ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Understanding Communications Systems Principles ― A Tutorial Approach (River Publishers Series in Communications)

دانلود کتاب درک اصول سیستم های ارتباطی - یک رویکرد آموزشی (سری ناشران رودخانه در ارتباطات)

Understanding Communications Systems Principles ― A Tutorial Approach (River Publishers Series in Communications)

مشخصات کتاب

Understanding Communications Systems Principles ― A Tutorial Approach (River Publishers Series in Communications)

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 8770223750, 9788770223751 
ناشر: River Publishers 
سال نشر: 2021 
تعداد صفحات: 312 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 222 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Understanding Communications Systems Principles ― A Tutorial Approach (River Publishers Series in Communications) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب درک اصول سیستم های ارتباطی - یک رویکرد آموزشی (سری ناشران رودخانه در ارتباطات) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Understanding Communications Systems Principles—A Tutorial Approach
Dedication
Contents
Preface
Acknowledgements
List of Figures
List of Tables
List of Abbreviations
1 Introduction toWireless Communications and Sensing Systems
	1.1 Scientific Beginnings: Electromagnetic Waves
		1.1.1 Generation and Detection of EM Waves
			1.1.1.1 Ruhmkorff Coil and Spark Gap
			1.1.1.2 Hertz’s Transmitter
			1.1.1.3 Hertz’s Receiver
			1.1.1.4 Hertz’s Experiment
			1.1.1.5 Hertz’s Analysis of the Interference Pattern
	1.2 Engineering Beginnings: Communications and RADAR
		1.2.1 Communications
			1.2.1.1 Communications Systems
				1.2.1.1.1 Simplified Transmitter Building Block
				1.2.1.1.2 Simplified Receiver Building Block
		1.2.2 RADAR
			1.2.2.1 RADAR Systems
			1.2.2.2 Simplified RADAR System Building Block
	1.3 Fundamentals of Signal Processing
		1.3.1 Mathematical Description of Carrier Modulation
			1.3.1.1 Amplitude Modulation
			1.3.1.2 Frequency Modulation
			1.3.1.3 Phase Modulation
		1.3.2 Spectral Properties of Basic Modulation Approaches
			1.3.2.1 AM Spectrum
			1.3.2.2 FM Spectrum
			1.3.2.3 Comparing AM and FM Spectra
			1.3.2.4 Wideband FM
		1.3.3 Phase Modulation Spectrum
	1.4 Fundamentals of Information Theory
	1.5 Summary
	1.6 Problems
2 Wireless Systems Building Blocks
	2.1 System Components and Their Performance Parameters
		2.1.1 Transmission Lines
		2.1.2 Amplifiers
			2.1.2.1 Gain Compression and Desensitization
			2.1.2.2 Cross-Modulation
			2.1.2.3 Intermodulation
			2.1.2.4 Memoryless Bandpass Nonlinearities
		2.1.3 Mixers
		2.1.4 Filters
		2.1.5 Oscillators
			2.1.5.1 Phase Noise of a Local Oscillator
			2.1.5.2 Amplitude Noise
		2.1.6 Frequency Multipliers
	2.2 Antennas
		2.2.1 Description of Antennas and Their Parameters
		2.2.2 Antenna Arrays [23]
			2.2.2.1 Array Factor
			2.2.2.2 Antenna Array Directivity
			2.2.2.3 Antenna Array Factor
			2.2.2.4 Prototypical Phased Array Antenna
	2.3 Free Space Propagation Model
	2.4 Summary
	2.5 Problems
3 Communication Systems Performance Parameters
	3.1 Introduction
	3.2 Transmitter Performance Parameters
		3.2.1 Modulation Accuracy
		3.2.2 Adjacent and Alternate Channel Power
	3.3 Receiver
		3.3.1 Sensitivity
		3.3.2 Noise Figure
		3.3.3 Selectivity
		3.3.4 Receiver Image Rejection
		3.3.5 Receiver Dynamic Range
		3.3.6 Receiver Spurious-Free Dynamic Range
	3.4 Sensitivity and Dynamic Range Parameters
		3.4.1 Definition of Receiver Sensitivity
		3.4.2 Definition of Minimum Detectable Signal
		3.4.3 Illustration of Signal-to-Noise Ratio
		3.4.4 Definition of 1-dB Compression Point
		3.4.5 Definition of Intermodulation Distortion
		3.4.6 IP3 for Cascade of Networks
	3.5 Definition of Dynamic Range
		3.5.1 Noise Figure of Blocks in Cascade
		3.5.2 Spur-Free Dynamic Range
	3.6 Circuit Signal-to-Noise Ratio
		3.6.1 Definition of Available Noise Power
		3.6.2 Network Noise Figure
		3.6.3 Single-Frequency (Spot) Noise Figure
		3.6.4 Equivalent Noise Temperature
		3.6.5 Effective Noise Temperature of a Network
		3.6.6 Computing the Overall NF of Cascaded Circuits
		3.6.7 Noise Figure of a Mixer
	3.7 Summary
	3.8 Problems
4 Circuit Topologies for Signal Modulation and Detection
	4.1 Introduction
	4.2 AM Modulation Approaches
		4.2.1 Generation of Single-Sideband AM Signals
	4.3 AM Demodulation Approaches
		4.3.1 Envelope Detector
	4.4 FM Approaches
		4.4.1 Direct FM Modulator
	4.5 FM Demodulation Approaches
		4.5.1 FM Demodulation by Phase-Locked Loop
	4.6 The Digital Modulation Technique
		4.6.1 Amplitude-Shift Keying Modulation
		4.6.2 Frequency-Shift Keying Modulation
		4.6.3 Phase-Shift Keying Modulation
	4.7 Modulation Signal Representation by Complex Envelope Form
		4.7.1 M-ary Modulation—MPSK
		4.7.2 Binary Phase Shift Keying Modulation—BPSK
		4.7.3 Quadrature Phase Shift Keying Modulation—QPSK
			4.7.3.1 Modulator Circuit for QPSK
			4.7.3.2 Circuit for QPSK Demodulation
		4.7.4 Binary Frequency-Shift Keying Modulation Circuit
			4.7.4.1 Circuit for BFSK Modulation
			4.7.4.2 BFSK Demodulation via a Coherent Detector
			4.7.4.3 BFSK Demodulation via a Noncoherent Detector
		4.7.5 M-ary Quadrature Amplitude Modulation Approach
		4.7.6 Orthogonal Frequency Division Multiplexing
		4.7.7 Direct Sequence Spread Spectrum Modulation Approach
			4.7.7.1 Modulation and Demodulation Circuits for Direct Sequence Spread Spectrum (DS/SS)
		4.7.8 Frequency Hopping Spread Spectrum Modulation/Demodulation
	4.8 Summary
	4.9 Problems
5 Transmitter and Receiver Architectures
	5.1 Introduction
	5.2 The Transmitter
		5.2.1 Heterodyne Transmitter Architecture
		5.2.2 The Homodyne Transmitter Architecture
			5.2.2.1 Drawbacks of Homodyne transmitter architecture
				5.2.2.1.1 LO disturbance and its corrections
	5.3 The Heterodyne Receiver Architecture
	5.4 The Homodyne (Zero IF/Direct-Conversion) Receiver
	5.5 Receiver Architectures in Light of 5G [37]
		5.5.1 Super-Heterodyne Receiver
		5.5.2 Homodyne Receiver
		5.5.3 The Low-IF Receiver
		5.5.4 The Software-Defined Receiver
	5.6 Summary
	5.7 Problems
6 5G
	6.1 Introduction
	6.2 5G Systems Technologies
		6.2.1 5G Systems: mmWaves [44]
			6.2.1.1 Propagation issues
			6.2.1.2 Blocking
			6.2.1.3 Atmospheric and rain absorption
			6.2.1.4 Large arrays, narrow beams
			6.2.1.5 Link acquisition
	6.3 5G: Internet of Things [46, 47]
		6.3.1 Device-to-Device Communications
		6.3.2 Simultaneous Transmission/Reception (STR)
	6.4 Non-Orthogonal Multiple Access [45, 49]
		6.4.1 NOMA Approaches
	6.5 5G Evolution
	6.6 Summary
	6.7 Problems
7 MIMO
	7.1 Introduction
	7.2 The SISO Channel
		7.2.1 The SISO Channel Model
		7.2.2 The SISO Channel Capacity
	7.3 The MIMO Channel Model
		7.3.1 MIMO Channel Propagation Models [13, 60, 61]
			7.3.1.1 The rayleigh distribution model
			7.3.1.2 The Ricean distribution model
			7.3.1.3 The Nakagami-m distribution model
		7.3.2 The Singular Value Decomposition Approach [62, 63]
			7.3.2.1 The mechanics of the SVD approach
			7.3.2.2 MIMO interpretation of SVD example
	7.4 MIMO Transmit Antenna Input Power Optimization
	7.5 MIMO Receive Antenna Signal Processing
		7.5.1 MIMO Array Gain
		7.5.2 MIMO Diversity Gain
	7.6 Massive MIMO Detection and Transmission
		7.6.1 Massive MIMO Detection: MRC, ZFBF, and MMSE
		7.6.2 Massive MIMO Transmission: Precoding
	7.7 Massive MIMO Systems Architectures
	7.8 Massive MIMO Limiting Factors
		7.8.1 Pilot Contamination
		7.8.2 Radio Propagation
	7.9 Summary
	7.10 Problems
8 Aerospace/ElectronicWarfare RADAR
	8.1 Introduction
	8.2 Principles of RADARs [92–95]
		8.2.1 Types of RADAR
		8.2.2 Radio Detection and Ranging [93]
		8.2.3 RADAR-Target Geometry/Coordinate System
		8.2.4 RADAR Pulses
		8.2.5 Range Ambiguities
		8.2.6 Range Resolution
		8.2.7 Range Gates
		8.2.8 RADAR Sensitivity
		8.2.9 Doppler Shift
		8.2.10 Track Versus Search
		8.2.11 RADAR Cross Section
	8.3 RADAR Architectures
		8.3.1 CW Doppler RADAR Architecture
		8.3.2 FM-CW RADAR Architecture
		8.3.3 Pulse Doppler RADAR Architecture
	8.4 ECM Capabilities of an EW RADAR
		8.4.1 Searching for Signal Sources
		8.4.2 ECM Techniques: Jamming
			8.4.2.1 Noise jamming
			8.4.2.2 Deception jamming
		8.4.3 ECCM Techniques
			8.4.3.1 Pulse compression
			8.4.3.2 Frequency hopping
			8.4.3.3 Side lobe blanking
			8.4.3.4 Polarization
			8.4.3.5 Artificial-Intelligence-Based Jammer-Nulling
	8.5 Summary
	8.6 Problems
9 Tutorials
	9.1 Introduction
	9.2 Tutorial 1: Introduction to SystemVue and Basic Phased Array (Beamforming) Analysis
		9.2.1 Preliminaries
		9.2.2 Getting Started and Schematic Window
			9.2.2.1 Implementation of Basic Phased Array (Beamforming) Antenna Model
			9.2.2.2 Running the Workspace file 5G_MIMO_Beamforming_ULA_1 x 4.wsv.
			9.2.2.3 Effect of Number of Elements on ULA Directivity
			9.2.2.4 Element Antenna Radiation Pattern
	9.3 Tutorial 2: Codebook Design for 28GHz 5G/MIMO Antenna Array Transmission
		9.3.1 Preliminaries
		9.3.2 Determination of Codebook for 12 x 
12 MIMO URA
	9.4 Tutorial 3: Electronic/Warfare RADAR Performance
		9.4.1 Preliminaries: Transmitter-
Receiver Simulation
		9.4.2 FM-CW RADAR Model and Simulations
		9.4.3 Exercises
Bibliography
Index
About the Author
Back Cover




نظرات کاربران