دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: 1 نویسندگان: Paul Azunre سری: ISBN (شابک) : 1617297267, 9781617297267 ناشر: Manning Publications سال نشر: 2021 تعداد صفحات: 266 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب آموزش انتقالی برای پردازش زبان طبیعی: هوش مصنوعی، یادگیری ماشین، شبکههای عصبی، پردازش زبان طبیعی، درختهای تصمیم، بینایی کامپیوتری، شبکههای عصبی مکرر، ماشینهای بردار پشتیبان، یادگیری انتقال، محک زدن، رگرسیون لجستیک، ترانسفورماتورها، افزایش گرادیان، پیشپردازش داده، BERT، GPT، ULMFiT، ALT ، چسب
در صورت تبدیل فایل کتاب Transfer Learning for Natural Language Processing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آموزش انتقالی برای پردازش زبان طبیعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آموزش انتقالی برای پردازش زبان طبیعی شما را با مفاهیم مرتبط ML قبل از غوطه ور شدن در پیشرفت های پیشرفته ای که آینده NLP را تعریف می کند، آشنا می کند. ساخت و آموزش مدل های یادگیری عمیق از ابتدا پرهزینه، زمان بر است و نیاز به حجم زیادی دارد. مقادیر داده برای رفع این نگرانی، تکنیکهای پیشرفته یادگیری انتقال به شما این امکان را میدهد که با مدلهای از پیش آموزشدیدهای شروع کنید که میتوانید آنها را برای برآورده کردن دقیق نیازهای خود تغییر دهید. در Transfer Learning برای پردازش زبان طبیعی، شما به طور عملی با سفارشی کردن این منابع منبع باز برای معماری NLP خود پیش خواهید رفت. آموزش انتقالی برای پردازش زبان طبیعی شما را با مفاهیم مرتبط ML قبل از غواصی در پیشرفتهای پیشرفتهای که آینده NLP را تعیین میکنند آشنا میکند. شما یاد خواهید گرفت که چگونه مدلهای پیشرفته موجود را با برنامههای کاربردی دنیای واقعی تطبیق دهید، از جمله ساختن یک طبقهبندی کننده ایمیل هرزنامه، یک تحلیلگر احساسات نقد فیلم، یک حقیقتسنجی خودکار، یک سیستم پاسخدهی به سؤال و یک سیستم ترجمه برای هزینههای پایین. -زبان های منابع خرید کتاب چاپی شامل یک کتاب الکترونیکی رایگان در قالبهای PDF، Kindle و ePub از انتشارات منینگ است.
Transfer Learning for Natural Language Processing gets you up to speed with the relevant ML concepts before diving into the cutting-edge advances that are defining the future of NLP.Building and training deep learning models from scratch is costly, time-consuming, and requires massive amounts of data. To address this concern, cutting-edge transfer learning techniques enable you to start with pretrained models you can tweak to meet your exact needs. In Transfer Learning for Natural Language Processing, you'll go hands-on with customizing these open source resources for your own NLP architectures. Transfer Learning for Natural Language Processing gets you up to speed with the relevant ML concepts before diving into the cutting-edge advances that are defining the future of NLP. You’ll learn how to adapt existing state-of-the art models into real-world applications, including building a spam email classifier, a movie review sentiment analyzer, an automated fact checker, a question-answering system and a translation system for low-resource languages. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Transfer Learning for Natural Language Processing contents preface acknowledgments about this book Who should read this book? Road map Software requirements About the code liveBook discussion forum about the author about the cover illustration Part 1—Introduction and overview 1 What is transfer learning? 1.1 Overview of representative NLP tasks 1.2 Understanding NLP in the context of AI 1.2.1 Artificial intelligence (AI) 1.2.2 Machine learning 1.2.3 Natural language processing (NLP) 1.3 A brief history of NLP advances 1.3.1 General overview 1.3.2 Recent transfer learning advances 1.4 Transfer learning in computer vision 1.4.1 General overview 1.4.2 Pretrained ImageNet models 1.4.3 Fine-tuning pretrained ImageNet models 1.5 Why is NLP transfer learning an exciting topic to study now? Summary 2 Getting started with baselines: Data preprocessing 2.1 Preprocessing email spam classification example data 2.1.1 Loading and visualizing the Enron corpus 2.1.2 Loading and visualizing the fraudulent email corpus 2.1.3 Converting the email text into numbers 2.2 Preprocessing movie sentiment classification example data 2.3 Generalized linear models 2.3.1 Logistic regression 2.3.2 Support vector machines (SVMs) Summary 3 Getting started with baselines: Benchmarking and optimization 3.1 Decision-tree-based models 3.1.1 Random forests (RFs) 3.1.2 Gradient-boosting machines (GBMs) 3.2 Neural network models 3.2.1 Embeddings from Language Models (ELMo) 3.2.2 Bidirectional Encoder Representations from Transformers (BERT) 3.3 Optimizing performance 3.3.1 Manual hyperparameter tuning 3.3.2 Systematic hyperparameter tuning Summary Part 2—Shallow transfer learning and deep transfer learning with recurrent neural networks (RNNs) 4 Shallow transfer learning for NLP 4.1 Semisupervised learning with pretrained word embeddings 4.2 Semisupervised learning with higher-level representations 4.3 Multitask learning 4.3.1 Problem setup and a shallow neural single-task baseline 4.3.2 Dual-task experiment 4.4 Domain adaptation Summary 5 Preprocessing data for recurrent neural network deep transfer learning experiments 5.1 Preprocessing tabular column-type classification data 5.1.1 Obtaining and visualizing tabular data 5.1.2 Preprocessing tabular data 5.1.3 Encoding preprocessed data as numbers 5.2 Preprocessing fact-checking example data 5.2.1 Special problem considerations 5.2.2 Loading and visualizing fact-checking data Summary 6 Deep transfer learning for NLP with recurrent neural networks 6.1 Semantic Inference for the Modeling of Ontologies (SIMOn) 6.1.1 General neural architecture overview 6.1.2 Modeling tabular data 6.1.3 Application of SIMOn to tabular column-type classification data 6.2 Embeddings from Language Models (ELMo) 6.2.1 ELMo bidirectional language modeling 6.2.2 Application to fake news detection 6.3 Universal Language Model Fine-Tuning (ULMFiT) 6.3.1 Target task language model fine-tuning 6.3.2 Target task classifier fine-tuning Summary Part 3—Deep transfer learning with transformers and adaptation strategies 7 Deep transfer learning for NLP with the transformer and GPT 7.1 The transformer 7.1.1 An introduction to the transformers library and attention visualization 7.1.2 Self-attention 7.1.3 Residual connections, encoder-decoder attention, and positional encoding 7.1.4 Application of pretrained encoder-decoder to translation 7.2 The Generative Pretrained Transformer 7.2.1 Architecture overview 7.2.2 Transformers pipelines introduction and application to text generation 7.2.3 Application to chatbots Summary 8 Deep transfer learning for NLP with BERT and multilingual BERT 8.1 Bidirectional Encoder Representations from Transformers (BERT) 8.1.1 Model architecture 8.1.2 Application to question answering 8.1.3 Application to fill in the blanks and next-sentence prediction tasks 8.2 Cross-lingual learning with multilingual BERT (mBERT) 8.2.1 Brief JW300 dataset overview 8.2.2 Transfer mBERT to monolingual Twi data with the pretrained tokenizer 8.2.3 mBERT and tokenizer trained from scratch on monolingual Twi data Summary 9 ULMFiT and knowledge distillation adaptation strategies 9.1 Gradual unfreezing and discriminative fine-tuning 9.1.1 Pretrained language model fine-tuning 9.1.2 Target task classifier fine-tuning 9.2 Knowledge distillation 9.2.1 Transfer DistilmBERT to monolingual Twi data with pretrained tokenizer Summary 10 ALBERT, adapters, and multitask adaptation strategies 10.1 Embedding factorization and cross-layer parameter sharing 10.1.1 Fine-tuning pretrained ALBERT on MDSD book reviews 10.2 Multitask fine-tuning 10.2.1 General Language Understanding Dataset (GLUE) 10.2.2 Fine-tuning on a single GLUE task 10.2.3 Sequential adaptation 10.3 Adapters Summary 11 Conclusions 11.1 Overview of key concepts 11.2 Other emerging research trends 11.2.1 RoBERTa 11.2.2 GPT-3 11.2.3 XLNet 11.2.4 BigBird 11.2.5 Longformer 11.2.6 Reformer 11.2.7 T5 11.2.8 BART 11.2.9 XLM 11.2.10 TAPAS 11.3 Future of transfer learning in NLP 11.4 Ethical and environmental considerations 11.5 Staying up-to-date 11.5.1 Kaggle and Zindi competitions 11.5.2 arXiv 11.5.3 News and social media (Twitter) 11.6 Final words Summary Appendix A—Kaggle primer A.1 Free GPUs with Kaggle kernels A.2 Competitions, discussion, and blog Appendix B—Introduction to fundamental deep learning tools B.1 Stochastic gradient descent B.2 TensorFlow B.3 PyTorch B.4 Keras, fast.ai, and Transformers by Hugging Face index A B C D E F G H I J K L M N O P Q R S T U V W X Z