دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک ویرایش: نویسندگان: Zhikang Shuai سری: ISBN (شابک) : 9789811584022 ناشر: Springer سال نشر: 2020 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 52 مگابایت
در صورت تبدیل فایل کتاب Transient Characteristics, Modelling and Stability Analysis of Microgird به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ویژگی های گذرا، مدل سازی و تحلیل پایداری ریزشبکه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر روی مدلسازی گذرا، تجزیه و تحلیل پایداری و کنترل سیستمهای الکترونیک قدرت تمرکز دارد، زیرا این سیستمها در طول دوره گذرا با مشکلات شدید عملیات ایمن مواجه هستند. هم تحلیل نظری و هم کاربردهای عملی را مورد بحث قرار میدهد، ویژگیهای گذرا مبدلها را با استراتژیهای کنترل مختلف برجسته میکند، و مدلسازی گذرا و روشهای کاهش مدل را پیشنهاد میکند. علاوه بر این، مشکلات پایداری گذرا سیستم را طبقهبندی میکند تا به خوانندگان کمک کند تا درک درستی از روشهای نظری پایه برای تجزیه و تحلیل سیستم الکترونیک قدرت پیدا کنند، و در عین حال جزئیات کافی را برای قادر ساختن مهندسان به طراحی چنین سیستمهایی ارائه میدهد. این کتاب با توصیف جامع تحلیلهای نظری، از مدلسازی سیستم و تحلیل پایداری گرفته تا کنترل گذرا، منبع ارزشمندی برای محققان، مهندسان و دانشجویان تحصیلات تکمیلی در زمینههای مدلسازی گذرا، تحلیل پایداری و کنترل سیستمهای الکترونیک قدرت است.
The book focuses on the transient modelling, stability analysis and control of power electronic systems, since these systems face severe safe operation problems the during transient period. It discusses both theoretical analysis and practical applications, highlighting the transient characteristics of converters with different control strategies, and proposes transient modelling and model reduction methods. Furthermore, it classifies the transient stability problems of the system to help the readers gain an understanding of the basic theoretical methods for analysing the power electronic system, at the same time providing sufficient detail to enable engineers to design such systems. Comprehensively describing theoretical analyses, ranging from system modelling and stability analysis to transient control, the book is a valuable resource for researchers, engineers and graduate students in fields of transient modelling, stability analysis and control of power electronic systems.
Foreword Preface Acknowledgements Contents Abbreviations Chapter 1: Introduction 1.1 Trends and Development of Power Electronic System 1.2 Features of Microgrid 1.3 Transient Characteristics of Microgrid 1.4 Transient Stability Problem of Microgrid 1.5 Challenges of Transient Characteristics and Stability Analysis of Microgrid 1.6 Structure of the Book References Chapter 2: Transient Characteristics of Current Controlled IIDGs During Grid Fault 2.1 Basic Principles and Control Structures 2.1.1 Topology of Three-Phase Inverter 2.1.2 Principle of Constant Current Control 2.1.3 Principle of PQ Control 2.2 Transient Characteristics of Constant Current Controlled IIDGs 2.2.1 Fault Models 2.2.2 Fault Current Calculation 2.3 Transient Characteristics of PQ Controlled IIDGs 2.3.1 Transient Characteristics of PQ Controlled IIDGs During Symmetrical Fault 2.3.1.1 Fault Models 2.3.1.2 Fault Current Calculation 2.3.2 Transient Characteristics of PQ Controlled IIDGs During Asymmetrical Fault 2.3.2.1 Case 1: IIDGs with Symmetrical Positive Sequence Current (SPSC) Control Fault Model Fault Current Calculation 2.3.2.2 Case 2: IIDGs with Active Power Oscillation (APOC) Control Fault Analysis When Positive and Negative Sequence Currents Are Injected into the Grid-Connected System Fault Model Fault Current Calculation Fault Analysis When Positive and Zero Sequence Currents Are Injected into the Grid-Connected System Fault Model Fault Current Calculation 2.3.2.3 Case 3: IIDGs with Reactive Power Oscillation (RPOC) Control Fault Model Fault Current Calculation 2.3.2.4 Case 4: IIDGs with Active and Reactive Power Oscillation (ARPOC) Control Fault Model Fault Current Calculation 2.3.3 Influence of Current Limiter 2.4 Summary References Chapter 3: Transient Characteristics of Voltage Controlled IIDGs During Grid Fault 3.1 Principle and Control Structures 3.1.1 Principle of V/f Control 3.1.2 Principle of Droop Control 3.1.3 Principle of Virtual Synchronous Control 3.2 Transient Characteristics of V/f Controlled IIDG During Grid Fault 3.2.1 Fault Models 3.2.2 Fault Current Calculation 3.2.2.1 Mathematical Model of Fault Current 3.2.2.2 Fault Current Estimation 3.2.3 Influencing Factors of Fault Current Characteristics 3.2.3.1 Influence of Line Impedance and Fault Occurring Moment 3.2.3.2 Influence of Fault Type 3.2.3.3 Influence of Nonlinear Limiter A. Influence of Current Limiter B. Influence of Modulation Wave Limiter 3.3 Transient Characteristics of Droop Controlled IIDG During Grid Fault 3.3.1 Fault Models 3.3.2 Fault Current Calculation 3.3.2.1 Mathematical Model of Fault Current 3.3.2.2 Fault Current Estimation 3.3.3 Influencing Factors of Fault Current Characteristics 3.3.3.1 Influence of Low-Pass Filters in Power Control Loop 3.3.3.2 Influence of Droop Coefficients 3.3.3.3 Influence of Nonlinear Limiter 3.4 Transient Characteristics of VSG Controlled IIDG During Grid Fault 3.4.1 Fault Models 3.4.2 Fault Current Calculation 3.4.2.1 Mathematical Model of Fault Current 3.4.2.2 Fault Current Estimation 3.4.3 Influencing Factors of Fault Current Characteristics 3.5 Summary References Chapter 4: Fault Ride Through Control Methods of VSG Controlled IIDGs 4.1 Typical Topology of VSG Controlled IIDGs 4.2 Problem Description of VSG Controlled IIDGs During Fault 4.2.1 Instantaneous Inrush Current of VSG Controlled IIDGs 4.2.2 Analysis for Maximum Withstanding Time of VSG Controlled IIDGs During Fault 4.2.3 Difficulties in Restraining Instantaneous Inrush Current of VSG Controlled IIDGs 4.3 Fault Ride Through Control Methods of VSG Controlled IIDGs 4.3.1 Current Limiting Control Method Based on Virtual Impedance 4.3.1.1 Control Principle 4.3.1.2 Experiment Results A. Hardware Implementation of Fault Detection B. Experiment Verification of the Current Limiting Method Based on Virtual Impedance 4.3.2 Fast Inrush Current Restraining Method Based on Control Mode Switching 4.3.2.1 Control Principle 4.3.2.2 Instantaneous Inrush Current Restraining 4.3.2.3 Smooth re-Switching Control 4.3.2.4 Experiment Results 4.4 Summary References Chapter 5: Full-Order Modeling and Dynamic Stability Analysis of Microgrid 5.1 Full-Order Modeling of Microgrid 5.1.1 Coordination Transformation for DERs 5.1.2 Modeling of Inverters with Different Control Strategies 5.1.2.1 Modeling of Droop Controlled Inverter 5.1.2.2 Modeling of VSG 5.1.2.3 Modeling of Current Controlled Inverter 5.1.3 Modeling of Network 5.1.4 Modeling of Different Kinds of Loads 5.1.4.1 Modeling of ZIP Load 5.1.4.2 Modeling of Induction Motor Load 5.1.5 Full-Order Modeling of Microgrid 5.2 Model Verification 5.3 Parameter Stability-Region of Microgrid 5.3.1 Bifurcation Theory 5.3.2 Parameter Stability-Region Analysis 5.3.2.1 Case 1: Numerical Bifurcation Analysis on mp-mq Plane 5.3.2.2 Case 2: Numerical Bifurcation Analysis on P-V Plane 5.3.3 Verification of Bifurcation Instability 5.4 Summary References Chapter 6: Time-Scale Model Reduction of Microgrid Based on Singular Perturbation Theory 6.1 Multi-Time Scale Property of Microgrid 6.2 Wide Frequency Range Stability Problem Classification 6.3 Time-Scale Model Reduction of Microgrid 6.3.1 Singular Perturbation Theory 6.3.2 Singular Perturbation Reduction of Microgrid 6.3.3 Verification of Reduced Order Model 6.4 Comparative Study of Different Reduced Models 6.4.1 Eigenvalue Comparative Analysis 6.4.2 Numerical Comparative Simulation 6.5 Summary References Chapter 7: Spatial-Scale Model Reduction of Multi-Microgrid Based on Dynamic Equivalent Theory 7.1 The Concept of Dynamic Equivalent Modeling for Multi-Microgrid 7.2 Dynamic Equivalent Model of External Microgrid 7.2.1 The Division of External Microgrid 7.2.2 Simplification of Network 7.2.3 Aggregation of Buses 7.2.4 Aggregation of DERs 7.2.4.1 Aggregation of Droop-Controlled DER 7.2.4.2 Aggregation of PQ-Controlled DER 7.3 Verification of the Dynamic Equivalent Model 7.3.1 Evaluation for the Studied System 7.3.2 Evaluation of Testing Multi-Microgrid with 15 Buses 7.4 Summary References Chapter 8: Modeling and Stability Analysis of Asymmetrical Microgrid Based on Dynamic Phasor Theory 8.1 Concept of Dynamic Phasor Method 8.2 Dynamic Phasor Modeling of Asymmetrical Microgrid 8.2.1 Dynamic Phasor Model of VSG 8.2.1.1 DC Side of VSG 8.2.1.2 Control Part of VSG 8.2.1.3 LC Filter and Coupling Inductor 8.2.2 Dynamic Phasor Model of Single-Phase PV 8.2.3 Aggregation of DG Model 8.2.4 Dynamic Phasor Model of Load and Network 8.2.5 Dynamic Phasor Model of Asymmetrical Microgrid 8.3 Eigenvalue Analysis of Asymmetrical Microgrid 8.3.1 Case Study 1: Load Disturbance Test 8.3.2 Case Study 2: Asymmetrical Short-Circuit Fault Test 8.4 Improved Voltage Unbalance Compensation Strategies for Asymmetrical Microgrid 8.4.1 Small-Signal Analysis of the Voltage Unbalance Compensation Control 8.4.2 Compensation Method to Improve the Dynamic Behavior 8.5 Summary References Chapter 9: Transient Angle Stability of Grid-Connected VSG 9.1 Mathematical Model 9.1.1 Full-Order Model of a VSG 9.1.2 Model Reduction of a VSG 9.2 Transient Angle Stability Mechanism 9.2.1 Transient Angle Stability of VSG 9.2.1.1 Case 1 Existence of Equilibrium Points 9.2.1.2 Case 2 None Existence of Equilibrium Points 9.2.2 Deteriorative Effect of Q-V Droop on Transient Angle Stability 9.2.3 Simulation and Experiment Results 9.3 Stability Region Estimation 9.3.1 Derivative of Lyapunov Function 9.3.1.1 Positive Definite of Derived Lyapunov Function 9.3.1.2 Semi-Negative Definite of dV/dt 9.3.2 Proposed Lyapunov Method Considering the Influence of Reactive Power Loop 9.3.3 Influence of Different Parameters 9.3.3.1 Influence of Reactive Power Control Loop 9.3.3.2 Influence of Reference Active Power P* 9.3.3.3 Influence of Damping Coefficient D 9.3.3.4 Influence of Line Impedance Z 9.3.3.5 Influence of Q-V Droop Coefficient Dq 9.4 Summary References Chapter 10: Transient Angle Stability of Islanded Microgrid with Paralleled SGs and VSGs 10.1 Mathematical Model 10.1.1 Model of Paralleled VSGs 10.1.2 Model of Paralleled SGs and VSGs 10.2 Transient Angle Stability Mechanism 10.2.1 Transient Angle Stability of Paralleled VSGs 10.2.2 Transient Angle Stability of Paralleled SGs and VSGs 10.2.3 Differences Between Paralleled VSGs and Paralleled SGs and VSGs 10.2.3.1 Influence of Different Speed Governors 10.2.3.2 Influence of Different Damping Links 10.2.3.3 Influence of Different Speed Governors and Damping Links 10.2.4 Stability Improvement of Paralleled SGs and VSGs 10.2.5 Experiment Results 10.3 Stability Region Estimation 10.3.1 Lyapunov Function of Paralleled SGs and VSGs 10.3.1.1 Lyapunov Function Based on TS Fuzzy Model 10.3.1.2 Lyapunov Function of Paralleled SGs and VSGs Without Improvement Measure 10.3.1.3 Lyapunov Function of Paralleled SGs and VSGs with Improvement Measure 10.3.2 Influence of Different Parameters 10.3.2.1 Influence of Time-Delay Constant τi 10.3.2.2 Influence of Proportional Controller Parameter Kp and Ks2 10.4 Summary References Chapter 11: Re-synchronization Phenomenon of Microgrid 11.1 Re-synchronization Phenomenon of VSG 11.1.1 Mechanism of Re-synchronization 11.1.2 Influence of Different Parameters on Re-synchronization 11.1.2.1 Case I: δc δu 11.1.2.2 Case II: δc δu 11.1.3 Simulation Results 11.2 Re-synchronization Phenomenon of Paralleled Systems 11.2.1 Re-synchronization of Paralleled VSGs 11.2.2 Re-synchronization of Paralleled SGs and VSGs 11.3 Summary References Correction to: Transient Characteristics, Modelling and Stability Analysis of Microgrid Correction to: Z. Shuai, Transient Characteristics, Modelling and Stability Analysis of Microgrid, https://doi.org/10.1007/978...