Lens Equation into a Covariational Relation 9.2.4 Sketching and Scientifically Interpreting the Graph of the Lens Function 9.2.5 Formulating Magnification Function 9.2.6 Merging Mathematical and Experimental Representations into One Inquiry 9.3 Suggested Independent Student Work 9.4 Summary References Chapter 10: Embracing the Mole Understanding in a Covariate Relation 10.1 Introduction and Prior Research Findings 10.2 Theoretical Framework 10.2.1 Weaknesses of the Mole Understanding 10.2.2 Proportional Reasoning, Rates, and Ratios 10.3 Methods 10.4 The Lecture Component 10.4.1 The Mole as a Fundamental Unit of the Substance Amount 10.4.2 Converting the Number of Atoms to the Units of Moles 10.4.3 Converting Mass of Substance to Moles 10.4.4 Converting Mass of a Substance to the Number of Atoms 10.5 Pretest Posttest Analysis 10.5.1 Analysis of the Pretest Results 10.5.2 Comparisons of the Pretest and Posttest Results 10.6 Summary and Conclusions References Chapter 11: Enabling Covariational Reasoning in Einstein’s Formula for Photoelectric Effect 11.1 Prior Research 11.2 Theoretical Background 11.3 Embracing the PE into the Framework of Covariational Representation 11.3.1 Weaknesses of the Graph of KMAX Versus Photons’ Frequency Presented in Physics Resources 11.3.2 Covariation of Photon’s Energy and Frequency as a Linear Function 11.3.3 Electrons’ Binding Energy as a Function of Photons Threshold Frequency 11.3.4 Maintaining a Minimum Number of Covariational Parameters During the Inquiry 11.4 Reassembling the PE Formula to Assure a Coherence of Representations 11.4.1 Graph Constructing 11.4.2 Finding Algebraic Representation of the Graph 11.4.3 Linking the Photons Threshold Frequency and the Work Function hfo = Wo 11.5 Summary and Conclusions References Chapter 12: Are Physics Formulas Aiding Covariational Reasoning? Students’ Perspective 12.1 Introduction and Prior Research Findings 12.2 Theoretical Background and Methods 12.2.1 Foundations of Covariation Reasoning 12.2.2 Study Description, Participants, Research Questions, and Evaluation Instrument 12.3 Data Analysis 12.4 Summary and Conclusions 12.4.1 Traditional Formula Notation Does Not Aid Covariational Reasoning in Physics 12.4.2 Physics Depends on the Mathematical Rules and Notation References Chapter 13: Adaptivity of Mathematics Representations to Reason Scientifically Students’ Perspective 13.1 Prior Research Findings 13.2 Theoretical Framework, Research Questions, and Study Logistics 13.3 Study Instrument 13.3.1 General Characteristics of the Treatment: How Did Covariational Reasoning Emerge? 13.3.2 Actions Taken to Exercise Covariation Model Using Laboratory 13.4 Data Analysis 13.5 Summary and Conclusions References Teaching Physics Using Mathematical Reasoning Research and Practice Index