ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems

دانلود کتاب جریان دو فاز، جوشش و چگالش: در سیستم های معمولی و مینیاتوری

Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems

مشخصات کتاب

Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 9781107153301 
ناشر: Cambridge University Press 
سال نشر: 2017 
تعداد صفحات: 799 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب جریان دو فاز، جوشش و چگالش: در سیستم های معمولی و مینیاتوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب جریان دو فاز، جوشش و چگالش: در سیستم های معمولی و مینیاتوری

این نسخه کاملاً پیشرفته و به روز شده با ارائه مقدمه ای جامع بر مبانی و کاربردهای جریان و انتقال حرارت در سیستم های معمولی و مینیاتوری، تمام موضوعات ضروری برای دوره های تحصیلات تکمیلی در جریان دو فاز، جوشش و تراکم را پوشش می دهد. با شروع بررسی مختصر اصول جریان تک فاز و پدیده های سطحی، بحث دقیق و روشن در مورد طیف وسیعی از موضوعات، از جمله هیدرودینامیک دو فازی و رژیم های جریان، مدل سازی ریاضی جریان های دو فازی گاز-مایع، استخر و جریان ارائه می شود. جوش، جریان و جوش در مینی و میکروکانال، چگالش جریان خارجی و داخلی با و بدون مواد غیر متراکم، چگالش در معابر جریان کوچک و جریان چوک شده دو فاز. مثال‌های حل‌شده متعدد و مسائل انتهای فصل که شامل بسیاری از مشکلات رایج طراحی است که احتمالاً دانشجویان با آن‌ها مواجه می‌شوند، این متن را به یک متن ضروری برای دانشجویان تحصیلات تکمیلی تبدیل می‌کند. با جزئیات به روز در مورد جدیدترین روندهای تحقیقاتی و کاربردهای عملی، همچنین یک مرجع ایده آل برای متخصصان و محققان در مهندسی مکانیک، هسته ای و شیمی است.


توضیحاتی درمورد کتاب به خارجی

Providing a comprehensive introduction to the fundamentals and applications of flow and heat transfer in conventional and miniature systems, this fully enhanced and updated edition covers all the topics essential for graduate courses on two-phase flow, boiling, and condensation. Beginning with a concise review of single-phase flow fundamentals and interfacial phenomena, detailed and clear discussion is provided on a range of topics, including two-phase hydrodynamics and flow regimes, mathematical modeling of gas-liquid two-phase flows, pool and flow boiling, flow and boiling in mini and microchannels, external and internal-flow condensation with and without noncondensables, condensation in small flow passages, and two-phase choked flow. Numerous solved examples and end-of-chapter problems that include many common design problems likely to be encountered by students, make this an essential text for graduate students. With up-to-date detail on the most recent research trends and practical applications, it is also an ideal reference for professionals and researchers in mechanical, nuclear, and chemical engineering.



فهرست مطالب

Contents
Preface to the Second Edition
Preface to the First Edition
Frequently Used Notation
PART ONE. TWO-PHASE FLOW
	1 Thermodynamic and Single-Phase Flow Fundamentals
		1.1 States of Matter and Phase Diagrams for Pure Substances
			1.1.1 Equilibrium States
			1.1.2 Metastable States
		1.2 Transport Equations and Closure Relations
		1.3 Single-Phase Multicomponent Mixtures
		1.4 Phase Diagrams for Binary Systems
		1.5 Thermodynamic Properties of Vapor–Noncondensable Gas Mixtures
		1.6 Transport Properties
			1.6.1 Mixture Rules
			1.6.2 Gaskinetic Theory
			1.6.3 Diffusion in Liquids
		1.7 Turbulent Boundary Layer Velocity and Temperature Profiles
		1.8 Convective Heat and Mass Transfer
		Problems
	2 Gas–Liquid Interfacial Phenomena
		2.1 Surface Tension and Contact Angle
			2.1.1 Surface Tension
			2.1.2 Contact Angle
			2.1.3 Dynamic Contact Angle and Contact Angle Hysteresis
			2.1.4 Surface Tension Nonuniformity
		2.2 Effect of Surface-Active Impurities on Surface Tension
		2.3 Thermocapillary Effect
		2.4 Disjoining Pressure in Thin Films
		2.5 Liquid–Vapor Interphase at Equilibrium
		2.6 Attributes of Interfacial Mass Transfer
			2.6.1 Evaporation and Condensation
			2.6.2 Sparingly Soluble Gases
		2.7 Semi-Empirical Treatment of Interfacial Transfer Processes
		2.8 Multicomponent Mixtures
		2.9 Interfacial Waves and the Linear Stability Analysis Method
		2.10 Two-Dimensional Surface Waves on the Surface of an Inviscid and Quiescent Liquid
		2.11 Rayleigh–Taylor and Kelvin–Helmholtz Instabilities
		2.12 Rayleigh–Taylor Instability for a Viscous Liquid
		2.13 Waves at the Surface of Small Bubbles and Droplets
		2.14 Growth of a Vapor Bubble in Superheated Liquid
		Problems
	3 Two-Phase Mixtures, Fluid Dispersions, and Liquid Films
		3.1 Introductory Remarks about Two-Phase Mixtures
		3.2 Time, Volume, and Composite Averaging
			3.2.1 Phase Volume Fractions
			3.2.2 Averaged Properties
		3.3 Flow-Area Averaging
		3.4 Some Important Definitions for Two-Phase Mixture Flows
			3.4.1 General Definitions
			3.4.2 Definitions for Flow-Area-Averaged One-Dimensional Flow
			3.4.3 Homogeneous-Equilibrium Flow
		3.5 Convention for the Remainder of This Book
			3.6 Particles of One Phase Dispersed in a Turbulent Flow Field of Another Phase
				3.6.1 Turbulent Eddies and Their Interaction with Suspended Fluid Particles
				3.6.2 The Population Balance Equation
				3.6.3 Coalescence
				3.6.4 Breakup
		3.7 Conventional, Mini-, and Microchannels
			3.7.1 Basic Phenomena and Size Classification for Single-Phase Flow
			3.7.2 Size Classification for Two-Phase Flow
		3.8 Falling Liquid Films
			3.8.1 Laminar Falling Liquid Films
			3.8.2 Turbulent Falling Liquid Films
		3.9 Heat Transfer Correlations for Falling Liquid Films
		3.10 Mechanistic Modeling of Liquid Films
		Problems
	4 Two-Phase Flow Regimes – I
		4.1 Introductory Remarks
		4.2 Two-Phase Flow Regimes in Adiabatic Pipe Flow
			4.2.1 Vertical, Co-current, Upward Flow
			4.2.2 Co-current Horizontal Flow
		4.3 Flow Regime Maps for Pipe Flow
		4.4 Two-Phase Flow Regimes in Rod Bundles
		4.5 Two-Phase Flow in Curved Passages
		4.6 Comments on Empirical Flow Regime Maps
		Problems
	5 Two-Phase Flow Modeling
		5.1 General Remarks
		5.2 Local Instantaneous Equations and Interphase Balance Relations
		5.3 Two-Phase Flow Models
		5.4 Flow-Area Averaging
		5.5 One-Dimensional Homogeneous-Equilibrium Model: Single-Component Fluid
		5.6 One-Dimensional Homogeneous-Equilibrium Model: Two-Component Mixture
		5.7 One-Dimensional Separated-Flow Model: Single-Component Fluid
		5.8 One-Dimensional Separated-Flow Model: Two-Component Fluid
		5.9 Multi-dimensional Two-Fluid Model
		5.10 Numerical Solution of Steady, One-Dimensional Conservation Equations
			5.10.1 Casting the One-Dimensional ODE Model Equations in a Standard Form
			5.10.2 Numerical Solution of the ODEs
		Problems
	6 The Drift Flux Model and Void-Quality Relations
		6.1 The Concept of Drift Flux
		6.2 Two-Phase Flow Model Equations Based on the DFM
		6.3 DFM Parameters for Pipe Flow
		6.4 DFM Parameters for Rod Bundles
		6.5 DFM in Minichannels
		6.6 Void-Quality Correlations
		Problems
	7 Two-Phase Flow Regimes – II
		7.1 Introductory Remarks
		7.2 Upward, Co-current Flow in Vertical Tubes
			7.2.1 Flow Regime Transition Models of Taitel et al
			7.2.2 Flow Regime Transition Models of Mishima and Ishii
		7.3 Co-current Flow in a Near-Horizontal Tube
		7.4 Two-Phase Flow in an Inclined Tube
		7.5 Dynamic Flow Regime Models and Interfacial Surface Area Transport Equations
			7.5.1 The Interfacial Area Transport Equation
			7.5.2 Simplification of the Interfacial Area Transport Equation
			7.5.3 Two-Group Interfacial Area Transport Equations
		Problems
	8 Pressure Drop in Two-Phase Flow
		8.1 Introduction
		8.2 Two-Phase Frictional Pressure Drop in Homogeneous Flow and the Concept of a Two-Phase Multiplier
		8.3 Empirical Two-Phase Frictional Pressure Drop Methods
		8.4 General Remarks about Local Pressure Drops
		8.5 Single-Phase Flow Pressure Drops Caused by Flow Disturbances
			8.5.1 Single-Phase Flow Pressure Drop across a Sudden Expansion
			8.5.2 Single-Phase Flow Pressure Drop across a Sudden Contraction
			8.5.3 Pressure Change Caused by Other Flow Disturbances
		8.6 Two-Phase Flow Local Pressure Drops
		8.7 Pressure Drop in Helical Flow Passages
			8.7.1 Hydrodynamics of Single-Phase Flow
			8.7.2 Frictional Pressure Drop in Two-Phase Flow
		Problems
	9 Countercurrent Flow Limitation
		9.1 General Description
		9.2 Flooding Correlations for Vertical Flow Passages
		9.3 Flooding in Horizontal, Perforated Plates and Porous Media
		9.4 Flooding in Vertical Annular or Rectangular Passages
		9.5 Flooding Correlations for Horizontal and Inclined Flow Passages
		9.6 Effect of Phase Change on CCFL
		9.7 Modeling of CCFL Based on the Separated-Flow Momentum Equations
		Problems
	10 Two-Phase Flow in Small Flow Passages
		10.1 Two-Phase Flow Regimes in Minichannels
		10.2 Void Fraction in Minichannels
		10.3 Two-Phase Flow Regimes and Void Fraction in Microchannels
		10.4 Two-Phase Flow and Void Fraction in Thin Rectangular Channels and Annuli
			10.4.1 Flow Regimes in Vertical and Inclined Channels
			10.4.2 Flow Regimes in Rectangular Channels and Annuli
		10.5 Two-Phase Pressure Drop
		10.6 Semitheoretical Models for Pressure Drop in the Intermittent Flow Regime
		10.7 Ideal, Laminar Annular Flow
		10.8 The Bubble Train (Taylor Flow) Regime
			10.8.1 General Remarks
			10.8.2 Some Useful Correlations
		10.9 Pressure Drop Caused by Flow-Area Changes
		Problems
PART TWO. BOILING AND CONDENSATION
	11 Pool Boiling
		11.1 The Pool Boiling Curve
		11.2 Heterogeneous Bubble Nucleation and Ebullition
			11.2.1 Heterogeneous Bubble Nucleation and Active Nucleation Sites
			11.2.2 Bubble Ebullition
			11.2.3 Heat Transfer Mechanisms in Nucleate Boiling
		11.3 Nucleate Boiling Correlations
		11.4 The Hydrodynamic Theory of Boiling and Critical Heat Flux
		11.5 Film Boiling
			11.5.1 Film Boiling on a Horizontal, Flat Surface
			11.5.2 Film Boiling on a Vertical, Flat Surface
			11.5.3 Film Boiling on Horizontal Tubes
			11.5.4 The Effect of Thermal Radiation in Film Boiling
		11.6 Minimum Film Boiling
		11.7 Transition Boiling
		11.8 Pool Boiling in Binary Liquid Mixtures
			11.8.1 Nucleate Boiling Process
			11.8.2 Nucleate Boiling Heat Transfer Correlations
			11.8.3 Critical Heat Flux
		Problems
	12 Flow Boiling
		12.1 Forced-Flow Boiling Regimes
		12.2 Flow Boiling Curves
		12.3 Flow Patterns and Temperature Variation in Subcooled Boiling
		12.4 Onset of Nucleate Boiling
		12.5 Empirical Correlations for the Onset of Significant Void
		12.6 Mechanistic Models for Hydrodynamically Controlled Onset of Significant Void
		12.7 Transition from Partial Boiling to Fully Developed Subcooled Boiling
		12.8 Hydrodynamics of Subcooled Flow Boiling
		12.9 Pressure Drop in Subcooled Flow Boiling
		12.10 Partial Flow Boiling
		12.11 Fully Developed Subcooled Flow Boiling Heat Transfer Correlations
		12.12 Characteristics of Saturated Flow Boiling
		12.13 Saturated Flow Boiling Heat Transfer Correlations
		12.14 Flow-Regime-Dependent Correlations for Saturated Boiling in Horizontal Channels
		12.15 Two-Phase Flow Instability
			12.15.1 Static Instabilities
			12.15.2 Dynamic Instabilities
		12.16 Flow Boiling in Binary Liquid Mixtures
		12.17 Flow Boiling in Helically Coiled Flow Passages
		Problems
	13 Critical Heat Flux and Post-CHF Heat Transfer in Flow Boiling
		13.1 Critical Heat Flux Mechanisms
		13.2 Experiments and Parametric Trends
		13.3 Correlations for Upward Flow in Vertical Channels
		13.4 Correlations for Subcooled Upward Flow of Water in Vertical Channels
		13.5 Mechanistic Models for DNB
		13.6 Mechanistic Models for Dryout
		13.7 CHF in Inclined and Horizontal Systems
		13.8 Post-Critical Heat Flux Heat Transfer
		13.9 Critical Heat Flux in Binary Liquid Mixtures
		Problems
	14 Flow Boiling and CHF in Small Passages
		14.1 Mini- and Microchannel-Based Cooling Systems
		14.2 Boiling Two-Phase Flow Patterns and Flow Instability
			14.2.1 Flow Regimes in Minichannels with Stable Flow Rates
			14.2.2 Flow Phenomena in Arrays of Parallel Channels
		14.3 Onset of Nucleate Boiling and Onset of Significant Void
			14.3.1 ONB and OSV in Channels with Hard Inlet Conditions
			14.3.2 Boiling Initiation and Evolution in Arrays of Parallel Mini- and Microchannels
		14.4 Boiling Heat Transfer
			14.4.1 Background and Experimental Data
			14.4.2 Boiling Heat Transfer Mechanisms
			14.4.3 Flow Boiling Correlations
		14.5 Critical Heat Flux in Small Channels
			14.5.1 General Remarks and Parametric Trends in the Available Data
			14.5.2 Models and Correlations
		Problems
	15 Fundamentals of Condensation
		15.1 Basic Processes in Condensation
		15.2 Thermal Resistances in Condensation
		15.3 Laminar Condensation on Isothermal, Vertical, and Inclined Flat Surfaces
		15.4 Empirical Correlations for Wavy-Laminar and Turbulent Film Condensation on Vertical Flat Surfaces
		15.5 Interfacial Shear
		15.6 Laminar Film Condensation on Horizontal Tubes
		15.7 Condensation in the Presence of a Noncondensable
		15.8 Fog Formation
		15.9 Condensation of Binary Fluids
		Problems
	16 Internal-Flow Condensation and Condensation on Liquid Jets and Droplets
		16.1 Introduction
		16.2 Two-Phase Flow Regimes
		16.3 Condensation Heat Transfer Correlations for a Pure Saturated Vapor
			16.3.1 Correlations for Vertical, Downward Flow
			16.3.2 Correlations for Horizontal Flow
			16.3.3 Semi-Analytical Models for Horizontal Flow
		16.4 Effect of Noncondensables on Condensation Heat Transfer
		16.5 Direct-Contact Condensation
		16.6 Mechanistic Models for Condensing Annular Flow
		16.7 Flow Condensation in Small Channels
		16.8 Condensation Flow Regimes and Pressure Drop in Small Channels
			16.8.1 Flow Regimes in Minichannels
			16.8.2 Flow Regimes in Microchannels
			16.8.3 Pressure Drop in Condensing Two-Phase Flows
		16.9 Flow Condensation Heat Transfer in Small Channels
		16.10 Condensation in Helical Flow Passages
		16.11 Internal Flow Condensation of Binary Vapor Mixtures
		Problems
	17 Choking in Two-Phase Flow
		17.1 Physics of Choking
		17.2 Velocity of Sound in Single-Phase Fluids
		17.3 Critical Discharge Rate in Single-Phase Flow
		17.4 Choking in Homogeneous Two-Phase Flow
		17.5 Choking in Two-Phase Flow with Interphase Slip
		17.6 Critical Two-Phase Flow Models
			17.6.1 The Homogeneous-Equilibrium Isentropic Model
			17.6.2 Critical Flow Model of Moody
			17.6.3 Critical Flow Model of Henry and Fauske
		17.7 RETRAN Curve Fits for Critical Discharge of Water and Steam
		17.8 The Omega Parameter Methods
		17.9 Choked Two-Phase Flow in Small Passages
			17.10 Nonequilibrium Mechanistic Modeling of Choked Two-Phase Flow
			Problems
APPENDIX A: Thermodynamic Properties of Saturated Water and Steam
APPENDIX B: Transport Properties of Saturated Water and Steam
APPENDIX C: Thermodynamic Properties of Saturated Liquid and Vapor for Selected Refrigerants
APPENDIX D: Properties of Selected Ideal Gases at 1 Atmosphere
APPENDIX E: Binary Diffusion Coefficients of Selected Gases in Air at
APPENDIX F: Henry’s Constant of Dilute Aqueous Solutions of Selected Substances at 298.16 K Temperature and Moderate Pressures
APPENDIX G: Diffusion Coefficients of Selected Substances in Water at Infinite Dilution at 25 °C
APPENDIX H: Lennard-Jones (6–12) Potential Model Constants for Selected Molecules
APPENDIX I: Collision Integrals for the Lennard-Jones (6–12) Potential Model
APPENDIX J: Physical Constants
APPENDIX K: Unit Conversions
References
Index




نظرات کاربران