دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Anirudh Singh (editor)
سری:
ISBN (شابک) : 3030302105, 9783030302108
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 327
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Translating the Paris Agreement into Action in the Pacific (Advances in Global Change Research, 68) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تبدیل توافق پاریس به اقدام در اقیانوس آرام (پیشرفت ها در تحقیقات تغییر جهانی، 68) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بینشی را در مورد چگونگی کمک یک کشور به کاهش انتشار گازهای گلخانه ای مورد نیاز برای حفظ گرمایش جهانی در محدوده تعیین شده توسط توافق نامه پاریس ارائه می دهد که در COP21 در سال 2015 وارد شد. اقداماتی برای طرح اجرایی مورد نیاز است که فیجی برای برآوردن سهمیه خود (یعنی سهم تعیین شده ملی یا NDC) از کل کاهش انتشار گازهای گلخانه ای استفاده خواهد کرد.
این یک منبع اولیه است. مطالبی برای کسانی که مایلند درکی از علم کاهش تغییرات آب و هوا به دست آورند. این اقدام پشت صحنه ای را نشان می دهد که برای تبدیل لفاظی تغییرات آب و هوایی به اقدامی روی زمین انجام می شود که در واقع انتشار گازهای گلخانه ای و گرم شدن کره زمین را کاهش می دهد. این کتاب همچنین نقدی از روشهای اتخاذ شده توسط کشورها برای برآورده کردن NDCهای خود برای کاهش انتشار گازهای گلخانهای طبق توافقنامه پاریس ارائه میکند و پیشرفتهایی را پیشنهاد میکند.
This book provides an insight into how a country contributes to the GHG emissions reductions required to keep global warming within the limits set by the Paris Agreement arrived at COP21 in 2015. It shows what actions are needed for the implementation plan that Fiji will use to satisfy its quota (i.e. its Nationally Determined Contribution or NDC) of the total GHG emissions reductions.
It is a primary resource material for those who wish to obtain an understanding of the science behind climate change mitigation. It reveals the behind-the-scenes action that takes place to convert the rhetoric of climate change into the action on the ground that actually reduces the GHG emissions and global warming. The book also presents a critique of methods adopted by nations in meeting their NDCs to emissions reductions as agreed at the Paris Agreement, and suggests improvements.
Foreword Introduction Contents Part I: Introductory Concepts and Techniques Chapter 1: Estimating Greenhouse Gas Emissions in the Pacific Island Countries 1.1 Introduction 1.2 Energy Sector 1.2.1 Estimating Emissions from the Energy Sector 1.2.1.1 Stationary Combustion Sub-Sector 1.2.1.2 Mobile Combustion Sub Sector 1.2.2 Uncertainties in Energy Sector Estimation 1.3 Agriculture, Forestry and Other Land Use (AFOLU) Sector 1.3.1 Estimating Emissions from Forestry and Other Land Use 1.3.2 Estimating Emissions from the Agricultural Activities 1.3.2.1 Enteric Fermentation 1.3.2.2 Manure Management 1.3.2.3 Rice Cultivation 1.3.2.4 Synthetic Fertilizers 1.3.3 Uncertainties in the Agriculture Sector 1.4 Industrial Processes and Product Use (IPPU) 1.4.1 Uncertainties in the IPPU Sector 1.5 Waste Sector 1.5.1 Estimating Methane Emissions from the Solid Waste Disposal Sites 1.5.1.1 IPCC 2006 Waste Model 1.5.1.2 LandGEM Model 1.5.2 Estimating Methane Emissions from the Wastewater Treatment 1.5.3 Uncertainties in the Waste Sector 1.6 Conclusion References Chapter 2: Mitigating Through Renewable Energy: An Overview of the Requirements and Challenges 2.1 Introduction: Why Renewable Energy? 2.2 Requirements for Renewable Energy 2.2.1 Discovering the Requirements 2.2.2 Renewable Energy Resource Requirements 2.2.3 Human Resource Requirements 2.2.4 Science and Technology Infrastructure 2.2.5 Institutional Capacity 2.2.6 Policy and Legislation 2.2.7 Finance 2.3 Capacity Building 2.3.1 Market-Readiness of Technology 2.4 The Challenges 2.4.1 Differential Ability to Meet the Requirements 2.4.2 Lack of Capacity 2.4.3 Attracting New Players 2.4.4 Assessment of RE as a Mitigating Agent 2.5 Summary and Conclusions References Chapter 3: Modeling and Forecasting Renewable Energy Resources for Sustainable Power Generation: Basic Concepts and Predictive Model Results 3.1 Introduction 3.2 Basic Important Definitions/Concepts 3.3 General Predictive Model Development and Forecasting Process 3.3.1 Statistical Model Evaluation Metrics 3.4 Brief Theory of Forecast Algorithms 3.4.1 Artificial Neural Network (ANN) 3.4.2 Multiple Linear Regressions (MLR) 3.5 Wind Speed Forecasting Case Study 3.5.1 Study Site 3.5.2 Outcomes of the Case Study 3.6 Summary and Conclusions References Chapter 4: Life Cycle Analysis as a Tool in Estimating Avoided Emissions 4.1 Introduction 4.2 A Simple Case Study 4.3 Introduction to the Stages of LCA 4.4 Goal and Scope Definition 4.4.1 The Goal of an LCA 4.4.2 The Scope of an LCA 4.4.2.1 The Function of the Product 4.4.2.2 The Functional Unit 4.4.2.3 Reference Flow 4.4.2.4 System Boundary 4.5 Inventory Analysis and Life Cycle Inventory (LCI) 4.6 Life Cycle Impact Assessment (LCIA) 4.7 LCA Analysis Software 4.7.1 OpenLCA 4.7.1.1 Modelling in openLCA 4.7.2 Simapro References Part II: Mitigation Actions Chapter 5: An Assessment of the Hydro Potential for Viti Levu, Fiji Using GIS Techniques 5.1 Introduction 5.1.1 The Power Scenario in Fiji 5.1.2 Grid-Electricity Demand Trend 5.1.3 Current Energy Situation for Fiji 5.1.4 Main Challenges and Gaps in Energy Sector 5.1.5 EFL’s Future Power Development Projects 5.1.6 Energy Demand and Fossil Fuel Importation for Fiji 5.1.7 GIS Technologies for Hydropower Survey 5.1.8 Study Location 5.1.9 Status and Investments in Hydropower Technology 5.2 Hydropower Site Surveys in Fiji by FDoE 5.2.1 Methodology for the Identification of Suitable Hydropower Sites 5.2.1.1 GIS Modeling Technique 5.2.1.2 Digital Elevation Model (DEM) 5.2.1.3 Identification of Suitable Hydropower Site 5.2.2 Catchment Delineation 5.2.3 Selection of Hydrological Model 5.2.4 Assessment of Flow Rates 5.2.4.1 SWAT Hydrological Model 5.2.4.2 Calibration, Validation and Evaluation of Model 5.2.4.3 Evaluation of Model 5.2.4.4 Flow Duration Curve 5.2.5 Potential Head Drop Estimation 5.2.6 Hydropower Potential Calculation 5.2.7 Preliminary Results of Hydro Potential Sites Based on Suitability Map 5.2.7.1 GIS Based Preliminary Maps Representing Areas of Suitable Hydropower Sites 5.3 Conclusion References Chapter 6: Waste to Energy: Biogas from Municipal Solid Waste for Power Generation 6.1 Introduction 6.2 Biogas Production and Technology 6.3 Electricity Generation Capacity of Biogas Produced from OFMSW at Vunato Disposal Site 6.3.1 OFMSW of Waste Disposed at Vunato 6.3.2 Estimation of Electricity Generation Potential of Biogas Produced from OFMSW at Vunato: Scenario 1 6.3.2.1 Sensitivity Analysis 6.4 Comparison of Electricity Generation Between Anaerobic Digestion and Incineration Technologies for OFMSW at Vunato 6.4.1 Power Generation Through MSW Incineration: Scenario 2 6.4.2 Power Generation Through Anaerobic Digestion and Incineration of OFMSW: Scenario 3 6.5 Avoided Carbon Emissions 6.6 Barriers and Challenges 6.7 Discussion 6.8 Conclusion References Chapter 7: Viability of Commercial On-Shore Wind Farm Sites in Viti Levu, Fiji 7.1 Introduction 7.2 Background 7.2.1 Energy Situation in Fiji 7.2.2 Wind Power Generation in Fiji 7.2.2.1 Butoni Wind Farm Installation 7.2.2.2 Status of Power Generation 7.3 Methodology 7.3.1 Study Site and Wind Speed Statistics 7.3.2 Probability Distribution Curves of Wind Speed Using MLE 7.3.3 Error Evaluation for Best Curve Fit 7.3.3.1 AIC and BIC 7.3.4 Wind Direction Analysis 7.3.5 Selected Best Fit PDF for Capacity Factor (CF) Equation 7.3.6 Technical Aspects 7.3.7 Economic Evaluation 7.3.8 Avoided Emissions 7.4 Results and Discussions 7.5 Conclusions References Chapter 8: Solar Energy for Power Generation in Fiji: History, Barriers and Potentials 8.1 Introduction 8.2 Review of Solar PV Development in Fiji 8.2.1 Solar Home System (SHS) 8.2.2 Solar PV in Off-Grid Island Resorts 8.2.3 Solar PV Mini-grids for Remote Islands 8.2.4 Solar PV for Nursing Stations and Telecommunications 8.2.5 Solar PV Grid Connected System 8.2.6 Solar PV for Electric Vehicle Charge 8.2.7 Solar PV for Streetlights and Jetty Lights 8.3 Development Plans 8.4 Solar PV and Sustainable Development 8.5 Barriers and Challenges 8.5.1 Institutional 8.5.2 Natural Disasters 8.5.3 Technical 8.5.4 Absence of Attractive Tariff for Solar PV Electricity Suppliers to Grid 8.5.5 Lack of Streamline Processes for Starting Up a New Business 8.5.6 Financing Opportunities for New Sustainable Energy Companies 8.6 An Assessment of Solar Electricity Generation Potential for Fiji and Its Potential for Avoided Emission 8.6.1 Method 1: Theoretical Solar Electricity Generation Potential and Its Avoided Emissions 8.6.1.1 Potential Avoided Emissions 8.6.2 Method 2: Solar Electricity Generation Potential with Other Renewable Energy Generation Using LEAP Tool 8.6.2.1 Fiji’s Grid Electricity Model 8.6.2.2 New Solar PV with New Hydro, Biomass, Wind and Geothermal Electricity Generation Technologies 8.6.2.3 Potential Avoided Emissions 8.7 Discussion 8.8 Conclusions References Chapter 9: A Life Cycle Analysis of the Potential Avoided Emissions from Coconut Oil-Based B5 Transportation Fuel in Fiji 9.1 Introduction 9.2 Methodology 9.3 Potential of Local Biodiesel Production 9.4 Scenario Development for a Future Copra Industry 9.5 System Boundary for the LCA Study 9.6 Estimation of Inputs and Results 9.6.1 Coconut Plantation 9.6.2 Transportation of Copra from Plantation to Mill 9.6.3 Palm Oil Production in Coconut Mill 9.6.4 Coconut Methyl Ester (CME) Production in Biodiesel Plant 9.6.4.1 Methanol Production and Import Methanol Production Methanol Import 9.6.4.2 Sodium Hydroxide Use 9.6.4.3 Energy Requirements 9.6.5 Reference System: Automotive Diesel Oil 9.6.5.1 Diesel Production Phase 9.6.5.2 Diesel Shipping Phase 9.6.5.3 Diesel Combustion Phase 9.7 Estimation of Avoided Emissions 9.7.1 Avoided Emissions for Case A: Emissions Considering CME Production Without LCA 9.7.2 Avoided Emissions for Case B: Considering Emissions Due to CME Production and Use 9.8 Discussion 9.9 Conclusion References Chapter 10: Pongamia Biodiesel Production Potential in Vanua Levu: A Full LCA of Emissions Reduction 10.1 Introduction 10.2 Assessment of Climatic Suitability 10.3 Soil Assessment for Pongamia Farming 10.4 Classes of Land Area in Vanua Levu for Agriculture and Forestry 10.5 Categories of Land Ownership in Vanua Levu 10.6 Site Availability for Pongamia Farming 10.7 Assessment of Seed Requirement to Establish Pongamia Farms on Total Available Land 10.8 Production Potential of Pongamia Oil from Total Available Land Area and from Existing 154 ha of Pongamia Farms 10.9 Indigenous Ethanol Production as a Feedstock for Biodiesel 10.10 Life Cycle Assessment (LCA) of Pongamia Biodiesel Production 10.10.1 Goal and Scope of Work 10.10.2 Life Cycle Inventory 10.10.3 Life Cycle Impact Assessment 10.10.3.1 Global Warming Potential (GWP) 10.10.3.2 Acidification Potential (AP) and Eutrophication Potential (EP) in Air 10.11 Conclusions References Chapter 11: Economic Viability of Jatropha Biodiesel Production on Available Land in the Island of Viti Levu 11.1 Introduction 11.2 Jatropha Agronomics 11.2.1 Profiling and Propagation 11.2.2 Harvesting and Harnessing 11.2.3 Yield 11.3 Jatropha Biodiesel (Jatropha Methyl Ester: JME) 11.3.1 JME Production 11.4 The Potential for Jatropha Production on Viti Levu 11.4.1 Geography 11.4.2 Rainfall 11.4.3 Slope 11.4.4 Temperature 11.4.5 Altitude 11.4.6 Drainage 11.5 Production Potential 11.5.1 Geographic Information System (GIS) Analysis 11.5.2 Suitable Residual Land 11.5.3 Capacity 11.6 Jatropha Economics 11.6.1 Stability Status 11.6.2 Total Capital Investment (TCI) 11.6.3 Total Variable Cost (TVC) 11.6.4 Total Production Cost (TPC) 11.6.5 The Return 11.6.6 Sensitivity Analysis of Total Production Cost 11.6.6.1 Case A: JEE 11.6.6.2 Case B: Micro Emulsion 11.6.6.3 Case C: Pure Oil 11.7 Diesel Displacement 11.8 Net Avoided Emissions and Carbon Sequestration 11.9 Conclusion References Chapter 12: Potential for Biobutanol Production in Fiji from Sugarcane and Timber Industry Residues: Contribution to Avoided Emissions 12.1 Introduction- Background to Fiji’s Biofuel Industry 12.2 Biobutanol as an Alternative Fuel for Transportation and Power Generation 12.2.1 Advantages of Using Butanol as a Fuel 12.2.2 Pretreatment 12.2.3 Pretreatment Methods 12.2.3.1 Physical (Mechanical Comminution) 12.2.3.2 Alkali Pretreatment 12.2.3.3 Dilute Acid Pretreatment 12.2.3.4 Steam Explosion 12.2.3.5 Autohydrolysis 12.2.3.6 Liquid Hot Water Pretreatment (LHW) 12.2.4 Enzymatic Hydrolysis 12.2.5 Fermentation 12.3 Production and Yield of Bio-Butanol 12.3.1 Methodology 12.3.1.1 Compositional Analysis of Raw Sugarcane Bagasse and Hog Fuel 12.3.1.2 Pretreatment of the Feedstock 12.3.1.3 Enzymatic Hydrolysis of Feedstock After Pretreatment 12.3.1.4 Fermentation 12.3.2 Analysis 12.3.2.1 Sugar Analysis 12.3.2.2 Acid Analysis 12.3.2.3 Acetone, Butanol and Ethanol Analysis 12.3.2.4 Statistical Analysis 12.4 Results and Discussion 12.4.1 Compositional Analysis of Raw Lignocellulosic Feedstocks 12.4.2 Dilute Acid Pretreatment 12.4.3 Enzymatic Hydrolysis 12.4.4 Fermentation of Substrates 12.4.5 Availability of Agro-Industrial Feedstock in Fiji 12.5 Estimation of Annual Butanol Production Capacity in Fiji Using Agro-Industrial Residues 12.5.1 Butanol from Bagasse as per Values Obtained from This Study 12.5.2 Butanol from Molasses as per Values from Literature 12.5.3 Butanol from Sugarcane Trash 12.5.3.1 Assumptions 12.5.3.2 Sample Calculations 12.5.4 Butanol from Hog Fuel 12.5.5 Contribution to Emission Reduction 12.6 Summary and Conclusion References Part III: Outcomes Chapter 13: Summary of Outcomes and Implications for the Fiji NDC Implementation Roadmap 13.1 Introduction 13.2 Summary of Outcomes 13.2.1 Hydropower 13.2.2 Solid Biomass and WTE for Power Generation 13.2.3 Viability of Onshore Wind Farms 13.2.4 Solar Energy for Power Generation 13.2.5 Coconut Oil as a Source of Transportation Fuel 13.2.6 Second Generation Feedstocks for Biodiesel Production 13.2.7 Bio-Butanol as a Fuel Additive for Petrol Engine Fuels 13.3 A Critique of the Present Energy Strategies and Implications on the Roadmap 13.4 Recommendations