دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: QIN WU HAO KONG XIANGZHEN FANG
سری:
ISBN (شابک) : 9789813368415, 9813368411
ناشر: SPRINGER VERLAG, SINGAPOR
سال نشر: 2021
تعداد صفحات: [517]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 34 Mb
در صورت تبدیل فایل کتاب UHPCC UNDER IMPACT AND BLAST. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب UHPCC تحت ضربه و انفجار. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب در مورد کامپوزیت های سیمانی با کارایی فوق العاده بالا (UHPCC) است که نوعی نسبیت جدید از مواد سیمانی است. UHPCC دارای نسبت آب به چسب بسیار کم، مقدار زیادی کاهنده آب با برد بالا، سنگدانه های ریز و الیاف فولادی یا آلی با استحکام بالا است. با خواص مکانیکی برجسته، به عنوان مثال، مقاومت فشاری و کششی بالا، شکل پذیری بالا، و انرژی شکست بالا، UHPCC تبدیل به آیندهنگرترین ماده مبتنی بر سیمان ساخت و ساز برای سازههای نظامی و غیرنظامی برای مقاومت در برابر نفوذ پرتابههای پرسرعت، کم سرعت شده است. ضربه سرعت و بارهای انفجار. در این کتاب، کار مرتبط انجام شده توسط نویسندگان در مورد خواص مکانیکی استاتیکی و دینامیکی، و همچنین مقاومت ضربه و انفجار UHPCC ارائه شده است. این کتاب برای محققان، مهندسان و دانشجویان تحصیلات تکمیلی در زمینه سازه های حفاظتی و بالستیک ترمینال نوشته شده است.
This book is about the Ultra-high Performance Cementitious Composites (UHPCC), which is a relativity new type of cementitious materials. UHPCC has very low water-to-binder ratio, high amount of high-range water reducer, fine aggregates and high-strength steel or organic fibers. With the prominent mechanical properties, e.g., high compressive and tensile strength, high ductility, and high fracture energy, UHPCC has been becoming the most prospective construction cement-based material for both civil and military structures to resist high-speed projectile penetration, low-velocity impact and blast loadings. In this book, the related work conducted by authors on the static and dynamic mechanical properties, as well as the impact and blast resistance of UHPCC are presented. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.
Preface Contents Abbreviations Nomenclature 1 Static Mechanical Properties of UHPCC 1.1 Introduction 1.2 Test Program 1.2.1 Raw Materials and Mixture Proportions 1.2.2 Specimen Preparation and Curing 1.3 Instrumentation and Loading Scheme 1.3.1 Cubic Compressive Test 1.3.2 Axial Compressive Test 1.3.3 Direct Tensile Test 1.3.4 Four-Point Flexural Test 1.3.5 Three-Point Flexural Test 1.4 Test Results and Discussion 1.4.1 Compression Test 1.4.2 Direct Tension Test 1.4.3 Four-Point Flexure Test 1.4.4 Three-Point Flexure Test 1.5 Summary References 2 Dynamic Compressive Mechanical Properties of UHPCC 2.1 Introduction 2.2 Specimen Preparation 2.3 SHPB Test 2.3.1 Test Device 2.3.2 Test Technique 2.4 Test Results and Discussions 2.4.1 Stress Equilibrium 2.4.2 Strain Rate Determination 2.4.3 Dynamic Failure Pattern 2.4.4 Dynamic Stress–Strain Curve 2.4.5 Dynamic Increase Factor 2.4.6 Energy Absorption Capacity 2.5 Visco-Elastic Damage Model 2.5.1 Nonlinear Visco-Elastic Model 2.5.2 Model Calibration and Validation 2.6 Summary References 3 Dynamic Tensile Mechanical Properties of UHPCC 3.1 Introduction 3.2 Specimen Preparation 3.3 Dynamic Spalling Test 3.3.1 Test Device 3.3.2 Test Technique 3.4 Test Results and Discussions 3.4.1 Dynamic Failure Patterns 3.4.2 Dynamic Spalling Strength 3.4.3 Relations Between the Critical Time to Fracture and Dynamic Spalling Strength 3.4.4 Dynamic Increase Factor 3.5 Summary References 4 Triaxial Compressive Behavior of UHPCC and Application in the Numerical Analyses of Projectile Impact 4.1 Introduction 4.2 A Review of the Existing Works on Triaxial Behavior of Concrete 4.3 Mixing Optimization of UHPCC and Triaxial Compression Test 4.3.1 Compositions 4.3.2 Mixing Procedure 4.3.3 Triaxial Compression Test 4.4 Results and Analysis 4.4.1 Failure Pattern 4.4.2 Stress–Strain Curve 4.4.3 Failure Criteria 4.4.4 Toughness 4.5 Applications in the Numerical Analyses 4.5.1 Brief Introduction of HJC Constitutive Model 4.5.2 HJC Model Parameters for HSC 4.5.3 Validations 4.6 Summary References 5 Projectile Penetrations into Coarse Aggregated UHPCC Targets 5.1 Introduction 5.2 Basalt Aggregated UHPCC Target 5.2.1 Target 5.2.2 Projectile 5.2.3 Test Setup 5.2.4 Test Results 5.2.5 Discussions 5.3 Corundum Aggregated UHPCC Target 5.3.1 Target and Projectile 5.3.2 Test Results 5.3.3 Discussions 5.4 Numerical Simulations Based on 3D Mesoscopic Concrete Model 5.4.1 3D Mesoscopic Concrete Model 5.4.2 Validations 5.4.3 Impact Resistance of Different Aggregated UHPC 5.5 Summary References 6 Impact Resistance of Basalt Aggregated UHP-SFRC/Fabric Composite Panels Against Small Caliber Arm 6.1 Introduction 6.2 Bullet Perforation Test 6.2.1 Bullet 6.2.2 UHP-BASFRC Panels 6.2.3 Fabric Strengthening 6.2.4 Test Setup 6.3 Test Results 6.3.1 Damage of Target 6.3.2 Dimension of Crater 6.3.3 Perforation Limit 6.3.4 Recovered Bullet 6.3.5 Damage of Aluminum Plate 6.4 Discussions 6.4.1 Crater Dimensions 6.4.2 Terminal Ballistic Parameter 6.4.3 Fabric Effect 6.5 Summary References 7 Impact Resistance of Armsector Steel/Ceramic/UHPCC Layered Composite Targets Against 30CrMnSiNi2A Steel Projectiles 7.1 Introduction 7.2 Impact Test on 10CrNi3MoV21A Armor Steel/SiC Ceramic/UHPCC Composite Targets and Numerical Simulations 7.2.1 Impact Test 7.2.2 Numerical Simulations 7.3 Impact Test on NP450 Armor Steel/UHPCC and NP500 Armor Steel/UHPCC Composite Targets and Numerical Simulations 7.3.1 Impact Test 7.3.2 Numerical Simulations 7.4 Summary References 8 Response of UHPCC-FST Subjected to Low-Velocity Impact 8.1 Introduction 8.2 Test Program 8.2.1 UHPCC-FST Specimens 8.2.2 Axial Compression Test 8.2.3 Drop-Hammer Impact Test 8.3 Test Results and Discussions 8.3.1 Axial Compression 8.3.2 Lateral Impact Resistance 8.3.3 Impact Force–Time History 8.3.4 Deflection-Time History 8.4 Calibration of K&C Model Parameters for UHPCC 8.4.1 Brief Introduction of K&C Model 8.4.2 Calibration 8.5 Numerical Simulation 8.5.1 Present Test 8.5.2 Yoo et al. (2015) Test 8.6 Summary References 9 Dynamic Responses of Reinforced UHPCC Members Under Low-Velocity Lateral Impact 9.1 Introduction 9.2 Test Program 9.2.1 Specimen Fabrication 9.2.2 Drop-Hammer Impact Test 9.3 Test Results and Discussions 9.3.1 Failure Mode 9.3.2 Impact Force–Time History 9.3.3 Deflection-Time History 9.3.4 Energy Dissipation 9.4 Numerical Simulation 9.4.1 FE Model 9.4.2 Calibration 9.4.3 Comparisons of Numerical Results with Test Data 9.5 Further Validations 9.5.1 Reinforced UHPC Members 9.5.2 UHPC-FST Members 9.6 Summary References 10 Residual Axial Capacity of UHPCC-FST Column Under Contact Explosion 10.1 Introduction 10.2 Review of the Existing Works 10.3 UHPCC-FST Columns 10.3.1 Fabrications 10.3.2 Steel Tube 10.3.3 UHPCC 10.4 Field Contact Explosion Test 10.4.1 Test Setup 10.4.2 Test Results 10.5 Axial Compression Test 10.5.1 Test Setup 10.5.2 Test Results 10.6 Numerical Simulation 10.6.1 FE Model 10.6.2 Material Model 10.6.3 Loading Scheme 10.7 Comparisons with Test Data 10.7.1 Damage and Failure Modes of Columns 10.7.2 Residual Axial Capacity and Failure Mode of Columns 10.8 Parametric Study 10.8.1 Steel Tube Thickness and Strength 10.8.2 Core Concrete Strength and Cross-Sectional Diameter 10.8.3 Influence of Varied Parameters on Damage Index 10.9 Summary References 11 Experimental and Numerical Study of UHPCC-FST Columns Subjected to Close-Range Explosion 11.1 Introduction 11.2 Explosion Test on UHPCC-FST Column 11.2.1 Specimens 11.2.2 Test Setup 11.2.3 Test Results and Analyses 11.3 Analytical Methods for Predicting the Dynamic Responses of UHPCC-FST Columns 11.3.1 ALE Method 11.3.2 Velocity Method 11.3.3 SDOF Method 11.3.4 Comparisons of Predictions by Different Methods 11.4 Further Numerical Analyses and Discussion 11.5 Summary References 12 Experimental Study on the Residual Seismic Resistance of UHPCC Filled Steel Tube (UHPCC-FST) After Contact Explosion 12.1 Introduction 12.2 UHPCC-FST Specimens 12.2.1 Steel Tube 12.2.2 UHPCC 12.2.3 Fabrications 12.3 Contact Explosion Test 12.3.1 Test Setup 12.3.2 Test Results and Discussions 12.4 Low-Frequency Cyclic Loading Test 12.4.1 Test Setup 12.4.2 Test Results and Discussions 12.5 Assessment of Residual Seismic Resistance of the Post-blast Column 12.6 Summary References 13 Experimental and Numerical Studies on Dynamic Behavior of Reinforced UHPCC Panel Under Medium-Range Explosions 13.1 Introduction 13.2 Review of the Existing Work 13.3 Field Blast Test 13.3.1 Specimen 13.3.2 Test Setup 13.3.3 Test Results and Discussions 13.4 Numerical Simulation 13.4.1 FE Model 13.4.2 Material Model of UHPCC 13.4.3 Material Model of NSC 13.4.4 Material Models for Rebar and Support 13.5 Comparisons of Numerical Results with Test Data 13.5.1 Overpressures-Time History 13.5.2 Deflection-Time History 13.5.3 Post-blast Damage 13.6 Summary References 14 Constitutive Modelling of UHPCC Material Under Impact and Blast Loadings 14.1 Introduction 14.2 UHPCC Material Model 14.2.1 Brief Introduction of the Original Kong-Fang Concrete Model 14.2.2 New Tensile Damage Model 14.2.3 Parameter Calibration 14.3 Single Element Tests 14.3.1 Unconfined Uniaxial Tests 14.3.2 Triaxial Compression Test 14.4 Experimental Validation 14.4.1 UHPCC-FST Column Subjected to Low Speed Impact 14.4.2 UHPCC-FST Column Subjected to Near Explosion 14.4.3 Reinforced UHPCC Slab Subjected to Blast Loading 14.5 Summary References