ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Treatise on Geochemistry. Meteorites, Comets and Planets

دانلود کتاب رساله ژئوشیمی. شهاب سنگ ها، دنباله دارها و سیارات

Treatise on Geochemistry. Meteorites, Comets and Planets

مشخصات کتاب

Treatise on Geochemistry. Meteorites, Comets and Planets

دسته بندی: علم شیمی
ویرایش:  
نویسندگان: , ,   
سری:  
 
ناشر:  
سال نشر: 2003 
تعداد صفحات: 5155 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 138 مگابایت 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Treatise on Geochemistry. Meteorites, Comets and Planets به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب رساله ژئوشیمی. شهاب سنگ ها، دنباله دارها و سیارات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب رساله ژئوشیمی. شهاب سنگ ها، دنباله دارها و سیارات

رساله ژئوشیمی اولین اثری است که خلاصه ای جامع و یکپارچه از وضعیت کنونی ژئوشیمی ارائه می دهد. این کتاب با تمام موضوعات اصلی در این زمینه، از شیمی منظومه شمسی گرفته تا ژئوشیمی محیطی سروکار دارد. رساله ژئوشیمی از تخصص دانشمندان برجسته در سراسر جهان استفاده کرده است و کار مرجع ژئوشیمی را برای دهه آینده ایجاد کرده است. هر جلد شامل پانزده تا بیست و پنج فصل است که توسط مقامات شناخته شده در زمینه خود نوشته شده است و توسط جلد انتخاب شده است. ویراستاران با مشورت ویراستاران اجرایی. تاکید ویژه ای بر یکپارچه سازی موضوع هر فصل و مجلد شده است. Elsevier همچنین رساله ژئوشیمی را در قالب الکترونیکی از طریق پلتفرم آنلاین ScienceDirectR، جامع ترین پایگاه داده تحقیقات دانشگاهی در اینترنت امروزی، ارائه می دهد که با مجموعه ای از آنها افزایش یافته است. ابزارهای پیچیده پیوند، جستجو و بازیابی.


توضیحاتی درمورد کتاب به خارجی

The Treatise on Geochemistry is the first work providing a comprehensive, integrated summarry of the present state of geochemistry. It deals with all the major subjects in the field, ranging from the chemistry of the solar system to environmental geochemistry. The Treatise on Geochemistry has drawn on the expertise of outstanding scientists throughout the world, creating the reference work in geochemistry for the next decade.Each volume consists of fifteen to twenty-five chapters written by recognized authorities in their fields, and chosen by the Volume Editors in consultation with the Executive Editors. Particular emphasis has been placed on integrating the subject matter of the individual chapters and volumes.Elsevier also offers the Treatise on Geochemistry in electronic format via the online platform ScienceDirectR, the most comprehensive database of academic research on the Internet today, enhanced by a suite of sophisticated linking, searching and retrieval tools.



فهرست مطالب

Treatise on Geochemistry......Page 1
Executive Editor's Foreword......Page 2
Introduction......Page 5
Abundances and Nucleosynthesis......Page 6
Intermediate Mass Stars: Evolution and Nucleosynthesis......Page 7
s-Process Synthesis in Red Giants......Page 8
Massive-star Evolution and Nucleosynthesis......Page 9
Nucleosynthesis in Massive Stars......Page 11
Type Ia Supernovae: Progenitors and Nucleosynthesis......Page 13
Nucleosynthesis and Galactic Chemical Evolution......Page 16
References......Page 18
Introduction......Page 20
Historical Background......Page 21
Analysis Techniques......Page 22
Silicon Carbide......Page 23
Mainstream Grains......Page 25
Type Y and Z Grains......Page 28
Type X Grains......Page 29
Grain Size Effect......Page 31
Physical Properties......Page 32
Isotopic Compositions......Page 33
Oxide Grains......Page 35
Diamond......Page 36
References......Page 37
Historical Remarks......Page 43
Solar System Abundances of the Elements......Page 44
Abundances of Elements in Meteorites......Page 47
CI Chondrites as Standard for Solar Abundances......Page 49
Solar System Abundances of the Elements......Page 55
Introduction......Page 57
The Nature of the ISM......Page 58
The Chemical Composition of the ISM......Page 59
References......Page 62
Introduction......Page 64
Observations of Precollapse Clouds......Page 65
Observations of Star-forming Regions......Page 68
Astrophysical Analogues for the Solar Nebula......Page 69
Optical and IR-wave Observations......Page 70
Angular Momentum Transport Mechanisms......Page 71
Evolution of the Solar Nebula......Page 74
Clump Formation in a Marginally Gravitationally Unstable Disk......Page 76
X-wind Model for Processing Solids......Page 78
Observational Constraints on Disk Life Times......Page 79
Summary......Page 80
References......Page 81
1.05 Classification of Meteorites......Page 84
Introduction......Page 85
Taxonomy......Page 87
Primary Classification Parameters......Page 88
Secondary Classification Parameters......Page 90
Mineralogical and Geochemical Characteristics of Chondrite Groups......Page 92
Classification of Nonchondritic Meteorites......Page 104
Primitive Achondrites......Page 105
Differentiated Achondrites......Page 108
Mesosiderites......Page 113
Pallasites......Page 114
Irons......Page 115
Shergottites......Page 117
Chassignite (Dunite)......Page 119
References......Page 121
Introduction......Page 130
Oxygen Isotopic Composition of the Solar Nebula......Page 132
Oxygen Isotopes in Chondrites......Page 136
Thermal Metamorphism of Chondrites......Page 138
Differentiated (Evolved) Achondrites......Page 139
Summary and Conclusions......Page 141
References......Page 142
1.07 Chondrites and their Components......Page 144
Why Study Chondrites?......Page 145
Historical Views on Chondrite Origins......Page 146
Chondrite Groups, Clans, and Parent Bodies......Page 147
Carbonaceous Chondrites......Page 149
Cosmochemical Classification of Elements......Page 150
Chemical Compositions of Chondrites......Page 151
Oxygen Isotopic Compositions......Page 152
Petrologic Types......Page 153
Thermal History and Modeling......Page 155
Chondritic Components......Page 156
Calcium- and Aluminum-rich Inclusions......Page 157
Amoeboid Olivine Aggregates (AOAs)......Page 161
Aluminum-rich Chondrules......Page 164
Chondrules......Page 169
Metal and Troilite......Page 176
Matrix Material......Page 178
Formation and Accretion of Chondritic Components......Page 188
Heating Mechanisms in the Early Solar System......Page 189
Impacts on Planetesimals......Page 190
References......Page 191
Introduction......Page 202
The Generic CAI......Page 203
Comments on Primary and Secondary Mineralogy......Page 204
Rim Sequences......Page 205
Metal Grains and Fremdlinge......Page 206
Melilite......Page 207
Pyroxene......Page 210
Grossite and CaAl2O4......Page 211
Diversity and Major-element Bulk Chemistry......Page 212
FUN CAIs......Page 220
Unresolved Problems......Page 222
Distribution among Chondrite Types......Page 223
Ages......Page 230
Trace Elements......Page 231
The Data......Page 233
Synthesis of Existing Data, and Unresolved Issues......Page 236
Short-lived Radionuclides......Page 238
CAIs, Chondrules, Condensation, and Melt Distillation......Page 240
References......Page 242
Introduction......Page 248
CI Carbonaceous Chondrites......Page 249
CM Carbonaceous Chondrites......Page 251
CO Carbonaceous Chondrites......Page 255
CV Carbonaceous Chondrites......Page 256
Unequilibrated Ordinary Chondrites......Page 257
CV Carbonaceous Chondrites......Page 258
Dark Inclusions in CV Chondrites......Page 259
Nebular and Parent-body Alteration Models for CV chondrites......Page 260
CO Carbonaceous Chondrites......Page 262
Future Work......Page 264
References......Page 265
Introduction......Page 270
Abundance and Distribution of Extractable Compounds......Page 271
Stable-isotopic Investigations of Classes of Organic Compounds......Page 277
Compound-specific Isotopic Studies......Page 278
Structural Studies Using Pyrolysis and Chemical Degradation......Page 281
NMR and Electron Spin Resonance Studies......Page 282
Stable-isotopic Studies......Page 283
In situ Examination of Meteoritic Organic Matter......Page 285
Environments of Formation......Page 286
References......Page 288
Introduction......Page 292
Primitive Achondrites......Page 293
Acapulcoite-Lodranite Clan......Page 295
Winonaite–IAB-iron Silicate Inclusion Clan......Page 302
Zag (b)......Page 303
Angrites......Page 304
Aubrites......Page 306
Brachinites......Page 308
Howardite-Eucrite-Diogenite Clan......Page 310
Mesosiderite Silicates......Page 312
Ureilites......Page 313
IIE Iron Silicates......Page 316
References......Page 318
Introduction......Page 326
Group IIIAB Iron Meteorites......Page 328
Group IVB Iron Meteorites......Page 329
Ungrouped Iron Meteorites......Page 330
Accretion and Differences in Bulk Chemistry between Groups of Iron Meteorites......Page 331
Heating and Differentiation......Page 333
Fractional Crystallization of Metal Cores......Page 334
Late-stage Crystallization and Immiscible Liquid......Page 336
Cooling Rates and Sizes of Parent Bodies......Page 337
Pallasites......Page 339
Parent Bodies of Iron and Stony-iron Meteorites......Page 340
Future Research Directions......Page 341
References......Page 342
1.13 Cosmic-ray Exposure Ages of Meteorites......Page 347
Introduction......Page 348
Factors Influencing Production Rates......Page 349
Measurement Units and Quantities......Page 350
Calibration of Production Rates......Page 351
Equations for Calculating One-stage CRE Ages......Page 352
CI, CM, CO, CV, and CK Chondrites......Page 356
H-Chondrites......Page 357
L-Chondrites......Page 358
E-Chondrites......Page 359
Lodranites and Acapulcoites......Page 360
Construction of CRE Histories......Page 361
Eucrites......Page 364
Howardites......Page 365
Kapoeta......Page 366
Aubrites (Enstatite Achondrites)......Page 367
Martian Meteorites......Page 368
Mesosiderites......Page 370
Irons......Page 371
Micrometeorites and IDPs......Page 372
Conclusions......Page 374
References......Page 375
Introduction......Page 381
In situ Components and Nuclear Components......Page 383
Radiogenic Noble Gases......Page 384
Spallation Noble Gases......Page 386
Solar Noble Gases......Page 388
Deuterium Burning and the Solar 3He/4He Ratio......Page 389
Solar Wind in Lunar Soils......Page 390
Solar-wind Composition and Solar Composition......Page 392
Exotic Components......Page 393
Presolar Carriers......Page 394
Radically Anomalous Exotic Noble-gas Components......Page 395
Moderately Anomalous Exotic Noble-gas Components......Page 397
Planetary Noble Gases......Page 398
The Q-Component......Page 400
Trapping Mechanisms......Page 401
U-xenon......Page 402
References......Page 403
Introduction......Page 406
Thermodynamic Equilibrium......Page 408
Kinetic Effects......Page 411
Laboratory Experiments......Page 414
Evaporation of CMAS Melts......Page 415
Bulk Compositions of Planets and Meteorite Parent Bodies......Page 420
Calcium-, Aluminum-rich Inclusions......Page 421
Chondrites......Page 424
Outlook......Page 425
References......Page 426
Chondritic Meteorites as Probes of Early Solar System Evolution......Page 430
Short-lived Radioactivity at the Origin of the Solar System......Page 431
A Brief History and the Scope of the Present Review......Page 432
Dating with Ancient Radioactivity......Page 433
An Absolute Timescale for Solar System Formation......Page 434
An Absolute Timescale for Early Differentiation of Planetesimals......Page 436
Calcium-41......Page 437
Aluminum-26......Page 438
Beryllium-10......Page 441
Manganese-53......Page 443
Iron-60......Page 445
Palladium-107......Page 446
Niobium-92......Page 447
Origins of the Short-lived Nuclides in the Early Solar System......Page 448
Implications for Chronology......Page 449
Formation Timescales of Nebular Materials......Page 450
Timescales of Planetesimal Accretion and Early Chemical Differentiation......Page 452
Implications for Solar Nebula Origin and Evolution......Page 453
References......Page 455
The Observational Evidence......Page 460
Viscous Accretion and Nebula Evolution......Page 461
Chondrules and Refractory Inclusions......Page 462
Short-lived Isotopes......Page 463
Gravitational Instability......Page 464
Random Velocities and Gravitational Focusing......Page 465
Late-stage Accretion and Giant Impacts......Page 466
Formation of the Moon......Page 467
Formation and Mass Depletion......Page 468
Giant-planet Compositions......Page 469
Disk Instability......Page 470
Formation of Uranus and Neptune......Page 471
References......Page 472
Introduction: The Importance of Mercury......Page 475
Spectral Properties Imply Low FeO......Page 476
Metal Enrichment......Page 478
Refractory Condensation Models......Page 479
Metal-rich Chondrite Model......Page 480
Implications for Planetary Accretion......Page 481
References......Page 482
Pre-twentieth Century......Page 484
The Twentieth Century to the Present Day......Page 485
Overview of important orbital properties......Page 487
Composition......Page 488
Thermal Structure and Greenhouse Effect......Page 492
Clouds and Photochemical Cycles......Page 493
Geochemistry and Mineralogy......Page 494
Atmosphere-Surface Interactions......Page 497
The Venus Sulfur Cycle and Climate Change......Page 499
Topography and Geology......Page 500
Interior......Page 501
Summary of Key Questions......Page 502
References......Page 503
1.20 The Origin and Earliest History of the Earth......Page 505
Introduction......Page 506
Depletion in Moderately Volatile Elements......Page 507
Solar Mass Stars and Heating of the Inner Disk......Page 508
The ‘‘Hot Nebula’’ Model......Page 510
The ‘‘Hot Nebula’’ Model and Heterogeneous Accretion......Page 511
Starting Accretion: Settling and Sticking of Dust at 1AU......Page 512
Starting Accretion: Gravitational Instabilities......Page 513
Larger Collisions......Page 514
Introduction: Uses and Abuses of Isotopic Models......Page 515
Lead Isotopes......Page 517
Tungsten Isotopes......Page 518
Chondrites and the Composition of the Disk from Which Earth Accreted......Page 523
Chondritic Component Models......Page 524
The Nonchondritic Mg/Si of the Earth’s Primitive Upper Mantle......Page 525
Did the Earth Have a Nebular Protoatmosphere?......Page 526
Earth’s Degassed Protoatmosphere......Page 528
Loss of Earth’s Earliest Atmosphere(s)......Page 529
Magma Oceans and Core Formation......Page 530
The Formation of the Moon......Page 531
Mass Loss and Compositional Changes During Accretion......Page 537
Evidence for Late Accretion, Core Formation, and Changes in Volatiles After the Giant Impact......Page 538
Early Mantle Depletion......Page 539
Hadean Continents......Page 540
Concluding Remarks---The Prognosis......Page 542
References......Page 543
Introduction: The Lunar Context......Page 554
Lunar Meteorites......Page 556
Remote-sensing Data......Page 557
Classification of Mare Rocks......Page 559
Chronology and Styles of Mare Volcanism......Page 564
Mare Basalt Trace-element and Isotopic Trends......Page 568
Polymict Breccias and the KREEP Component......Page 572
Bombardment History of the Moon......Page 573
Impactite and Regolith Siderophile Signatures......Page 576
Pristine Highland Rocks: Distinctiveness of the Ferroan Anorthositic Suite......Page 578
The Magma Ocean Hypothesis......Page 582
Alternative Models......Page 585
The Bulk Composition and Origin of the Moon......Page 586
References......Page 587
Geochemical Exploration of Mars......Page 595
Global Surface Chemistry from Orbiter Measurements......Page 596
Martian Meteorites......Page 597
Geologic Context and Relationships of Geochemical Data Sets......Page 599
Geochemical Characteristics of Martian Meteorites......Page 601
Mafic versus Felsic Igneous Rocks......Page 604
Geochemistry of Assimilated Crust in Martian Meteorites......Page 606
Geochemistry of Crustal Sediments......Page 607
Outgassing and Atmospheric Loss......Page 608
Organic Geochemistry or Biochemistry......Page 609
Isotope Geochronology and Planetary Differentiation......Page 610
Major Unsolved Problems......Page 611
References......Page 612
Basic Physical and Orbital Parameters......Page 616
Discovery and Historical Investigation of the Giant Planets......Page 617
How We Know the Giant Planets Contain Hydrogen and Helium......Page 619
The Equation of State of Hydrogen and Helium as a Determinant of the Structure......Page 620
The Thermal Infrared Emission of the Giant Planets and Implications for Evolution......Page 622
Elemental and Isotopic Abundances......Page 623
Atmospheric Dynamics and Magnetic Fields......Page 624
Constraints from the Composition of the Giant Planets......Page 626
Major Unsolved Problems and Future Progress......Page 627
References......Page 628
Introduction......Page 630
Cosmochemical Context......Page 631
Spectral Reflectance......Page 632
Io......Page 634
Ganymede and Callisto......Page 637
Europa......Page 640
Titan......Page 642
Magnetospheric Interactions......Page 643
General......Page 645
General......Page 646
Composition......Page 647
Atmosphere......Page 648
References......Page 649
Introduction......Page 656
Comet and Asteroid Comparisons......Page 657
Comet Activity......Page 658
The Oort Cloud......Page 659
The Kuiper Belt......Page 660
Fragmentation......Page 662
Strength and Structure of Cometary Materials......Page 664
Water Ice......Page 665
CO and Very Volatile Compounds......Page 667
Dust (and Rocks)......Page 668
Diversity Among Comets......Page 675
References......Page 678
Introduction......Page 682
Particle Size, Morphology, Porosity, and Density......Page 684
CPIDPs......Page 685
Glass with Embedded Metal and Sulfides......Page 690
CSIDPs......Page 692
Optical Properties......Page 694
Major Elements......Page 695
Isotopes......Page 697
Noble Gases......Page 699
Conclusions......Page 700
References......Page 701
Introduction and Historical Remarks......Page 705
The Composition of the Earth’s Mantle as Derived from the Composition of the Sun......Page 707
The Chemical Composition of Chondritic Meteorites and the Cosmochemical Classification of Elements......Page 708
Rocks from the Mantle of the Earth......Page 710
The Chemical Composition of Mantle Rocks......Page 711
Is the Upper Mantle Composition Representative of the Bulk Earth Mantle?......Page 724
Refractory Lithophile Elements......Page 725
Refractory Siderophile Elements......Page 727
Magnesium and Silicon......Page 728
The Iron Content of the Earth......Page 729
Moderately Volatile Elements......Page 730
HSEs in the Earth’s Mantle......Page 735
Late Veneer Hypothesis......Page 736
The Isotopic Composition of the Earth......Page 737
Summary......Page 738
References......Page 739
General Considerations......Page 743
Acoustic Methods......Page 744
Overview......Page 745
Discontinuity Topography......Page 746
Broadening and Bifurcation......Page 747
Subducted Basalts......Page 749
Plume Origins......Page 750
Bulk Fitting......Page 752
Depthwise Fitting......Page 753
Overview......Page 755
Subducted Oceanic Crust......Page 756
Summary......Page 758
References......Page 760
Early History of Mantle Geochemistry......Page 764
The Basics......Page 765
Mineral Grain Scale......Page 767
Mesoscale Heterogeneities......Page 768
Enrichment and Depletion Patterns......Page 769
Mass Fractions of Depleted and Primitive Mantle Reservoirs......Page 772
Isotope Ratios of Strontium, Neodymium, Hafnium, and Lead......Page 773
Osmium Isotopes......Page 778
Trace Elements......Page 779
N-MORB, E-MORB, T-MORB, and MORB Normalizations......Page 782
Summary of MORB and MORB-source Compositions......Page 783
Isotope Ratios of Strontium, Neodymium, Hafnium, and Lead and the Species of the Mantle Zoo......Page 784
Trace Elements in OIB......Page 789
The First Lead Paradox......Page 795
The Second Lead Paradox......Page 797
Geochemical Mantle Models......Page 798
References......Page 800
Introduction......Page 805
Types, Distribution, and Provenance......Page 806
Orogenic Peridotite Massifs......Page 807
Ophiolitic Peridotites......Page 815
Oceanic Peridotites......Page 819
Major- and Trace-element Geochemistry of Peridotites......Page 820
Major Elements and Minor Transition Elements......Page 822
Lithophile Trace Elements......Page 828
Data......Page 846
Interpretations......Page 849
Data......Page 853
Interpretations......Page 854
References......Page 859
2.05 Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds......Page 873
Occurrence and Classification......Page 874
Lithologies......Page 882
Textures......Page 884
Modal Mineralogy......Page 885
Mineral Chemistry......Page 888
Thermobarometry......Page 892
Bulk Rock Chemistry......Page 894
Mineral Trace-element Geochemistry......Page 911
Radiogenic Isotope Geochemistry......Page 923
Stable Isotope Chemistry: Oxygen, Carbon, and Sulfur Isotopes......Page 936
Noble Gases......Page 938
Mineral Chemistry and Equilibration Conditions......Page 939
Bulk Compositions......Page 941
Trace-element Chemistry......Page 943
Isotopic Characteristics......Page 945
Introduction......Page 949
Nitrogen in Diamond......Page 951
Isotope Systematics of Diamond and its Impurities......Page 953
Volatiles and Fluids in Diamonds......Page 955
Solid Inclusions in Diamonds......Page 958
Ultradeep Diamonds......Page 960
References......Page 962
2.06 Noble Gases as Mantle Tracers......Page 978
Historical Overview......Page 979
Component Structures of the Noble Gases......Page 980
Partitioning of the Noble Gases......Page 983
Localities and Sampling Media......Page 984
Helium Isotopes......Page 985
Neon Isotopes......Page 988
Argon Isotopes......Page 990
Xenon Isotopes......Page 991
Mantle Noble Gas Abundances......Page 992
Volatile Fluxes and Geochemical Recycling......Page 994
Mantle Structure and the Source of Ocean Islands......Page 1000
Mantle Volatiles in the Continental Lithosphere......Page 1006
Concluding Remarks......Page 1011
References......Page 1012
Introduction......Page 1020
Introduction......Page 1021
Basalts......Page 1022
Kimberlites and Lamproites......Page 1024
Carbonatites......Page 1025
Hydrogen-bearing Phases......Page 1026
Carbon-bearing Species......Page 1042
Sulfur......Page 1044
Halogens......Page 1045
Summary and Conclusions......Page 1047
References......Page 1051
Introduction......Page 1063
Melting Phase Relations of Fertile Mantle Peridotite......Page 1064
Melting Reactions and Residual Mineral Modes......Page 1066
Compositional Trends in Melt Extraction Residues......Page 1068
Mantle Heterogeneity......Page 1070
Oceanic Mantle......Page 1072
Off-craton Subcontinental Mantle......Page 1073
Fertile Upper-mantle Composition......Page 1075
Cratonic Mantle......Page 1077
The Role of Melt Extraction......Page 1078
Oceanic Mantle......Page 1079
Subcontinental Mantle......Page 1082
Perspective on Mantle Thermal Evolution......Page 1085
Summary......Page 1088
References......Page 1089
Introduction......Page 1095
Ionic Radius and Lattice Strain Theory......Page 1098
Determination of Es and ro......Page 1101
Deviations from Simple Bulk Modulus Systematics......Page 1104
Temperature and Pressure Dependences of D‘o’ and Partitioning......Page 1105
Garnet-Melt Partitioning of REE......Page 1107
Dependence of Do on Ionic Charge......Page 1108
Clinopyroxene M2-site......Page 1110
Clinopyroxene M1-site......Page 1112
Garnet X-site......Page 1113
Plagioclase......Page 1115
Olivine......Page 1116
Orthopyroxene......Page 1117
Amphibole......Page 1118
Alkali-feldspar......Page 1119
Phlogopite (Biotite)......Page 1120
References......Page 1121
2.10 Partition Coefficients at High Pressure and Temperature......Page 1125
Planetary Differentiation......Page 1126
Oxygen Fugacity......Page 1127
Partitioning Behavior of Siderophile Elements: Effects of P, T, fo2 , and Composition......Page 1128
Quantification of P, T, fO 2 , and Silicate and Metallic Melt Composition Effects on D(metal/silicate)......Page 1132
Olivine/Melt and Beta-spinel/Melt Partitioning......Page 1133
Magnesiowustite/Melt Partitioning......Page 1134
MgSiO3 Perovskite/Melt Partitioning......Page 1135
CaSiO3 Perovskite/Melt Partitioning......Page 1136
Core Formation in the Earth......Page 1137
Mantle Differentiation......Page 1141
Summary and Future......Page 1143
References......Page 1145
Introduction......Page 1150
Subduction Zone Thermal Models......Page 1151
Beryllium-10 Systematics and Sediment Subduction......Page 1152
Beryllium-10 Recycling......Page 1153
Beryllium-10 and Sediment Dynamics......Page 1154
Fore-arc Indicators of Element Distillation from the Slab......Page 1155
Cross-arc Synthesis......Page 1156
Constraints from Combined Beryllium and Uranium-series Isotope Studies......Page 1161
Lithium-isotope Evidence for Mantle Storage......Page 1163
Subduction Fluxes and Mantle Composition......Page 1164
Summary......Page 1165
References......Page 1166
Nomenclature......Page 1170
Geochemical Observations Suggesting Mantle Layering......Page 1171
Problems with the Classical Layered Model......Page 1172
Physics of Mixing......Page 1173
Tools for the Study of Mantle Mixing......Page 1177
Mantle Mixing Studies......Page 1182
Conceptual Model Development......Page 1184
Quantitative Modeling......Page 1185
Appendix......Page 1186
References......Page 1187
Introduction......Page 1191
The Use of Radiogenic Isotopic Compositions to Infer Mantle Chemistry......Page 1192
143Nd Isotopic Evolution......Page 1193
143Nd Isotopic Evolution of the Archean and Hadean Mantle......Page 1194
176Hf Isotopic Evolution......Page 1196
176Hf Isotopic Constraints on the Evolution of the Archean and Hadean Mantle......Page 1197
142Nd Isotopic Signatures......Page 1199
187Os Isotopic Evolution......Page 1201
87Sr Isotopic Evolution......Page 1204
Trace-Element Variations: Nb/Th and Nb/U in the Mantle through Time......Page 1205
Early Differentiation......Page 1207
Massive Early Crust Formation......Page 1208
Implications of Neodymium and Hafnium Isotopic Evolution Curves: Episodic Mantle Evolution?......Page 1209
Core Interactions......Page 1210
Nature of Chemical Layering in the Mantle......Page 1211
References......Page 1213
Introduction......Page 1218
Experimental Methods......Page 1220
Iron......Page 1221
Nickel......Page 1225
Constraints on and Significance of Light Elements in the Core......Page 1226
Review of Existing Data......Page 1227
Potassium......Page 1237
Conclusions and Outlook......Page 1238
References......Page 1239
Introduction......Page 1244
First-order Geophysics......Page 1245
Constraining the Composition of the Earth’s Core......Page 1247
Observations from Meteorites and Cosmochemistry......Page 1248
Classification of the Elements......Page 1249
Compositional Model of the Primitive Mantle and the Bulk Earth......Page 1250
A Compositional Model for the Core......Page 1251
Major and Minor Elements......Page 1252
The Light Element in the Core......Page 1253
Trace Elements in the Core......Page 1255
Radioactive Elements in the Core......Page 1258
Timing of Core Formation......Page 1259
Nature of Core Formation......Page 1260
The Inner Core, Its Crystallization, and Core-Mantle Exchange......Page 1261
Summary......Page 1262
References......Page 1263
Introduction......Page 1266
What is the Continental Crust?......Page 1267
The Upper Continental Crust......Page 1268
Surface Averages......Page 1269
Sedimentary Rocks and Glacial Deposit Averages......Page 1275
An Average Upper-crustal Composition......Page 1282
Definitions......Page 1285
Methodology......Page 1286
The Middle Crust......Page 1287
The Lower Crust......Page 1294
Bulk Crust Composition......Page 1309
A New Estimate of Crust Composition......Page 1315
Implications of the Crust Composition......Page 1317
Earth’s Crust in a Planetary Perspective......Page 1319
Summary......Page 1320
References......Page 1321
3.02 Constraints on Crustal Heat Production from Heat Flow Data......Page 1330
Heat Production Rate due to Uranium, Thorium, and Potassium......Page 1331
Geochemical and Petrological Estimates of Crustal Heat Production......Page 1332
Heat Production Measurements......Page 1333
Sampling Continental Crust......Page 1334
Scaling of Heat Sources......Page 1336
Heat Flow and Surface Heat Production......Page 1338
Sampling with Heat Flow......Page 1339
Heat Flow Data......Page 1340
Precambrian Provinces......Page 1342
Paleozoic Provinces......Page 1343
Summary......Page 1344
Appendix A: Power Spectra......Page 1345
Appendix B: Mantle Heat Flow, Moho Temperature and Lithosphere Thickness......Page 1346
References......Page 1347
Introduction......Page 1350
Potential Sources of Continental Mafic Magmatism......Page 1351
Trigger Mechanisms for Mantle Melting......Page 1353
Factors Influencing Magma Major Element Compositions......Page 1354
Factors Influencing Magma Trace-element Abundances......Page 1355
Factors Influencing Magma Isotopic Compositions......Page 1356
Continental Extrusive Igneous Rocks......Page 1359
Kimberlites......Page 1360
Alkali Basalts......Page 1362
Continental Flood Basalts......Page 1371
Case Example-Western USA......Page 1378
Intrusive Equivalents of Continental Basaltic Rocks......Page 1380
References......Page 1381
3.04 Volcanic Degassing......Page 1387
Earth Outgassing, Atmospheric Evolution and Global Climate......Page 1388
Volcanic Hazards and Volcano Monitoring......Page 1390
Origin, Speciation, and Abundance of Volatiles......Page 1391
Solubility and Speciation of Volatiles......Page 1392
Degassing......Page 1394
Saturation......Page 1395
Gas Separation......Page 1396
Excess Degassing......Page 1398
Styles of Surface Emissions......Page 1399
Measurement of Volatiles......Page 1402
Sulfur......Page 1410
Halogens......Page 1412
Impacts......Page 1413
Stratospheric Chemistry and Radiative Impacts of Volcanic Plumes......Page 1414
Climatic Impacts of Major Volcanic Eruptions......Page 1417
Tropospheric Chemistry of Volcanic Plumes......Page 1419
Impacts of Volcanic Volatiles on Vegetation and Soils......Page 1420
Impacts of Volcanic Pollution on Animal and Human Health......Page 1421
Conclusions and Future Directions......Page 1422
References......Page 1423
Introduction......Page 1431
Physical Aspects of Magma Transport and Storage......Page 1432
What Constitutes a ‘‘Magma Reservoir’’ and Its Storage Time......Page 1433
Geophysical and Time-series Estimates for Residence Times and Volumes of Magmas......Page 1434
General Constraints on the Duration of Magma Transfer from U-series Disequilibria......Page 1438
Effects Other than Time on U-decay Series Differentiation Ages......Page 1439
U-series Constraints on Crystallization Ages of Mineral Populations......Page 1442
U-series Constraints on Crystallization Ages of Individual Minerals......Page 1444
Timescales of Crystallization Based on Kinetic Phenomena......Page 1445
Discussion and Summary......Page 1448
Acknowledgments......Page 1450
References......Page 1451
General Symbols and those for Fluid and Heat Flow......Page 1458
Introduction......Page 1459
Porous Media and Fracture Flow......Page 1460
Pervasive Flow and Darcy’s Law......Page 1461
Fluid Pressure Gradients......Page 1462
Permeability......Page 1463
Crack Flow......Page 1464
Overview of Fluid Chemistry......Page 1465
Mass Fluxes......Page 1467
Reaction Rates......Page 1468
Geochemical Fronts......Page 1471
Flow and Reaction along Gradients in Temperature and Pressure......Page 1474
Regional Devolatilization and Directions of Fluid Motion......Page 1477
Mass Transfer in Veins and Shear Zones......Page 1478
Accretionary Prisms and Subduction Zones......Page 1481
Heat Transport by Fluids......Page 1482
Concluding Remarks......Page 1483
References......Page 1485
Introduction......Page 1492
Rayleigh Distillation......Page 1493
Equilibrium Partitioning and Growth Zoning Models......Page 1494
Diffusion......Page 1498
Combination of Retrograde Diffusional Exchange and Reaction......Page 1501
Thermobarometric Implications......Page 1503
Kinetically Limited Transport within the Rock Matrix......Page 1504
Dissolution-Reprecipitation......Page 1505
Stable Isotopes......Page 1506
Growth Zoning......Page 1507
Diffusion......Page 1508
Dissolution-Reprecipitation......Page 1509
Growth Zoning......Page 1510
Diffusion......Page 1511
Kinetically Limited Transport within the Rock Matrix......Page 1512
Growth Zoning......Page 1513
Diffusion......Page 1514
Dissolution-Reprecipitation......Page 1516
Case Study: Fall Mountain, New Hampshire......Page 1517
Acknowledgments......Page 1520
References......Page 1521
Nomenclature......Page 1525
Basic Concepts of Geochronology......Page 1526
Effects of Branched, Sequential, and Multiparent Decay......Page 1527
Analytical Methods......Page 1528
Microanalytical Techniques......Page 1529
Open-System Behavior: The Role of Diffusion......Page 1530
Modes of Diffusion......Page 1531
Experimental Constraints on Daughter-isotope Diffusion for Useful Minerals......Page 1532
Closure Temperature Theory......Page 1533
Quantitative Estimates of Closure Temperatures......Page 1535
The Influence of Input Parameters on Closure Temperature Calculations......Page 1537
Determining Timescales of Granitic Magmatism......Page 1538
Constraining the Cooling Histories of Igneous Rocks......Page 1539
Calibrating Metamorphic Histories......Page 1540
Calibrating Deformational Histories......Page 1541
Estimating Unroofing Rates......Page 1542
Monitoring the Evolution of Topography......Page 1544
Reconstructing Regional Patterns of Deformation and Erosion......Page 1545
Directions for Future Research......Page 1546
References......Page 1547
Introduction......Page 1555
Worldwide Distribution and Ages of UHP Metamorphic Belts......Page 1556
Exotic Versus In Situ Origin of UHP Metamorphic Rocks......Page 1560
Mineralogic Indicators of ‘‘Super’’ UHP Metamorphism......Page 1561
Chemical Compositions of Eclogites and Ultramafic Rocks......Page 1562
Sm-Nd, Lu-Hf, and Rb-Sr Isochron Ages and Nd-Sr Isotope Tracers......Page 1565
Comparative Radiogenic Geochemistry ofEclogites from UHP Metamorphic Belts......Page 1569
The Fluid Phase of UHP Metamorphism......Page 1571
Fluid Immobility during Prograde Metamorphism......Page 1572
Slab-Fluid-Mantle Interactions......Page 1573
Acknowledgments......Page 1574
References......Page 1575
Scope of Available Methods and Data......Page 1582
Early Developments in U–Th–Pb Geochronology......Page 1583
Zircon Evaporation Method......Page 1584
U-Th-Pb Dating by Ion Microprobe......Page 1585
U-Th-Pb Dating by ICP-MS......Page 1586
U–Th–Pb Dating of Monazite Using Only Uranium, Thorium, and Lead Concentrations......Page 1587
40’Ar/39’Ar Thermochronology......Page 1588
Rb-Sr Dating......Page 1589
40’Ar/39’Ar Dating of Potassium Feldspar......Page 1590
(U-Th)/He Dating of Apatite......Page 1591
Sm-Nd Methodology......Page 1592
Juvenile Crust Production at 1.9-1.7Ga......Page 1594
Juvenile Crust Production in the Canadian Cordillera......Page 1595
Existence of Ancient Continental Crust......Page 1598
Crustal Growth Events and Recycling into the Mantle......Page 1599
Acasta Gneisses, Northwest Territories, Canada......Page 1600
Narryer Terrane, Western Australia......Page 1601
References......Page 1602
3.11 Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust......Page 1610
Introduction......Page 1611
Granites and the Continental Crust......Page 1612
Assessing the Arc--Plume Balance......Page 1614
Episodicity in Crust Generation, and Its Implications......Page 1617
Evidence for Secular Changes in the Composition of the Continents......Page 1619
Archean TTG Associations......Page 1621
Late Archean Granitic Rocks: The Onset of Major Intracrustal Melting......Page 1630
Generation of High Silica Continental Rocks: II. Proterozoic to Phanerozoic Granitic Associations......Page 1631
The Importance of Intracrustal Melting, and the Mantle Connection......Page 1632
Peraluminous Leucogranites---Granites Derived from Old Crustal Protoliths......Page 1634
Granites Formed from Juvenile Mantle-derived Materials......Page 1643
Granites with Juvenile Mantle and Crustal Sources: The Lachlan Case Study......Page 1648
The Link Between Rb/Sr Ratios and Granitic Sources......Page 1659
Resolving the Effects of Igneous and Sedimentary Processes......Page 1660
Relevance for Crustal Differentiation......Page 1661
Synthesis and Avenues for Future Study......Page 1662
References......Page 1665
Ores, Mineral Deposits, Geochemical Anomalies, and Crustal Composition......Page 1672
Physical and Chemical Factors in the Generation of Geochemical Anomalies......Page 1674
The Terrestrial Heat Engine......Page 1675
Ore-mineral Solubility......Page 1676
Hydrothermal Redistribution of Gold and Antimony: An Example......Page 1680
Economic Considerations and the Classification of Ore Deposits: The Example of Vanadium-Uranium Deposits......Page 1682
Sedimentary Exhalative Deposits......Page 1683
VMS Deposits......Page 1684
Chromite and Related Magmatic Segregations in the Oceanic and Continental Realm......Page 1686
Some Ore-metal Anomalies Formed in the Continental Realm: The Extended Family of (Intermediate to Felsic).........Page 1687
Epithermal Deposits......Page 1689
Epilogue......Page 1690
References......Page 1691
Nomenclature......Page 1693
Architecture of the Oceanic Crust......Page 1694
Mantle Melting: Simple Passive Model......Page 1695
Worldwide Geochemical Variations among Ocean Ridge Basalts......Page 1697
Crystallization......Page 1698
Melting......Page 1704
Mantle Heterogeneity......Page 1707
Spatial Variations in Lava Compositions......Page 1711
Geochemical Systematics of Dikes......Page 1716
Geochemical and Textural Systematics of Gabbros......Page 1717
Conclusions......Page 1718
References......Page 1719
3.14 Melt Migration in Oceanic Crustal Production: A U-series Perspective......Page 1724
Naturally Occurring Actinide Decay Chains......Page 1725
Closed-system Models......Page 1726
Measurement and Nomenclature......Page 1728
Age Constraints......Page 1731
General Signatures of Disequilibrium......Page 1734
Assessment of Shallow-level Contamination......Page 1736
Further Observations......Page 1738
Preliminaries: Partition Coefficients and Diffusivity......Page 1748
Implications for Closed-system Models......Page 1750
Open-system ‘‘Ingrowth Models’’......Page 1751
Summary of Model Behavior......Page 1763
Concluding Remarks......Page 1764
Acknowledgments......Page 1765
References......Page 1766
Introduction......Page 1770
A “Standard Section” for the Oceanic Crust......Page 1771
Estimating Unaltered Oceanic Crust Compositions......Page 1774
Recovery Rate......Page 1776
Types of Alteration......Page 1777
Duration of Alteration......Page 1778
Determining the Composition of Extremely Heterogeneous Altered Crust......Page 1779
Time Dependence of Crust Hydration and Carbonate Addition......Page 1781
Chemical Fluxes between Oceanic Crust and Seawater: Methods and Uncertainties......Page 1782
Chemical Fluxes......Page 1783
Hydrothermal Fluxes: Rock Data versus Fluid Data......Page 1788
Impact of Ocean-crust Composition on Arc Processes and Mantle Heterogeneity......Page 1790
Conclusions......Page 1791
References......Page 1792
Introduction......Page 1795
Formation of Oceanic Plateaus......Page 1797
General Chemical Characteristics......Page 1798
Mantle Plume Source Regions of Oceanic Plateaus......Page 1799
Caribbean–Colombian Oceanic Plateau (~90 Ma)......Page 1802
Ontong Java Plateau (~122 and ~90 Ma)......Page 1806
The North Atlantic Igneous Province (~60 Ma to Present Day)......Page 1807
The Kerguelen Igneous Province (~133 Ma to Present Day)......Page 1808
Identification of Oceanic Plateaus in the Geological Record......Page 1809
Diagnostic Features of Oceanic Plateaus......Page 1810
Mafic Triassic Accreted Terranes in the North American Cordillera......Page 1811
Carboniferous to Cretaceous Accreted Oceanic Plateaus in Japan......Page 1812
Precambrian oceanic plateaus......Page 1814
Environmental Impact of Oceanic Plateau Formation......Page 1815
Links between CTB Oceanic Plateau Volcanism and Environmental Perturbation......Page 1816
Concluding statements......Page 1818
References......Page 1819
Introduction......Page 1824
The Oceanic Lithosphere before Subduction......Page 1826
Continuous versus Discontinuous Reactions......Page 1828
Fluid Availability versus Multicomponent Fluids......Page 1829
High Dehydration Rates and Fluid Production (Typically up to 600 deg C and 2.4 GPa)......Page 1830
Melting Regimes (650–950 deg C; to 5–6 GPa)......Page 1832
Dissolution Regime (>5–6 GPa)......Page 1834
How Much H2O Subducts Into the Transition Zone?......Page 1835
Pelites......Page 1836
Carbonates......Page 1837
Melting of Sediments Compared to Melting of MORB......Page 1838
Serpentinized Peridotite......Page 1839
Mobile Phase Production and Trace-element Transfer......Page 1840
Integrating Fluid Flux over the Entire Subducted Oceanic Crust: An Example......Page 1842
Conclusions and Outlook......Page 1843
References......Page 1845
3.18 One View of the Geochemistry of Subduction-related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust......Page 1849
Definition of Terms Used in this Chapter......Page 1850
Arc Lava Compilation......Page 1851
Comparison with MORBs......Page 1852
Major and Trace-element Characteristics of Primitive Arc Magmas......Page 1864
Trace Elements, Isotopes, and Source Components in Primitive Magmas......Page 1877
Talkeetna Arc Section......Page 1889
Missing Primitive Cumulates: Due to Delamination......Page 1896
Role of Lower Crustal Delamination in Continental Genesis......Page 1902
Additional Processes are Required......Page 1903
Conclusions......Page 1904
References......Page 1905
INTRODUCTION......Page 1916
Evolution of Oxidizing Capability......Page 1918
Prebiotic Atmosphere......Page 1919
Troposphere......Page 1920
Stratosphere......Page 1922
Meteorological Influences......Page 1923
Industrial Revolution......Page 1924
Future Projections......Page 1925
Direct Measurement......Page 1926
Indirect Measurement......Page 1928
Conclusions......Page 1931
References......Page 1932
Introduction......Page 1935
Main Reaction Mechanisms......Page 1938
Tropospheric Ozone Depletion at Polar Sunrise......Page 1941
Main Features of Polar ODEs......Page 1942
Sources of Active Bromine......Page 1944
Chlorine Chemistry in ODEs and Br–Cl Interactions......Page 1946
Marine Boundary Layer......Page 1947
Sea Salt Aerosols......Page 1948
Reactive Chlorine......Page 1951
Reactive Bromine......Page 1952
Reactive Iodine......Page 1956
Surface Segregation Effects......Page 1959
Sulfur......Page 1960
Salt Lakes......Page 1962
Possible Source of Free Tropospheric BrO......Page 1963
Industry and Fossil Fuel Burning......Page 1964
Organic Halogen Compounds......Page 1965
Inventories......Page 1966
Acknowledgments......Page 1967
References......Page 1968
Introduction......Page 1979
Global Methane Budget......Page 1980
Global Methane Increase......Page 1981
Gross Methane Budget......Page 1982
Atmospheric Models......Page 1983
Stable Isotopes......Page 1984
Flux Time Series......Page 1986
Process-level Studies......Page 1987
Wetland Soil Models......Page 1988
Animals, Landfills, and Biomass Burning......Page 1989
Microbial Soil Oxidation......Page 1990
New Techniques......Page 1991
Aerobic Methane Oxidation......Page 1992
Anaerobic Methane Oxidation......Page 1993
Methane Clathrate Hydrates......Page 1994
Ice Cores......Page 1996
Future Work......Page 1997
References......Page 1998
4.04 Tropospheric Aerosols......Page 2004
Overview......Page 2005
Sources......Page 2008
Spatial Homogeneity......Page 2009
Aerosol Properties......Page 2010
Number and Mass Distributions......Page 2012
Composition......Page 2015
Optical Properties......Page 2016
Particle Sizes, Size Distributions, and Number and Mass Concentrations......Page 2017
Composition......Page 2021
Hygroscopicity......Page 2028
Optical Properties......Page 2029
Spatial and Temporal Variation of Tropospheric Aerosols......Page 2030
Remote Sensing of Aerosol Using Passive Light Sources......Page 2031
Remote Sensing of Aerosol Using an Active Light Source......Page 2034
Emissions......Page 2036
Gas-to-particle Conversions and Other Atmospheric Reactions......Page 2037
Long-range Transport......Page 2039
Representation of Aerosol Processes in Chemical Transport and Transformation Models......Page 2040
Background......Page 2043
Direct Aerosol Shortwave Radiative Forcing......Page 2044
Clouds and Indirect Effects......Page 2047
Aerosol Forcing Relative to Other Forcings of Climate Change overthe Industrial Period......Page 2048
Acknowledgments......Page 2049
References......Page 2050
Introduction: Biomass Burning, Geochemical Cycling, and Global Change......Page 2056
Global Impacts of Biomass Burning......Page 2057
Biomass Burning in the Boreal Forests......Page 2059
Calculation of Gaseous and Particulate Emissions from Fires......Page 2062
Biomass Burning and Atmospheric Nitrogen and Oxygen......Page 2063
Production of O3 in the Troposphere......Page 2064
A Case Study of Biomass Burning: The 1997 Wildfires in Southeast Asia......Page 2065
Results of Calculations: Gaseous and Particulate Emissions from the Fires.........Page 2067
Measurements over Indonesia......Page 2068
References......Page 2069
General Introduction......Page 2072
The Physical Chemistry of Mass-independent Isotope Effects......Page 2074
Observations in Nature......Page 2075
Atmospheric Ozone......Page 2076
Stratospheric Carbon Dioxide......Page 2077
Aerosol Sulfate: Present Earth Atmosphere......Page 2078
Other Mass-independent Sulfate Isotopic Compositions......Page 2079
Atmospheric Molecular Oxygen......Page 2080
The Atmospheric Aerosol Nitrate and the Nitrogen Cycle......Page 2081
Mass-Independent Isotopic Compositions in Solids......Page 2082
Mass-Independent Isotopic Fractionation Processes in the Early Solar System......Page 2083
Concluding Comments......Page 2084
References......Page 2085
Introduction......Page 2087
Methodology and Terminology......Page 2088
Carbon-13 in Atmospheric CO2......Page 2091
Exchange with the Ocean......Page 2094
Atmosphere--Ocean Disequilibrium......Page 2096
Photosynthetic CO2 Uptake on Land......Page 2097
CO2 Release in Respiration......Page 2100
The Land Disequilibrium......Page 2102
Ecosystem Discrimination......Page 2103
Incorporating Isotopes in Flux Measurements......Page 2105
Oxygen-18 in CO2......Page 2107
The Soil Component......Page 2109
The Leaf Component......Page 2111
The Minor Components......Page 2113
Spatial and Temporal Patterns......Page 2114
References......Page 2117
Nomenclature......Page 2125
Introduction......Page 2126
Present-day observations......Page 2128
Fractionation Processes......Page 2129
Growth of Individual Elements......Page 2131
Isotopic Processes in Clouds......Page 2133
Rayleigh-type Models......Page 2134
Isotope Modeling with GCMs......Page 2136
Ice Core Isotopic Records......Page 2139
The Conventional Approach for Interpreting Water Isotopes in Ice Cores......Page 2142
Greenland......Page 2144
Antarctica......Page 2145
Influence of the Seasonality of the Precipitation......Page 2147
Influence of the Origin of the Precipitation......Page 2148
Estimating the Temporal Slope from Isotopic GCMs......Page 2149
Conclusion......Page 2150
References......Page 2151
Production and Distribution of 14C......Page 2156
Timescale Calibration......Page 2157
Calibration Based on Tree Rings......Page 2158
Other Calibration Schemes......Page 2160
Cause of the Long-term 14C Decline......Page 2161
Change in Ocean Operation......Page 2162
Radiocarbon and Solar Irradiance......Page 2163
Ocean Uptake of 14CO2 and CO2......Page 2165
Terrestrial Uptake of 14CO2 and CO2......Page 2168
References......Page 2169
Introduction......Page 2172
Flux of Radon from Soils to the Atmosphere......Page 2174
Short-lived Daughters of 222Rn in the Atmosphere......Page 2176
210Pb and Its Progeny......Page 2177
Atmospheric Production of Cosmogenic Nuclides......Page 2183
35'S and the Kinetics of SO2 Oxidation and Deposition......Page 2184
Phosphorus Isotopes......Page 2185
Temporal and Spatial Variation......Page 2186
Application of the Coupled 7Be-210Pb System to Sources of Atmospheric Species......Page 2188
References......Page 2189
4.11 The History of Planetary Degassing as Recorded by Noble Gases......Page 2191
Surface Inventories......Page 2192
Helium Isotopes......Page 2193
Neon Isotopes......Page 2194
Argon Isotopes......Page 2195
Xenon Isotopes......Page 2197
Noble Gas Abundance Patterns......Page 2198
MORB Fluxes and Upper-mantle Concentrations......Page 2199
Other Mantle Fluxes......Page 2200
Subduction Fluxes......Page 2201
The 40K--40Ar Budget......Page 2202
The 129I--129Xe and 244Pu--136Xe Budgets......Page 2203
Early Earth Degassing......Page 2204
Degassing from One Mantle Reservoir......Page 2205
Multiple Mantle Reservoirs......Page 2206
Interacting Reservoirs......Page 2207
Open-system Models......Page 2210
Boundaries within the Mantle......Page 2211
Degassing of the Crust......Page 2212
Formation Time of the Crust......Page 2213
Present Degassing......Page 2214
Carbon......Page 2215
Nitrogen......Page 2216
Degassing of Other Terrestrial Planets......Page 2218
Mars......Page 2219
Venus......Page 2220
Conclusions......Page 2221
References......Page 2222
4.12 The Origin of Noble Gases and Major Volatiles in the Terrestrial Planets......Page 2229
Characteristics of Terrestrial-planet Volatiles......Page 2230
Atmospheric Noble-gas Abundance Patterns......Page 2231
Atmospheric Argon......Page 2232
Terrestrial Atmospheric Xenon......Page 2233
Martian Atmospheric Xenon Isotopes......Page 2235
Noble-gas Isotopes in the Terrestrial Mantel......Page 2236
Nonradiogenic Xenon Isotopes in the Martian Mantle......Page 2237
Major Volatiles......Page 2238
Adsorption on Accreting Materials......Page 2240
Gravitational Capture......Page 2241
Accretion of Comets......Page 2242
Early Losses of Noble Gases to Space......Page 2243
Hydrodynamic Escape......Page 2244
The Origin of Terrestrial Noble Gases......Page 2246
The Origin of Noble Gases on Venus......Page 2248
The Origin of Noble Gases on Mars......Page 2249
Conclusions......Page 2251
References......Page 2252
Introduction......Page 2258
Factors of Soil Formation......Page 2259
Mass Balance Models of Soil Formation......Page 2260
Mass Balance Evaluation of the Biogeochemistry of Soil Formation......Page 2263
Mass Balance of Soil Formation versus Time......Page 2267
Mass Balance Evaluation of Soil Formation versus Climate......Page 2271
Processes of Matter and Energy Transfer in Soils......Page 2272
Mechanistic Modeling of the Organic and Inorganic Carbon Cycle in Soils......Page 2274
Lateral Transport of Soil Material by Erosion......Page 2284
Soil Data Compilations......Page 2288
References......Page 2289
Introduction......Page 2293
What is a Model?......Page 2294
Modeling Definitions......Page 2295
Inverse Modeling, Mass Balancing, and Mole Balancing......Page 2296
Historical Background to Geochemical Modeling......Page 2298
Activity Coefficients......Page 2299
Geochemical Databases......Page 2301
Electrolyte Databases......Page 2302
USGS Codes......Page 2303
The Geochemist’s Workbench......Page 2304
REDEQL-MINTEQ Codes......Page 2305
WHAM Models......Page 2306
Water--Rock Interactions......Page 2307
Model Simulations of Mineral Reactions......Page 2308
Reactive-Transport Modeling in Streams......Page 2314
Geochemical Modeling of Catchments......Page 2316
Reliability of Geochemical Model Simulations......Page 2318
Final Comments......Page 2320
References......Page 2321
5.03 Reaction Kinetics of Primary Rock-forming Minerals under Ambient Conditions......Page 2329
Nomenclature......Page 2330
Introduction......Page 2331
Chemical Reactors......Page 2332
Interpreting Dissolution Rates......Page 2334
Rate-limiting Step and the Effect of Dislocation......Page 2335
Silicate and Oxide Dissolution Mechanism......Page 2336
BET and Geometric Surface Area......Page 2344
Reactive Surface Area......Page 2345
Rate Constants as a Function of Mineral Composition......Page 2346
Feldspars......Page 2347
Nonframework Silicates......Page 2348
Carbonates......Page 2350
Effect of Solution Chemistry......Page 2351
Cationic Species......Page 2354
Anionic Species......Page 2356
Nonlinear Rate Laws......Page 2359
Duration of Dissolution......Page 2362
Conclusion......Page 2363
References......Page 2364
Introduction......Page 2374
Methods of Mass Balance......Page 2375
Mass-balance Modeling......Page 2381
Summary......Page 2383
Reference......Page 2384
5.05 Natural Weathering Rates of Silicate Minerals......Page 2388
Introduction......Page 2389
Mass Changes Related to Chemical Weathering......Page 2390
Bulk Compositional Changes in Regoliths......Page 2392
Small-scale Changes in Mineral and Rock Compositions......Page 2393
Changes Based on Solute Compositions......Page 2394
Comparison of Contemporary and Geologic Rates......Page 2403
Definitions of Natural Surface Areas......Page 2404
Surface Roughness......Page 2405
Mineral Fluxes......Page 2406
Normalizing Rate Data......Page 2407
Mineral Weatherability......Page 2408
Solute Chemistry and Saturation States......Page 2409
Coupling the Effect of Hydrology and Chemical Weathering......Page 2411
Role of Climate on Chemical Weathering......Page 2413
Role of Physical Weathering......Page 2416
Weathering Rates in Geochemcial Models......Page 2417
Summary......Page 2418
References......Page 2419
Introduction......Page 2424
Chemical Processes......Page 2425
Physical Processes......Page 2428
Field Studies Evaluating the Role of Large Land Plants on Weathering......Page 2429
The GEOCARB Model......Page 2436
The Rise of Large Vascular Plants and their Effect on Weathering and CO‘2’......Page 2437
The Rise of Angiosperms......Page 2438
The Fertilization Over Time of Plant Growth by CO‘2’......Page 2439
Summary......Page 2440
References......Page 2441
5.07 Geochemical Weathering in Glacial and Proglacial Environments......Page 2444
Introduction......Page 2445
Basic Glaciology and Glacier Hydrology......Page 2446
Glaciers, Ice Caps, and Ice Sheets......Page 2447
The Proglacial Zone......Page 2448
Relation to Lithology......Page 2449
pH, PCO2, and PO2......Page 2450
87Sr : 86Sr Ratios......Page 2451
delta18O, delta13CDIC, delta34S, and delta18OSO24-......Page 2452
Carbonate and Silicate Dissolution: Sources of CO‘2’ and Strong Acids......Page 2453
Oxidation of Kerogen, Sulfate Reduction and Onwards to Methanogenesis?......Page 2454
Similarities with Subglacial Environments......Page 2455
Ingress of Water from Channels into the Proglacial Zone......Page 2456
Global Effects......Page 2457
References......Page 2458
Introduction......Page 2461
Global Range of Pristine River Chemistry......Page 2462
Sources, Sinks, and Controls of River-dissolved Material......Page 2464
Carbon Species Carried by Rivers......Page 2465
Influence of Climate on River Chemistry......Page 2467
Idealized Model of River Chemistry......Page 2469
Distribution of Weathering Intensities at the Global Scale......Page 2470
Global Budget of Riverine Fluxes......Page 2472
Human Alteration of River Chemistry......Page 2473
Conclusions......Page 2475
References......Page 2476
Introduction......Page 2478
Natural Abundances of Trace Elements in River Water......Page 2480
Range of Concentrations of Trace Elements in River Waters......Page 2491
Crustal Concentrations versus Dissolved Concentrations in Rivers......Page 2492
Correlations between Elements......Page 2493
Temporal Variability......Page 2495
Transport of Elements......Page 2496
Rock Weathering......Page 2497
Other Anthropogenic Contributions......Page 2499
Aqueous Speciation......Page 2500
The ‘‘Colloidal World’’......Page 2503
Nature of the Colloids......Page 2504
Ultrafiltration of Colloids and Speciation of Trace Elements in Organic-rich Rivers......Page 2505
Fractionation of REEs in Rivers......Page 2507
Colloid Dynamics......Page 2510
Equilibrium Solubility of Trace Elements......Page 2511
Reactions on Surfaces......Page 2512
Adsorption on Hydrous Oxides in River System......Page 2513
The Sorption of REEs: Competition between Aqueous and Surface Complexation......Page 2515
Importance of Adsorption Processes in Large River Systems......Page 2516
Anion Adsorption in Aquatic Systems......Page 2517
Adsorption and Organic Matter......Page 2518
Conclusion......Page 2519
References......Page 2521
5.10 Dissolved Organic Matter in Freshwaters......Page 2526
The Major Areas of Research Interest......Page 2527
Inventories and Fluxes......Page 2528
Estimates of Carbon Fluxes-1980s......Page 2529
Estimates of Carbon Fluxes—1990s and 200s......Page 2530
DOM and the Acid–Base Chemistry of Freshwaters......Page 2531
DOM and UV/Visible Radiation......Page 2532
DOM and Chemical Speciation of Trace Metal Cations......Page 2533
DOM and Biological Activity of Trace Metal Cations......Page 2534
Bioavailability of DOM......Page 2535
Chemical Properties......Page 2536
Shapiro’s Yellow Organic Acids......Page 2537
Isolation and Fractionation of DOM......Page 2538
Average Molecular Weights......Page 2542
Elemental Composition......Page 2545
Acidic Functional Groups......Page 2549
Carbon Distribution from 13 C NMR Spectrometry......Page 2552
Biomolecules in DOM......Page 2553
Overall Summary of the Chemical Properties of DOM......Page 2558
Summary and Conclusions......Page 2562
References......Page 2563
5.11 Stable Isotope Applications in Hydrologic Studies......Page 2572
Environmental Isotopes as Tracers......Page 2573
Isotope Fundamentals......Page 2574
Causes of Isotopic Variation......Page 2576
Deuterium and Oxygen-18......Page 2579
Tritium......Page 2584
Determination of Runoff Mechanisms......Page 2585
Estimation of Mean Residence Time......Page 2590
Carbon......Page 2591
Nitrogen......Page 2597
Sulfur......Page 2605
Use of a Multi-isotope Approach for the Determination of Flow Paths and Reaction Paths......Page 2610
References......Page 2611
5.12 Radiogenic Isotopes in Weathering and Hydrology......Page 2618
Introduction and Overview of Relevant Isotope Systems......Page 2619
Laboratory Dissolution Experiments......Page 2620
Soil Weathering Studies......Page 2623
Springs and Small Streams......Page 2627
Proxies for Global Weathering Rates......Page 2630
Base Cation Nutrients......Page 2631
Tracing Hydrologic Flow Paths and Subsurface Mixing......Page 2633
Regional Scale Groundwater Studies......Page 2634
Local-scale Groundwater Studies......Page 2636
Springs and Small Streams......Page 2638
References......Page 2639
Regional Occurrence......Page 2646
Hydrology......Page 2648
Climate......Page 2650
Hydrochemical Variation......Page 2651
Brine Evolution......Page 2654
Examples of Major Saline Lake Systems......Page 2661
Chloride-Great Salt Lake......Page 2666
Sulfate—Northern Great Plains, North America......Page 2668
Mixed Anions-Death Valley......Page 2670
Acid Lakes-Australia......Page 2671
Acknowledgments......Page 2672
References......Page 2673
Historical Overview......Page 2678
Lithology, Hydrology, and Groundwater Geochemistry......Page 2679
A Basalt Lithology: The Snake River Aquifer of Idaho......Page 2680
A Stratified Drift–Arkosic Sandstone Lithology: The Bedrock Aquifer of New England......Page 2683
A Carbonate Lithology: The Floridan Aquifer of Florida......Page 2685
A Coastal Plain Lithology: The Black Creek Aquifer of South Carolina......Page 2689
The Equilibrium Approach......Page 2694
Identifying TEAPs......Page 2695
Petroleum Hydrocarbon Contamination......Page 2696
Chlorinated Solvent Contamination......Page 2698
References......Page 2700
5.15 Groundwater Dating and Residence-time Measurements......Page 2703
Driving Forces......Page 2704
Hydraulic Conductivity and Its Variability......Page 2705
Scales of Flow Systems......Page 2706
Sources of Solutes at Various Scales......Page 2707
Solute Transport in Subsurface Water......Page 2708
Fundamental Transport Processes......Page 2709
Interaction between Hydrogeological Heterogeneity and Transport......Page 2710
Groundwater Dating and the Concept of ‘‘Groundwater Age’’......Page 2711
Radionuclides for Age Tracing of Subsurface Water......Page 2712
Stable, Transient Tracers......Page 2718
Introduction......Page 2720
Approaches......Page 2721
Introduction......Page 2723
Examples of Applications......Page 2724
Carrizo Aquifer......Page 2730
Implications at the Aquifer Scale......Page 2734
3H/3He, CFC-11, CFC-12, 85Kr-Delmarva Peninsula......Page 2735
Implications at the Local Scale......Page 2737
Tracers in Vadose Zones......Page 2738
References......Page 2742
5.16 Deep Fluids in the Continents: I. Sedimentary Basins......Page 2750
Nomenclature......Page 2751
Introduction......Page 2752
Field and Laboratory Methods......Page 2753
Water Salinity......Page 2754
Major Cations......Page 2756
Water-Rock Reactions Controlling Cation Concentrations......Page 2762
Major Anions......Page 2763
Reactive Organic Species......Page 2767
Formation Waters from “Old” Meteoric Water......Page 2770
Formation Waters of Connate Marine Origin......Page 2771
Brines from Mixing of Different Waters......Page 2772
Boron Isotopes......Page 2774
Sulfur Isotopes......Page 2775
Chlorine Isotopes......Page 2776
Radioactive Isotopes......Page 2777
Solubilization of Heavy Metals......Page 2778
Chloride Complexing......Page 2779
Dissolved Gases......Page 2780
Hydrogen Sulfide......Page 2781
Noble Gases......Page 2782
The Influence of Geological Membranes......Page 2783
Summary and Conclusions......Page 2784
References......Page 2785
5.17 Deep Fluids in the Continents: II. Crystalline Rocks......Page 2792
The Crystalline Rock Environment......Page 2793
Field Sampling Methods......Page 2794
Chemistry and Isotopic Composition of Groundwaters from Crystalline Environments......Page 2795
Trends in Major Ions and the Stable Isotopes of Water......Page 2799
Strontium Isotopes......Page 2802
Boron Isotopes......Page 2803
Gases from Crystalline Environments......Page 2804
The Origin and Evolution of Fluids in Crystalline Environments......Page 2805
The Origin of Salinity: The Influence of the Rock......Page 2806
The Origin of Salinity: Fluids from External Sources......Page 2811
Examples of Multiple Sources of Salinity......Page 2814
Groundwater Composition and Saline Fluids in the Lac du Bonnet Granite Batholith, Manitoba, Canada......Page 2816
Groundwater Composition at the Palmottu Site in Finland......Page 2819
Groundwater Composition and Hydrogeochemical Aspects of the Aspo Site, Sweden......Page 2821
The KTB (Continental Deep Drilling Project of Germany)......Page 2822
The Hydrogeology and Geochemistry of the Kola Superdeep Well......Page 2823
References......Page 2825
INTRODUCTION......Page 2832
Approaches to the Study of Paleosols......Page 2833
Molecular Weathering Ratios......Page 2834
Analyses of Stable Isotopes of Carbon and Oxygen......Page 2835
Record of Past Soil and Global Change......Page 2837
Origins of Soil......Page 2838
Archean–Paleoproterozoic Greenhouse Paleosols......Page 2839
Proterozoic Icehouse Paleosols......Page 2840
Cambro-Ordovician Greenhouse Paleosols......Page 2841
Siluro-Devonian Greenhouse Paleosols......Page 2842
Late Devonian to Permian Icehouse Paleosols......Page 2844
Triassic-Jurassic Greenhouse Paleosols......Page 2845
Cretaceous–Paleogene Greenhouse Paleosols......Page 2846
Pleistocene Glacial and Interglacial Paleosols......Page 2848
Soils and Global Carbon Cycle Changes......Page 2850
References......Page 2851
Nomenclature......Page 2857
Composition of Seawater......Page 2858
Causes of Major Components Not Being Conservative......Page 2859
Pressure–Volume–Temperature Properties......Page 2860
Application to other Natural Waters......Page 2861
Carbonic Acid Equilibria in Seawater......Page 2862
Solubility of Fe(III) in Seawater......Page 2865
Kinetic Process in Seawater......Page 2866
Oxidation of Fe(II) with O2......Page 2867
Oxidation of Cu(I) with O2......Page 2868
Modeling the Ionic Interactions in Seawater and other Natural Waters......Page 2869
Physical-Chemical Properties......Page 2870
Estimating Activity Coefficients......Page 2871
Acknowledgments......Page 2872
References......Page 2873
Introduction......Page 2878
Concentrations......Page 2879
Distributions......Page 2882
Rivers......Page 2887
Atmosphere......Page 2888
Active Biological Uptake in the Surface Waters......Page 2890
Passive Scavenging......Page 2892
Recycling within the Water Column......Page 2894
Complexation with Organic Ligands......Page 2895
Copper......Page 2896
Iron......Page 2897
Zinc......Page 2898
References......Page 2899
6.03 Gases in Seawater......Page 2903
Introduction......Page 2904
Air--Sea Gas Exchange Models......Page 2905
Laboratory Studies of Air–Water Gas Exchange......Page 2908
Field Studies of Air--Sea Gas Transfer......Page 2912
Parametrizations of Air–Sea Gas Transfer......Page 2915
Remote Sensing and Estimation of Transfer Velocity......Page 2916
Introduction......Page 2917
The Oceans as a Source of Gases to the Atmosphere......Page 2918
The Oceans as a Source and a Sink of Volatile Compounds......Page 2925
The Oceans as a Sink for Atmospheric Gases......Page 2927
References......Page 2929
6.04 The Biological Pump......Page 2936
Description of the Biological Pump......Page 2937
Photosynthesis and Nutrient Uptake......Page 2939
Flocculation and Sinking......Page 2941
Particle Decomposition and Repackaging......Page 2943
Dissolved Organic Matter......Page 2944
Macronutrients......Page 2945
Trace Elements......Page 2949
Measurement of New Production......Page 2952
Measurement of Particle Flux......Page 2953
Altering the Efficiency of the Biological Pump......Page 2955
Response to Increased CO2......Page 2958
Carbon Sequestration via Ocean Fertilization and the Biological Pump......Page 2959
References......Page 2960
Introduction: The Scope of Marine Bioinorganic Chemistry......Page 2965
Concentrations......Page 2966
Uptake......Page 2968
Trace Element Storage......Page 2973
The Biochemical Functions of Trace Elements in the Uptake and Transformations of Nutrients......Page 2974
Trace Metals and the Marine Carbon Cycle......Page 2975
Trace Metals and the Nitrogen Cycle......Page 2978
Iron......Page 2980
Manganese......Page 2983
Zinc, Cobalt, and Cadmium......Page 2984
Copper......Page 2988
Nickel......Page 2989
Paleoceanographic Aspects......Page 2990
Acknowledgments......Page 2991
References......Page 2992
Introduction......Page 2996
Reservoirs......Page 2997
Fluxes......Page 2999
Background......Page 3000
Terrestrial Organic Matter in River Systems......Page 3001
Quantitative Importance of Terrigenous Organic Carbon in Marine Sediments......Page 3003
Background......Page 3005
High Molecular Weight Dissolved Organic Matter: Biopolymers or Geopolymers?......Page 3006
Gel Polymers and the Cycling of High Molecular Weight Dissolved Organic Matter......Page 3011
Background......Page 3013
Compositional Transformations Associated with Sedimentation and Burial of Organic Matter......Page 3014
Controls on Organic Matter Preservation......Page 3016
Background......Page 3021
Planktonic Archea......Page 3022
Anaerobic Methane Oxidation......Page 3023
Summary and Future Research Directions......Page 3024
Acknowledgments......Page 3025
References......Page 3026
6.07 Hydrothermal Processes......Page 3032
What is Hydrothermal Circulation?......Page 3033
Where Does Hydrothermal Circulation Occur?......Page 3035
Why Should Hydrothermal Fluxes Be Considered Important?......Page 3037
Why are Vent-fluid Compositions of Interest?......Page 3038
Processes Affecting Vent-fluid Compositions......Page 3039
Compositions of Hydrothermal Vent Fluids......Page 3045
Geographic Variations in Vent-fluid Compositions......Page 3049
Temporal Variability in Vent-fluid Compositions......Page 3051
The Net Impact of Hydrothermal Activity......Page 3053
Alteration and Mineralization of the Upper Ocean Crust......Page 3054
Near-vent Hydrothermal Deposits......Page 3055
Dynamics of Hydrothermal Plumes......Page 3056
Modification of Gross Geochemical Fluxes......Page 3058
Physical Controls on Dispersing Plumes......Page 3062
Biogeochemical Interactions in Dispersing Hydrothermal Plumes......Page 3063
Hydrothermal Sediments......Page 3064
Deposition from Hydrothermal Plumes......Page 3065
Hydrothermal Sediments in Paleoceanography......Page 3066
References......Page 3067
Introduction......Page 3074
Theoretical Framework 1: The Advection--Diffusion Equation......Page 3076
The Nature of Oceanic Mixing......Page 3078
Isopycnal Mixing in the Ocean......Page 3079
Theoretical Framework 2: Tracer Ages......Page 3080
Radiometric Dating......Page 3081
Transient Concentration Dating......Page 3083
Theoretical Framework 3: Optimum Multiparameter Analysis and Tracer Age Spectra......Page 3084
Radiocarbon......Page 3086
Radium......Page 3087
Transient Tracers......Page 3088
Tracer Release Experiments......Page 3092
Concluding Remarks......Page 3093
References......Page 3094
Nomenclature......Page 3098
Tracers of Particle Transport......Page 3099
Transfer from Solution to Particles (Scavenging)......Page 3100
Important Features of Colloids......Page 3103
Rate Constants for Colloid Coagulation......Page 3104
Scavenging Rates and Particle Flux......Page 3106
Export Flux of POC......Page 3107
Non-steady-state Conditions and Advected Fluxes......Page 3108
Limitations and Prospects......Page 3109
Conceptual Models of Aggregation and Disaggregation......Page 3110
Strategies to Evaluate Rate Constants......Page 3111
Lead-210......Page 3114
Thorium-230......Page 3115
Helium-3......Page 3118
Summary......Page 3119
References......Page 3120
Introduction......Page 3125
The Organic Carbon Biological Pump......Page 3126
CaCO3 Production and Export......Page 3127
SiO2 Production and Export......Page 3128
Geochemical Signature of the Biological Pump......Page 3129
Direct Atmospheric pCO2 Signature of the Biological Pump......Page 3131
Controls of Mean Ocean Chemistry......Page 3132
References......Page 3137
Introduction......Page 3142
The Pillars of Organic Matter Diagenesis......Page 3143
Organic Matter Diagenesis Down the Redox Progression......Page 3146
Factors Controlling Organic Matter Degradation......Page 3150
Diagenesis and Preservation of Calcium Carbonate......Page 3153
Mechanisms Controlling CaCO3 Burial: Thermodynamics......Page 3154
Mechanism of CaCO3 Dissolution: Kinetics......Page 3156
Diagenesis and Preservation of Silica......Page 3160
Controls on the H4SiO4 Concentration in Sediment Pore Waters: Kinetics......Page 3161
The Importance of Aluminum and the Rebirth of ‘‘Reverse Weathering’’......Page 3162
Appendix A......Page 3164
References......Page 3165
6.12 Geochronometry of Marine Deposits......Page 3169
Radiocarbon......Page 3170
Cosmogenic Nuclides......Page 3171
Unbioturbated Deposits......Page 3172
Bioturbated Deposits......Page 3173
Radiocarbon......Page 3174
230Th and 231Pa......Page 3176
10Be......Page 3178
Volcanic Layers......Page 3179
Extension of Dating Techniques......Page 3180
The Underlying Assumptions......Page 3182
Corals......Page 3183
Amino Acid Racemization......Page 3185
References......Page 3186
Introduction......Page 3190
Methods of Sea-level Reconstruction from Oxygen Isotope Measurements......Page 3191
230Th and 231Pa Dating: Current Status and Historical Overview......Page 3193
230Th and 231Pa Dating: Theory......Page 3195
Tests of Dating Assumptions......Page 3196
Sources of Error in Age......Page 3198
Current Status of Direct Sea-level Reconstruction: The Past 500 kyr......Page 3199
Comparison of Direct Sea-level and Benthic Foram Records......Page 3205
18’O/16’O-based Sea-level Records......Page 3206
Causes of Sea-Level Change and Future Work......Page 3207
References......Page 3208
6.14 Elemental and Isotopic Proxies of Past Ocean Temperatures......Page 3212
A Brief History of Early Research on Geochemical Proxies of Temperature......Page 3213
Paleotemperature Equations......Page 3215
Secondary Effects and Diagenesis......Page 3216
Background......Page 3217
Secondary Effects and Diagenesis......Page 3218
Results on Historical Timescales......Page 3219
Summary of Outstanding Research Issues......Page 3220
Background and History......Page 3221
Calibration and Paleotemperature Equations......Page 3222
Effect of Dissolution......Page 3223
Other Secondary Effects: Salinity, pH, Gametogenesis, and Changes in Seawater Mg/Ca......Page 3224
Results on Quaternary Timescales......Page 3225
Results for the Neogene......Page 3226
Magnesium as Paleotemperature Proxies in Ostracoda......Page 3227
Paleotemperature Equations......Page 3228
Secondary Effects and Diagenesis......Page 3229
Results on Historical Timescales......Page 3230
Magnesium and Uranium in Corals as Paleotemperature Proxies......Page 3231
References......Page 3232
Introduction......Page 3238
Systematics and Detection......Page 3240
Occurrence of Alkenones in Marine Waters and Sediments......Page 3243
Genetic and Evolutionary Aspects of Alkenone Production......Page 3245
Function......Page 3246
Ecological Controls on Alkenone Production and Downward Flux......Page 3247
Effects of Water-column Recycling and Sediment Diagenesis on the Alkenone Unsaturation Index......Page 3251
Culture Calibrations......Page 3254
Particulates......Page 3256
Core Tops......Page 3257
Synthesis of Calibration......Page 3259
Paleotemperature Studies Using the Alkenone Method......Page 3260
Holocene High-resolution Studies......Page 3261
Millennial-scale Events of the Late Pleistocene and Last Glacial Termination......Page 3262
Marine Temperatures during the LGM......Page 3264
SST Records of the Late Pleistocene Ice Age Cycles......Page 3267
SST before the Late Pleistocene......Page 3268
Comparison with other Proxies: delta18O......Page 3269
Comparison with other Proxies: Microfossils......Page 3270
Comparison with other Proxies: Mg/Ca......Page 3271
Conclusions......Page 3272
References......Page 3273
Introduction......Page 3280
Carbon Isotopes......Page 3281
Pore-water Chemistry......Page 3286
Oxygen Isotopes in Benthic Foraminifera......Page 3287
Radiocarbon......Page 3288
Geostrophic Shear Estimates from delta18O in Benthic Foraminifera......Page 3289
Ocean Circulation during the Last Glacial Maximum......Page 3290
Conclusions......Page 3294
References......Page 3295
Introduction......Page 3299
Systematics of Long-lived Isotope Systems in the Earth......Page 3300
Early Applications to the Oceans......Page 3302
REEs in Seawater......Page 3304
Neodymium-isotope Ratios in Seawater......Page 3305
Where does Seawater Neodymium Come From?......Page 3308
Neodymium Isotopes as Water-mass Tracers......Page 3311
The ‘‘Nd Paradox’’......Page 3313
Radiogenic Isotopes in Authigenic Ferromanganese Oxides......Page 3319
Long-term Time Series in Fe--Mn Crusts......Page 3321
Nd–Sr–Pb Isotopes in Terrigenous Sediments......Page 3323
Isotopic and Geochronologic Measurements on Individual Mineral Grains......Page 3324
Trough Mouth Fans as Archives of Major IRD Sources......Page 3325
40’Ar/39’Ar Hornblende Evidence for History of the Laurentide Ice Sheet During the Last Glacial Cycle......Page 3327
Final Thoughts......Page 3330
References......Page 3331
Introduction......Page 3336
Concepts......Page 3341
Low- and Mid-latitude Ocean......Page 3344
High-latitude Ocean......Page 3348
Export Production......Page 3354
Nutrient Status......Page 3356
Integrative Constraints on the Biological Pump......Page 3357
Low- and Mid-latitude Ocean......Page 3359
High-latitude Ocean......Page 3362
Summary and Current Opinion......Page 3365
References......Page 3367
Introduction......Page 3374
Depth of Transition Zone......Page 3375
Distribution of CO2-3 Ion in Today’s Deep Ocean......Page 3376
Dissolution Mechanisms......Page 3378
Dissolution in the Past......Page 3382
Sediment-Based Proxies......Page 3383
Shell Weights......Page 3384
The Boron Isotope Paleo pH Method......Page 3385
Zn/Cd Ratios......Page 3387
Dissolution and Preservation Events......Page 3388
Neutralization of Fossil Fuel CO2......Page 3390
References......Page 3392
Introduction......Page 3395
Cenozoic Deep-sea Stable Isotope Record......Page 3396
Oxygen Isotopes and Climate......Page 3398
Carbon Isotopes and Ocean Carbon Chemistry......Page 3400
Globally Integrated Records of Inputs to the Ocean......Page 3401
Decoupled riverine fluxes of strontium and osmium?......Page 3403
Reconstructing Seawater Isotope Composition from Sediments......Page 3404
Overview of the Cenozoic marine strontium isotope record......Page 3405
Overview of the Cenozoic marine osmium isotope record......Page 3406
Significance of uplift and weathering of the Himalayan–Tibetan Plateau (HTP)......Page 3407
Glaciation and the marine strontium and osmium isotope records......Page 3409
Variations in the Strontium and Osmium Isotope Composition of Riverine Input......Page 3410
Osmium and Strontium Isotopes as Chemical Weathering Proxies......Page 3411
Coupling Benthic Foraminiferal Mg/Ca and Oxygen Isotope Records......Page 3412
Cenozoic Benthic Foraminiferal Mg/Ca Records......Page 3413
The pH Dependence of Boron Isotope Fractionation......Page 3416
Boron Partitioning into Calcite......Page 3417
Paleo-pH and Atmospheric CO2 Reconstruction......Page 3418
Closing Synthesis: Does Orogenesis lead to Cooling?......Page 3420
References......Page 3421
Introduction......Page 3426
The Hadean (4.5-4.0 Ga)......Page 3427
The Isua Supracrustal Belt, Greenland......Page 3428
The Mesoarchean Period (3.7-3.0 Ga)......Page 3432
The Neoarchean (3.0--2.5 Ga)......Page 3434
The Paleoproterozoic (2.5-1.8Ga)......Page 3438
The Mesoproterozoic (1.8-1.2 Ga)......Page 3442
The Neoproterozoic (1.2-0.54 Ga)......Page 3444
Evidence from Marine Evaporites......Page 3448
The Mineralogy of Marine Oolites......Page 3449
The Magnesium Content of Foraminifera......Page 3450
The Spencer--Hardie Model......Page 3452
The Role of the Stand of Sea Level......Page 3454
Trace Elements in Marine Carbonates......Page 3455
The Isotopic Composition of Osmium in Seawater......Page 3457
The Isotopic Composition of Sulfur and Carbon in Seawater......Page 3458
A Brief Summary......Page 3459
References......Page 3461
Introduction......Page 3469
Pelagic Sediments......Page 3472
Equatorial Pacific......Page 3475
South Pacific......Page 3476
Central Indian Basin......Page 3478
Ferromanganese Nodules and Crusts......Page 3479
Equatorial Pacific Nodules......Page 3483
Seamount Ferromanganese Crusts from the Central Pacific......Page 3485
Metalliferous Ridge and Basal Sediments......Page 3486
Metalliferous Ridge Sediments......Page 3491
Marine Phosphorites......Page 3492
Conclusions......Page 3496
References......Page 3498
Introduction......Page 3504
Pore-water Sampling and Profiling......Page 3506
Organic Matter Decomposition in Sediments......Page 3507
Electron Acceptors for Sedimentary Organic Matter Oxidation......Page 3510
The Stoichiometry of Oxic Sedimentary Organic Matter Decomposition......Page 3512
The Depth Distribution of Organic Matter Oxidation in the Sediment Column......Page 3515
The Response Time for Organic Matter Oxidation......Page 3518
The Burial of Organic Matter in Marine Sediments......Page 3519
Particle Mixing in Surface Sediments: Bioturbation......Page 3520
CaCO3 Dissolution in Sediments......Page 3522
Metabolic Dissolution in Sediments above the Calcite Lysocline......Page 3523
Metabolic Dissolution and the Kinetics of Organic Matter Oxidation......Page 3524
Dissolved Silica Profiles in Pore Waters......Page 3525
Preservation Efficiency......Page 3527
Summary: Silica in Pore Waters and Sediments......Page 3528
References......Page 3529
General Overview of Sedimentary Marine Carbonates......Page 3533
Geochemistry of Major Sedimentary Carbonate Minerals......Page 3534
The CO2 System in Oceanic Waters......Page 3535
Sources and Sedimentation......Page 3536
Distribution of CaCO3 in Deep-sea Sediments......Page 3537
CaCO3 Diagenesis in Deep-sea Sediments......Page 3538
Sources of Shoal-water Carbonates......Page 3541
Early Marine Diagenesis of Shoal-water Carbonate-rich Sediments......Page 3543
References......Page 3548
Introduction......Page 3552
The Precipitation of Biogenic Silica......Page 3553
The Physical Properties of Biogenic Silica......Page 3554
Changes in Biogenic Silica Chemistry Occurring in the Water Column......Page 3555
Modeling Biogenic Silica Distributions and Pore-water Silicate Concentrations......Page 3556
Preservation of Biogenic Silica in the Seabed......Page 3558
Formation of Opal-CT and Chert......Page 3559
References......Page 3561
Introduction......Page 3564
Fundamental Difference between Precambrian and Phanerozoic Chert......Page 3565
Aspects of Inorganic Geochemistry of Silica......Page 3566
Association of Chert and Evaporite......Page 3567
Chert of Paleoproterozoic Iron Formation......Page 3568
Chert of Lake Superior-type Iron Formation......Page 3570
Archean Chert......Page 3571
Preservation of Oxygen Isotope Ratios in Precambrian Chert......Page 3572
Alternative Explanations for the Isotopic Composition of Precambrian Chert......Page 3574
Note Added in Proof......Page 3575
References......Page 3576
7.06 Geochemistry of Fine-grained Sediments and Sedimentary Rocks......Page 3579
Introduction......Page 3580
Conceptual Model---Processes......Page 3581
Detrital Flux......Page 3582
Biogenic Flux......Page 3583
Authigenic Flux......Page 3584
Carbon Cycle and Climate Feedback......Page 3585
Limitations of Proxy Data......Page 3586
Detrital Proxies......Page 3587
Biogenic Proxies......Page 3589
Authigenic Proxies......Page 3591
Geochemical Case Studies of Fine-grained Sediments and Sedimentary Rocks......Page 3596
Modern Anoxic Environments of OM Burial—Black Sea and Cariaco Basin......Page 3597
Cretaceous Western Interior Basin......Page 3599
Devonian Appalachian Basin......Page 3606
Recent Precambrian Advances......Page 3609
Discussion: a Unified View of the Geochemistry of Fine-grained Sediments and Sedimentary Rocks......Page 3610
References......Page 3612
Introduction......Page 3623
The realm of ‘‘Late Diagenesis’’......Page 3624
Physical Processes......Page 3625
Chemical Processes in Late Diagenesis......Page 3626
Detrital Feldspar Dissolution and Replacement......Page 3630
Dissolution of Detrital Quartz (Pressure Solution)......Page 3634
Illitization......Page 3635
Quartz Cement......Page 3636
Authigenic Calcite......Page 3638
Kaolinite and Chlorite......Page 3640
Summary: Massive Reorganization by Fluid-mediated Reactions......Page 3641
Whole-rock Elemental Data and Larger-scale Elemental Mobility......Page 3642
SiO2......Page 3643
Reverse Weathering and Concluding Comments......Page 3644
Acknowledgments......Page 3645
References......Page 3646
Introduction......Page 3655
Coal Formation......Page 3656
Peat Formation and Early Diagenesis......Page 3658
Coalification, Early Stage (Lignite, Brown Coal)......Page 3661
Coalification, Late Stage (Subbituminous, Bituminous, Anthracite)......Page 3664
Coal Rank......Page 3665
Structure of Coal......Page 3666
Liquid Hydrocarbons (Oil)......Page 3667
Natural Gas......Page 3668
Abundance of Elements......Page 3670
Mineralogy......Page 3672
Modes of Occurrence......Page 3673
Geochemistry of Coal Utilization......Page 3675
Coal Combustion......Page 3676
Human Health......Page 3679
Conclusions......Page 3680
References......Page 3681
Introduction......Page 3687
The Early Steps in Oil and Gas Formation: Where Does It All Begin?......Page 3688
Insoluble Organic Material---Kerogen......Page 3690
Soluble Organic Material......Page 3693
Source......Page 3695
Depositional Environments......Page 3696
Maturity......Page 3698
Biodegradation......Page 3700
Age Dating......Page 3701
Geochemistry and Sequence Stratigraphy......Page 3702
Highstand System Tract......Page 3703
Fluid Inclusions......Page 3704
Reservoir Geochemistry......Page 3705
Basin Modeling......Page 3707
Natural Gas......Page 3711
Surface Prospecting......Page 3713
Summary......Page 3714
References......Page 3715
Overview......Page 3721
Biochemistry of Bacterial Sulfate Reduction......Page 3722
Ecology of Sulfate-reducing Bacteria......Page 3723
Sulfur Isotopic Fractionation during Bacterial Reduction......Page 3725
Dissolved Species......Page 3727
Pyrite......Page 3728
Elemental Sulfur......Page 3729
Evidence from Experimental Studies......Page 3730
Depth Distribution of Diagenetic Sulfur Products......Page 3731
Controls on Sulfur Abundance......Page 3735
Overview......Page 3739
Isotopic Processes in the Upper (Bioturbated) Sediment Regime......Page 3740
Isotopic Processes in the Deeper Diffusion-dominated Sediment Regime......Page 3742
Ancient Marine Sediments......Page 3743
The Phanerozoic Time Period......Page 3744
Closing Statement......Page 3745
References......Page 3746
Chemical Fundamentals......Page 3753
Distribution of Manganese in Rocks and Natural Waters......Page 3757
Composition of Manganese Accumulations......Page 3758
Common Manganese Minerals......Page 3761
Behavior of Manganese in Igneous Settings, Especially Mid-ocean Ridge Vents......Page 3762
Manganese Nodules and Crusts in Modern Sediments......Page 3764
Manganese Carbonates in Modern Sediments......Page 3765
A General Model of Sedimentary Manganese Mineralization......Page 3766
Behavior of Manganese in Soils and Weathering......Page 3767
References......Page 3769
What are We Looking at?......Page 3773
The Cycle of Transformation......Page 3774
Potassic Green Clays (Mica-based Structures)......Page 3775
Ferrous, Green Clays......Page 3780
Nontronite......Page 3784
Shallow Ocean Bottom, Marine Green Clays-Glauconite and Berthierine......Page 3785
Diagenesis Reactions......Page 3786
References......Page 3787
Chronometry Based on the Fossil Record-First Steps......Page 3789
Refinements in Chronometry Using Fossils......Page 3794
Oil Recovery in California Using Fossil-based Chronometry......Page 3797
Principles of Chorology: the Science of the Distribution of Organisms......Page 3799
Constraints on Chronometry Imposed by Chorology......Page 3803
Radiochronometry......Page 3807
Magnetic Field Polarity And Chronometry......Page 3808
Orbital Chronometry......Page 3809
Aurichorology-The Golden Spikes and Global Statotype Section and Points......Page 3811
References......Page 3812
INTRODUCTION......Page 3814
Carbon Isotope Record......Page 3815
Oxygen Isotope Record......Page 3816
Late Ordovician......Page 3818
Late Devonian......Page 3821
Permian-Triassic......Page 3822
Triassic-Jurassic......Page 3823
Cretaceous-Tertiary......Page 3824
Paleozoic Suffocation......Page 3825
References......Page 3826
7.15 Evolution of Sedimentary Rocks......Page 3831
Population Dynamics......Page 3832
Generation and Recycling of the Oceanic and Continental Crust......Page 3834
Global Tectonic Realms and their Recycling Rates......Page 3835
Present-day Sedimentary Shell......Page 3836
Tectonic Settings and their Sedimentary Packages......Page 3837
Provenance......Page 3838
Transport Sorting......Page 3839
Trace Element and Isotopic Composition of Clastic Sediments......Page 3840
Tectonic Settings and Lithology......Page 3841
Chemistry......Page 3842
Isotopes......Page 3843
Sedimentary Recycling......Page 3844
Ocean/Atmosphere System......Page 3845
The Chemical Composition of Ancient Ocean......Page 3846
Isotopic Evolution of Ancient Oceans......Page 3847
Overall Pattern of Lithologic Types......Page 3858
Phanerozoic Carbonate Rocks......Page 3859
Geochemical Implications of the Phanerozoic Carbonate Record......Page 3863
References......Page 3864
8.01 The Early History of Life......Page 3870
Strangeness and Familiarity---The Youth of the Earth......Page 3871
Modeling---The Problem of Taking Fragments of Evidence and Rebuilding the Childhood of the Planet......Page 3872
The Power of Biology: The Infinite Improbability Drive......Page 3873
Building a Habitable Planet......Page 3874
When and Where Did Life Start?......Page 3876
The Archean Record......Page 3877
The Physical State of the Archean Planet......Page 3880
The Surface Environment......Page 3882
Origin of Life......Page 3883
RNA World......Page 3884
The Last Common Ancestor......Page 3886
A Hyperthermophile Heritage?......Page 3888
Location of Early Biomes......Page 3890
Methanogenesis: Impact on the Environment......Page 3891
Geological Settings of the Early Biomes......Page 3892
The Evolutionary Chain......Page 3894
Anoxygenic Photosynthesis......Page 3896
Oxygenic Photosynthesis......Page 3897
Archean Oxygen......Page 3898
The Ancestry of the Eucarya......Page 3899
Possible Settings for the Eukaryote Endosymbiotic Event......Page 3900
Water and Mud Stirring---Consequences......Page 3901
Methane......Page 3902
Feedback from the Biosphere to the Physical State of the Planet......Page 3903
References......Page 3904
Introduction......Page 3909
Life and Rocks......Page 3910
Mechanisms for Energy Conservation......Page 3911
Extant Patterns of Metabolism......Page 3913
Kinds of Phototrophs......Page 3914
Lithotrophic Energy Sources......Page 3915
Carbon Sources for Life......Page 3916
Fermentative and Respiratory Metabolism......Page 3917
Approaches Employing Genomics and Molecular Genetics......Page 3918
Approaches Employing Geochemical and Geophysical Methods......Page 3919
Overview......Page 3925
References......Page 3926
8.03 Sedimentary Hydrocarbons, Biomarkers for Early Life......Page 3930
Biomarkers as Molecular Fossils......Page 3931
Compound-specific Stable Isotopes......Page 3933
Biomarkers as Maturity Indicators......Page 3934
The Survival of Biomarkers with Increasing Temperature and Time......Page 3935
Experimental approaches to biomarker and kerogen analysis......Page 3937
n-Alkanes, Algaenans, and other Polymethylenic Biopolymers......Page 3938
Alkyl Cyclohexanes and Cyclopentanes......Page 3942
Isoprenoids......Page 3943
Carotenoids......Page 3946
Chlorophylls and Maleimides......Page 3951
Sesquiterpanes (C15) and Diterpanes (C20)......Page 3952
Hopanoids and other Pentacyclic Triterpanes......Page 3954
Steroid Hydrocarbons......Page 3958
Bacteria......Page 3961
Archaea......Page 3963
Eukarya......Page 3964
Marine versus Lacustrine Conditions......Page 3966
Paleotemperature and Paleolatitude Biomarkers......Page 3967
Biomarkers in the Proterozoic (0.54--2.5Ga)......Page 3968
Biomarkers Extracted from Archean Rocks (>2.5 Ga)......Page 3969
References......Page 3970
8.04 Biomineralization......Page 3983
Outline of the Chapter......Page 3984
Definitions and General Background on Biomineralization......Page 3985
Calcium Carbonates......Page 3986
Silica......Page 3990
Bioapatite......Page 3991
Iron Oxides and Hydroxides......Page 3993
Sulfur Biomineralization......Page 3995
Iron Biomineralization......Page 3997
Carbonate Biomineralization......Page 4000
Silica Biomineralization......Page 4011
Plant Biomineralization......Page 4018
Vertebrate Biomineralization......Page 4024
Summary: Why Biomineralize?......Page 4038
Chemical or Microbiomineralization Contributions......Page 4040
References......Page 4041
8.05 Biogeochemistry of Primary Production in the Sea......Page 4051
A Primer on Redox Chemistry......Page 4052
Chemoautotrophy......Page 4053
Selective Forces in the Evolution of Photoautotrophy......Page 4054
What are Photoautotrophs?......Page 4055
Estimating Chlorophyll Biomass......Page 4057
Estimating Net Primary Production......Page 4060
Quantum Efficiency of NPP......Page 4061
Export, New and ‘‘True New’’ Production......Page 4062
Steady-state versus Transient State......Page 4063
Nitrification......Page 4064
Balance between Net Primary Production and Losses......Page 4065
The Two Concepts of Limitation......Page 4067
The Evolution of the Nitrogen Cycle......Page 4068
Functional Groups......Page 4069
Calcium Carbonate Precipitation......Page 4070
Vacuoles......Page 4071
High-nutrient, Low-chlorophyll Regions-Iron Limitation......Page 4072
Linking Iron to N2 Fixation......Page 4073
Other Trace-element Controls on NPP......Page 4074
References......Page 4075
8.06 Biogeochemistry of Terrestrial Net Primary Production......Page 4080
What is NPP?......Page 4081
The General Biochemistry of NPP......Page 4082
The Basic Recipe for Carbon Gain......Page 4085
CO2 Limitation......Page 4086
Nitrogen Limitation......Page 4087
Water Limitation......Page 4088
Scaling of Carbon Gain......Page 4089
Scaling of Controls over GPP......Page 4090
Respiration......Page 4092
Photosynthesis, Respiration, and NPP: Who is In Charge?......Page 4093
Nutrient Use......Page 4094
Nutrient Requirements......Page 4095
Limitations by Different Nutrients......Page 4096
Stoichiometry of NPP......Page 4097
Uncoupling Mechanisms......Page 4098
Recoupling Mechanisms......Page 4101
Species Effects on Interactive Controls......Page 4103
Vegetation Effects on Resources......Page 4104
Species Effects on Disturbance Regime......Page 4105
Summary......Page 4106
References......Page 4107
Introduction......Page 4113
Composition of Decomposer Resources......Page 4115
Roots......Page 4116
Secondary Resources......Page 4117
Soil Organic Matter......Page 4118
Functional Ecology......Page 4120
Soil Microorganisms......Page 4122
Soil Fauna......Page 4125
Interactions......Page 4129
Litter Techniques......Page 4130
SOM Techniques......Page 4131
Detrital Processing......Page 4132
Time Course of Litter Decomposition......Page 4133
Leaching......Page 4135
Catabolism......Page 4137
Change in Nutrient Status......Page 4142
Priming Effect on Native SOM......Page 4144
Selective Preservation......Page 4145
Condensation Models......Page 4146
Control of Decomposition and Stabilization......Page 4147
Decomposer Organisms......Page 4148
Resource Quality......Page 4152
Soil Characteristics......Page 4155
Climate......Page 4160
Multiple Constraints......Page 4166
Modeling Approaches......Page 4167
Conclusions......Page 4169
References......Page 4170
8.08 Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes......Page 4181
Overview of Anaerobic Metabolism......Page 4183
Syntax of Metabolism......Page 4185
Phototroph (Photolithoautotrophy) Diversity and Metabolism......Page 4186
Chemotroph (Chemolithoautotrophy) Diversity and Metabolism......Page 4188
Decomposition and Fermentation......Page 4189
Polymer Degradation......Page 4190
Fermentation......Page 4192
Methane......Page 4196
Methane in the Environment......Page 4197
Methanogen Diversity and Metabolism......Page 4198
Regulation of Methanogenesis......Page 4199
Contributions of Acetotrophy versus Hydrogenotrophy......Page 4203
Anaerobic Methane Oxidation......Page 4206
Aerobic Methane Oxidation......Page 4208
Wetland Methane Emissions and Global Change......Page 4212
Nitrogen in the Environment......Page 4214
Respiratory Denitrification......Page 4215
Dissimilatory Nitrate Reduction to Ammonium (DNRA)......Page 4221
Alternative Pathways to N2 Production......Page 4223
Iron and Manganese in the Environment......Page 4226
Iron and Manganese Geochemistry......Page 4227
Microbial Reduction of Iron and Manganese......Page 4228
Factors that Regulate Fe(III) Reduction......Page 4230
Microbial Oxidation of Iron and Manganese......Page 4235
Iron Cycling......Page 4237
Sulfur Geochemistry......Page 4238
Microbial Reduction of Sulfate......Page 4239
Taxonomic Considerations......Page 4241
Factors Regulating Sulfate Reduction Activity......Page 4243
Microbial Reduction of Sulfur......Page 4245
Disproportionation......Page 4246
Sulfur Gases......Page 4247
Microbial Oxidation of Sulfur......Page 4250
Evidence of Competitive Interactions......Page 4253
Mechanisms of Competition......Page 4254
Contributions to Carbon Metabolism......Page 4255
References......Page 4256
Introduction......Page 4289
The Carbon Cycle over Geologic Timescales......Page 4290
Timescales of Carbon-cycle Change......Page 4298
The Quaternary Record of Carbon-cycle Change......Page 4299
Analysis of CO2 and CH4 in Ice Cores......Page 4300
Holocene Carbon-cycle Variations......Page 4304
Glacial/interglacial Carbon-cycle Variations......Page 4308
Mechanisms of Gradual Geologic Carbon-cycle Change......Page 4316
Model Simulations of Gradual Geologic Carbon-cycle Change......Page 4319
Geologic Evidence for Phanerozoic Atmospheric CO2 Concentrations......Page 4321
Abrupt Carbon-cycle Change......Page 4323
The Precambrian Record of Carbon-Cycle Change......Page 4324
References......Page 4325
Introduction......Page 4337
Reservoirs......Page 4338
The Natural Flows of Carbon......Page 4341
Changes Over the Period 1850-2000......Page 4344
Changes Over the Period 1980-2000......Page 4351
Terrestrial Mechanisms......Page 4361
Oceanic Mechanisms......Page 4369
Terrestrial......Page 4370
Conclusion......Page 4371
References......Page 4372
Introduction......Page 4378
The Oceans......Page 4379
Freshwater Environments......Page 4382
Photosynthesis......Page 4383
Aerobic Cellular Respiration......Page 4385
Macroscale Patterns of Aerobic Respiration......Page 4386
Mineral Oxidation......Page 4387
Iron and Sulfur Oxidation at the Oxic-Anoxic Transition......Page 4388
Early Models......Page 4389
The Archean......Page 4391
The Proterozoic Atmosphere......Page 4396
Phanerozoic Atmospheric O2......Page 4402
Conclusions......Page 4413
References......Page 4415
Introduction......Page 4419
The Initial Reaction: Nr Creation......Page 4421
Atmosphere......Page 4422
Nitrogen Reservoirs and Their Exchanges......Page 4424
Terrestrial BNF-Natural......Page 4425
Anthropogenic......Page 4426
Nr Creation Rates from 1860 to 2000......Page 4428
Introduction......Page 4429
Nr Creation......Page 4430
Nr Distribution......Page 4431
Nr Conversion to N2......Page 4432
Global Marine Nitrogen Budget......Page 4433
Regional Nitrogen Budgets......Page 4434
Introduction......Page 4437
Terrestrial Ecosystems......Page 4438
Aquatic Ecosystems......Page 4439
Future......Page 4440
References......Page 4442
Introduction......Page 4446
The Terrestrial Phosphorus Cycle......Page 4448
Transport of Phosphorus from Continents to the Ocean......Page 4452
The Marine Phosphorus Cycle......Page 4453
Phosphorus Cycling in Terrestrial Ecosystems and Soils......Page 4454
Phosphorus Cycling in Terrestrial Aquatic Systems: Lakes, Rivers and Estuaries......Page 4455
Biogeochemistry and Cycling of Phosphorus in the Modern Ocean......Page 4458
Phosphorus Cycling Over Long,Geologic Timescales......Page 4491
References......Page 4494
8.14 The Global Sulfur Cycle......Page 4505
Isotopes......Page 4506
Chemistry......Page 4507
Sulfur in the Cosmos......Page 4510
Sulfur on the Early Earth......Page 4511
The Geological History of Sulfur......Page 4513
Utilization and Extraction of Sulfur Minerals......Page 4514
Deep-sea Vents......Page 4515
Crater Lakes......Page 4516
Origin of Life......Page 4517
Sulfur Biomolecules......Page 4518
Hydrogen Sulfide......Page 4519
Organosulfides......Page 4520
Surface and Groundwaters......Page 4522
Marine Sediments......Page 4523
Soils and Vegetation......Page 4524
Hydrogen Sulfide......Page 4525
Carbonyl Sulfide......Page 4526
Dimethyl Sulfide......Page 4527
Dimethylsulfoxide and Methanesulfonic Acid......Page 4528
Sulfur Dioxide......Page 4529
Deposition......Page 4531
Combustion Emissions......Page 4532
Acid Rain......Page 4533
Water and Soil Pollutants......Page 4534
Radiation Balance and Sulfate Particles......Page 4535
Aircraft......Page 4536
Conclusions......Page 4537
References......Page 4539
9.01 Groundwater and Air Contamination: Risk, Toxicity, Exposure Assessment, Policy, and Regulation......Page 4543
Typical Risks Encountered—Natural and Anthropogenic......Page 4544
Examples of Contaminated Sites and Potential Risk Exposure Pathways......Page 4545
Risk-based Corrective Actions......Page 4546
Sources, Pathways, and Receptors: The Fundamental Algorithm for Risk Assessments......Page 4547
Contaminant Surrogate Analysis......Page 4548
Estimating Exposure Concentrations......Page 4549
Estimating Chemical Intake......Page 4550
Overview of Human Health Toxicology......Page 4551
Quantifying Noncarcinogenic Risk: Reference Dosages......Page 4552
Quantifying Carcinogenic Risk: Slope Factors......Page 4553
Determination of Noncarcinogenic Risk......Page 4554
Source Characterization......Page 4555
Evaluating Uncertainty......Page 4556
References......Page 4557
9.02 Arsenic and Selenium......Page 4559
Introduction......Page 4560
Water......Page 4562
Arsenic......Page 4564
Selenium......Page 4566
Quality Control and Standard Reference Materials......Page 4567
Abundance in Rocks, Soils, and Sediments......Page 4568
Abundance and Distribution in Natural Waters......Page 4569
Arsenic Species in Natural Waters......Page 4575
Microbial Controls......Page 4577
Release from Primary Minerals......Page 4578
Role of Secondary Minerals......Page 4579
Adsorption of Arsenic by Oxides and Clays......Page 4580
Arsenic Transport......Page 4581
Case Studies......Page 4582
Abundance in Rocks, Soils, and Sediments......Page 4587
Abundance and Distribution in Natural Waters......Page 4589
Selenium Species in Water, Sediment, and Soil......Page 4591
Adsorption of Selenium by Oxides and Clays......Page 4593
Selenium Transport......Page 4594
Case Studies......Page 4596
References......Page 4600
Metals: Pb, Zn, Cd, Cr, Cu, Ni......Page 4609
Sources of Metals......Page 4610
Source and Pathways......Page 4611
Geochemical Properties and Major Solute Species......Page 4613
Occurrence in Rocks, Soils, Sediments, Anthropogenic Materials......Page 4617
Geochemical Phase Associations in Soils and Sediments......Page 4618
Historical Heavy Metal Fluxes to the Atmosphere......Page 4622
Perturbed Heavy Metal Cycles......Page 4623
Global Emissions of Heavy Metals......Page 4625
US Emissions of Heavy Metals......Page 4626
Paleolimnological Approach......Page 4629
Age Dating......Page 4631
Selected Reconstructed Metal Trends......Page 4632
References......Page 4642
9.04 Geochemistry of Mercury in the Environment......Page 4648
Introduction......Page 4649
The Global Mercury Cycle......Page 4651
Solid Earth Abundance and Distribution......Page 4653
Minable Deposits......Page 4654
Volcanic Mercury Emissions......Page 4655
Mercury Input to the Oceans via Submarine Volcanism......Page 4658
Low-temperature Volatilization......Page 4659
Mining......Page 4660
Watersheds and Legacy Mercury......Page 4661
Atmospheric Cycling and Chemistry of Mercury......Page 4662
Aquatic Biogeochemistry of Mercury......Page 4665
Environmental Mercury Methylation......Page 4668
Removal of Mercury from the Surficial Cycle......Page 4673
Models of the Global Cycle......Page 4675
METAALICUS......Page 4677
Tracing Atmospheric Mercury with 210Pb and Br......Page 4678
Mercury and Organic Matter Interactions......Page 4679
Summary......Page 4680
References......Page 4681
9.05 The Geochemistry of Acid Mine Drainage......Page 4690
Overview of the Mining Process and Sources of Low-quality Drainage......Page 4691
Coal......Page 4692
Base-metal Deposits......Page 4694
Precious-metal Deposits......Page 4695
Pyrite Oxidation......Page 4696
Pyrrhotite Oxidation......Page 4699
Oxidation of Other Metal Sulfides......Page 4700
Bacteria and Sulfide-mineral Oxidation......Page 4702
Mechanisms of Acid Neutralization......Page 4707
Soluble Sulfates: Other Elements......Page 4710
Metal Oxides and Hydroxides......Page 4711
Carbonate Minerals......Page 4712
Secondary Sulfides......Page 4713
Underground Workings......Page 4714
Open Pits......Page 4716
Waste-rock Piles......Page 4717
Coal-mine Spoils......Page 4720
Tailings Impoundments......Page 4721
Laboratory Static Procedures......Page 4724
Laboratory Dynamic Procedures......Page 4725
Geochemical Models......Page 4726
Reactive Solute-transport Models......Page 4727
Uptake and Bioaccumulation......Page 4728
Toxicity of Oxidation Products......Page 4729
Approaches for Remediation and Prevention......Page 4730
Controls on Sulfide Oxidation......Page 4731
Passive Remediation Techniques......Page 4734
References......Page 4736
9.06 Environmental Geochemistry of Radioactive Contamination......Page 4746
Approach and Outline of Chapter......Page 4747
The Nature and Hazards of Radioactive Environmental Contamination......Page 4748
Sources of Radioactivity......Page 4749
Exposure to Background and Anthropogenic Sources of Radioactivity......Page 4754
Health Effects and Radioactive Contamination......Page 4755
Principles and Methods......Page 4757
Results of Radionuclide Solubility, Speciation, and Sorption Studies......Page 4766
Other Topics......Page 4778
Short-term Behavior of Radionuclides in the Environment---Contamination from the Chernobyl Reactor Accident......Page 4783
Natural Analogues for the Long-term Behavior of Radionuclides in the Environment---The Oklo Natural Reactor......Page 4785
Remediation......Page 4786
Geochemical Models in Risk Assessment......Page 4788
Summary---Challenges and Future Research Needs......Page 4789
References......Page 4791
9.07 The Medical Geochemistry of Dusts, Soils, and Other Earth Materials......Page 4804
Earth Materials Linked to Human Health......Page 4805
Overview of the Health Effects of Earth Materials......Page 4806
Routes of Exposure......Page 4813
Toxicokinetics (ADME) and Bioavailability......Page 4816
Blood Plasma......Page 4821
Interstitial Fluids......Page 4826
Gastrointestinal Fluids......Page 4827
Sweat......Page 4828
Methods used to assess the interactions of earth materials with, and their toxic effects upon, the human body......Page 4829
Earth Materials in a Biosolubility and Bioreactivity Context......Page 4830
Asbestos, Erionite, and Other Fibrous Materials......Page 4831
Factors Influencing the Health Effects of Biodurable Minerals......Page 4832
Mining Wastes, Tailings, Smelting By-products......Page 4836
Volcanic Ash, Gases, and Vog......Page 4840
Dust from Owens Lake, California, and Other Dry Lake Beds......Page 4841
Soils......Page 4842
Dusts Generated by the World Trade Center Collapse......Page 4843
Summary......Page 4845
References......Page 4846
Nomenclature......Page 4852
Aspects of Worldwide Concern over Eutrophication......Page 4853
Indicators of Eutrophication and Sampling Methods......Page 4854
Natural Eutrophication......Page 4855
Cultural Eutrophication: Case Studies......Page 4856
Lake Washington......Page 4859
Lake Erie......Page 4860
Lake Tahoe......Page 4862
Lago Maggiore......Page 4863
Lake Victoria......Page 4864
Chesapeake Bay......Page 4866
Control of Diffuse (Nonpoint) Nutrient Sources......Page 4868
Control of Internal Nutrient Sources......Page 4869
References......Page 4870
Introduction......Page 4873
River Salinization......Page 4874
Lake Salinization......Page 4876
Seawater Intrusion......Page 4881
Mixing with External Saline Waters......Page 4882
Salinization of Dryland Environment......Page 4886
Urban Environment and Sewage Salinization......Page 4888
Agricultural Drainage and the Unsaturated Zone......Page 4889
Soil Salinization......Page 4891
Wetland Salinization......Page 4892
Elucidating the Sources of Salinity......Page 4893
Remediation and the Chemical Composition of Treated Water Resources......Page 4897
References......Page 4899
9.10 Acidification and Acid Rain......Page 4906
How Do We Describe Acidification?......Page 4907
Has Long-term Acidification Occurred?......Page 4911
What Controls Long-term Acidification?......Page 4913
The Chemistry of Weathering-Long-term Control of Acidification......Page 4915
High Discharge from Snowmelt and Rain......Page 4918
Marine Aerosols......Page 4919
Neutralization of Episodic and Longer-term Acidity......Page 4920
Release of Aluminum and Other Metals......Page 4921
Nutrient Availability......Page 4922
Effects of Climate on Acidification......Page 4923
CO2......Page 4924
Biological Feedbacks......Page 4925
Acidification Trajectories through Time......Page 4926
Longitudinal Acidification......Page 4927
British Isles......Page 4928
South America......Page 4929
Experimental Acidification of Terrestrial Ecosystems......Page 4930
Experimental Acidification of Streams......Page 4931
Nutrient Additions to Eliminate Excess NO3......Page 4932
Steady-state Models......Page 4933
Dynamic Models......Page 4934
Chemical Recovery from Anthropogenic Acidification......Page 4935
References......Page 4938
Introduction......Page 4946
Primary and Secondary Pollutants......Page 4947
Ozone......Page 4948
Particulates......Page 4952
Environmental and Health Impacts......Page 4954
Long-term Trends in Ozone and Particulates......Page 4955
Ozone......Page 4956
Chemistry of Aerosols......Page 4960
Dynamics......Page 4961
Ozone and Temperature......Page 4963
New Directions: Evaluation Based on Ambient Measurements......Page 4964
References......Page 4967
Scope of the Problem......Page 4971
Petroleum Chemical Composition......Page 4974
Ecological Concerns and Human Exposure Pathways......Page 4978
Petroleum Exploration, Production, and Processing......Page 4980
Petroleum Transportation and Storage......Page 4982
Petroleum Usage......Page 4983
Transport Processes......Page 4984
Abiotic Transformations......Page 4991
Biotic Transformations......Page 4992
Natural Attenuation Processes......Page 5000
Engineered or Enhanced Remediation......Page 5004
Challenges......Page 5005
References......Page 5006
Introduction......Page 5013
Scope of Review......Page 5016
Petrogenic Hydrocarbons......Page 5017
Pyrogenic Sources of HMW Hydrocarbons......Page 5020
Pathways......Page 5024
Fate......Page 5025
Sorption......Page 5026
Volatilization......Page 5028
Photochemical Reactions......Page 5029
Biodegradation......Page 5030
Carbon Isotope Geochemistry......Page 5033
Carbon Isotope Variations in PAH Sources......Page 5034
Weathering and Isotopic Composition......Page 5036
Isotopic Source Apportionment of PAHs in St. John’s Harbor: An Example......Page 5038
Synthesis......Page 5041
References......Page 5042
Introduction......Page 5048
Persistent Organic Pollutants......Page 5049
Biogenic Pollutants and Anthropogenic Non-POPs......Page 5051
Adsorbable Organic Halogens......Page 5052
Aryl Halides......Page 5054
Phase Partitioning......Page 5056
Ecological Considerations......Page 5057
Matrix Interactions......Page 5060
Microbial Reactivity......Page 5061
Surface-mediated Reactivity......Page 5064
Organic-matter-mediated Reactivity......Page 5065
Predictive Models: Structure–Reactivity Relationships......Page 5066
Implications for Environmental Cycling of Halogenated Hydrocarbons......Page 5067
Knowledge Gaps and Fertile Areas for Future Research......Page 5070
References......Page 5071
Nomenclature......Page 5077
Scope of This Review......Page 5078
Variations in Pesticide Use over Time and Space......Page 5079
Overview of Persistence in the Hydrologic System......Page 5080
Partitioning among Environmental Matrices......Page 5081
Partitioning between Soils, Sediments, and Natural Waters......Page 5082
Partitioning between Aquatic Biota and Natural Waters......Page 5085
Partitioning between the Earth’s Surface and the Atmosphere......Page 5086
Transformations......Page 5087
Neutral Reactions......Page 5089
Electron-transfer Reactions......Page 5092
Governing Factors......Page 5093
Effects of Transformations on Environmental Transport and Fate......Page 5105
Acknowledgments......Page 5106
References......Page 5107
Introduction......Page 5114
Source and Leachate Composition......Page 5115
Spreading of Pollutants in Groundwater......Page 5117
Redox Environments and Redox Buffering......Page 5119
Microbial Activity and Redox Processes......Page 5122
Dissolved Organic Matter, Inorganic Macrocomponents, and Heavy Metals......Page 5124
Xenobiotic Organic Compounds......Page 5125
Landfill Leachate Plume......Page 5127
Source, Geology and Hydrogeology......Page 5134
Landfill Leachate Plume......Page 5136
Monitored Natural Attenuation......Page 5141
Engineered or Enhanced Remediation......Page 5142
Future Challenges and Research Topics......Page 5143
References......Page 5144
Appendix 1. Periodic Table of the Elements......Page 5148
Appendix 2. Table of Isotopes......Page 5149
Appendix 3. The Geologic Timescale......Page 5153
Appendix 4. Useful Values......Page 5154
Back Cover......Page 5155
LinkToy : )~......Page 0




نظرات کاربران