دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Chittaranjan Kole, Anurag Chaurasia, Kathleen L. Hefferon, Jogeswar Panigrahi سری: ISBN (شابک) : 9819948584, 9789819948581 ناشر: سال نشر: تعداد صفحات: 421 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Tools & Techniques of Plant Molecular Farming (Concepts and Strategies in Plant Sciences) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ابزار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface Contents Editors and Contributors About the Editors Contributors Chapter 1: Plant Molecular Farming: Concept and Strategies 1.1 Introduction 1.2 Concept 1.2.1 Plant as Expression System for Recombinant Protein Production 1.2.2 Plant as a Bioreactor for Production of Recombinant Proteins and Secondary Metabolites 1.2.2.1 Tobacco 1.2.2.2 Rice 1.2.2.3 Maize/Corn 1.2.3 Types of Recombinant Proteins Produced by PMF 1.2.3.1 Edible Vaccines 1.2.3.2 Industrial Proteins 1.2.3.3 Therapeutic Proteins 1.3 Transformation Strategies 1.3.1 Nuclear Transformation 1.3.2 Plastid Transformation 1.3.3 Agroinfiltration 1.3.4 Viral Infection 1.3.5 Magnifection System 1.4 Advantages of PMF 1.5 Challenges of PMF 1.6 Concluding Remarks References Chapter 2: Plant Molecular Pharming: Opportunities, Challenges, and Future Perspectives 2.1 Introduction 2.2 Opportunities of Plant Molecular Pharming 2.3 Challenges and Solutions Faced by Plant Expression Systems 2.4 Recent Examples of Recombinant Proteins Produced in Plants 2.5 Future Perspectives 2.6 Conclusions References Chapter 3: Improving Plant Molecular Farming via Genome Editing 3.1 Structure and Mechanism of Genome Editing Tools 3.2 Using Genome Editing in Plants 3.2.1 Using Meganucleases in Plant 3.2.2 Using ZFNs in Plant 3.2.3 Using TALENs in Plant 3.2.4 Using CRISPR/CAS Systems in Plant 3.2.4.1 CRISPR/Cas9 System 3.2.4.1.1 Using Cas9 as a Nuclease 3.2.4.1.2 Using Cas9 as a Base Editor 3.2.4.1.3 Using Cas9 as Prime Editors 3.2.4.1.4 Using Cas9 as a DNA-Binding Protein 3.2.4.1.5 Using Cas9 for Mediated Epigenome Editing 3.2.4.1.6 Type V CRISPR/Cas12 (Cpf1) System 3.2.4.1.7 Type VI CRISPR/Cas13 Systems 3.3 Strategies to Achieve Plants via Genome Editing for Plant Molecular Farming Applications 3.3.1 DNA-Free Genome Editing/Cas9 Protein RNP Complexes In Vitro 3.3.1.1 Protoplast Transformation 3.3.1.2 Particle Bombardment 3.3.1.3 Zygotes as Delivery Targets 3.3.1.4 Nanoparticles for Cargo Delivery 3.3.2 Targeted Gene Integration Platforms 3.3.3 Improving the Yields of Recombinant Protein 3.3.3.1 Codon Preferences and tRNA Pools 3.3.3.2 Suppression of Gene Silencing 3.3.3.3 Stress Resilience and Modified Degradation Pathways 3.3.3.4 Modulation of Chaperone Expression 3.3.3.5 Modulating Endogenous Protease Activity 3.3.3.6 Modulation of Endogenous Oxidase Activity 3.3.3.7 Advanced Genome Editing of Plastid Genomes 3.3.4 Modifying Posttranslational Modifications and Product Quality 3.3.4.1 Specific N-Linked and O-Linked Glycosylation Profiles 3.3.4.2 Modifying to Avoid Toxic Metabolites or Other Disadvantageous Molecules 3.3.5 Modification of Plant Habits to Increase Space–Time Yield 3.4 Conclusions References Chapter 4: Recent Genome Editing Tool-Assisted Plant Molecular Farming 4.1 Plant Transgenic Technology: Milestones 4.2 Genome Editing Technology 4.2.1 Zinc Finger Nucleases (ZFNs) 4.2.2 Transcription Activator-Like Effector Nucleases (TALENs) 4.2.3 CRISPR/Cas Systems 4.2.3.1 CRISPR/Cas Applications in Plants 4.2.4 The Role of Functional Genomics Studies 4.3 Plant Molecular Farming 4.3.1 Plants as Production Systems: Pros and Cons 4.3.2 Plant Transformation Strategies 4.3.3 Plant Molecular Farming Applications 4.3.3.1 Therapeutic and Pharmaceutical Molecules 4.3.3.2 Vaccines 4.3.3.3 Biopolymers and Industrial Enzymes 4.4 Utilization of Genome Editing Tools for Plant Molecular Farming 4.5 Conclusions References Chapter 5: Seed-Based Production System for Molecular Farming 5.1 Introduction 5.2 Seed-Based Production System 5.2.1 Selection of Production Hosts for Seed-Based Platform 5.2.2 Properties of Seed Proteins Accumulated in Seeds Used for Production Hosts 5.3 Expression in Seed Production System 5.3.1 Promoters 5.3.2 Regulatory Mechanisms of Seed-Specific Expression 5.3.3 Seed-Specific Promoters Used for Expression of High-Value Recombinant Proteins 5.4 Translational and Posttranslational Regulation 5.4.1 5′ UTR (Leader Sequence) 5.4.2 Translation Initiation 5.4.3 Codon Usage 5.4.4 Stop Codon and 3′ Untranslated Region (UTR) 5.5 Trafficking Process 5.5.1 mRNA-Based Trafficking Mechanism 5.5.2 ER-to-Golgi Trafficking 5.5.3 Golgi-to-PSV Trafficking 5.6 Modification to Humanized Glycosylation 5.7 Production of Recombinant Proteins in Seed 5.7.1 Subcellular Localization of Recombinant Protein Expressed as Secretory Protein 5.7.2 Targeting to PSV 5.7.3 Protein Fusion Strategy in Seed-Based Production for Recombinant Protein 5.7.4 Enhancement of Production Yields of Recombinant Proteins by Reduction of Endogenous SSPs 5.8 Protein Quality Control of Recombinant Proteins 5.9 Efficacy of Seed-Made Recombinant Proteins 5.9.1 Vaccines 5.9.2 Antibodies 5.9.3 Cytokines 5.10 Prospective References Chapter 6: Seed-Based Production of Recombinant Proteins 6.1 Introduction 6.2 Seeds as Bioreactors for Producing and Storing Recombinant Protein 6.3 Setting a Seed-Based Platform for Recombinant Protein Production 6.4 Posttranslational Modification in Plants and Its Relevance in Molecular Farming 6.5 Comparison of Current Seed-Based Platforms 6.5.1 Cereals 6.5.2 Soybean 6.6 Scale-Up of Seed-Based Production Systems 6.7 Basic Approaches for the Purification of Recombinant Proteins from Plant Cells 6.7.1 Non-affinity Absorption and Affinity Techniques to Purify Proteins 6.7.2 Chromatography-Free Protein Purification 6.8 A Brief Overview of Biosafety and Risk Assessment of Seed-Based Expression Systems 6.9 Conclusions and Perspectives References Chapter 7: Plant-Based Antibody Manufacturing 7.1 Introduction 7.2 Background 7.2.1 Examples of Plant-Based Pharmaceuticals 7.2.2 Overview of Manufacturing of Plant-Based Pharmaceuticals 7.2.3 Overview of Expression System Attributes 7.3 Plant-Specific Expression System Characteristics 7.3.1 Manufacturing Upstream Process 7.3.2 Manufacturing Downstream Process 7.3.3 Campaign Manufacturing 7.3.4 Glycosylation Patterns 7.3.5 Analytical Analysis 7.3.5.1 Additional Analytics 7.4 Transition from Drug Substance to Final DP 7.5 The Plant Advantage: Speed to IND 7.6 Conclusions References Chapter 8: Turnip Mosaic Virus Nanoparticles: A Versatile Tool in Biotechnology 8.1 Viral Nanoparticles in Molecular Farming 8.2 Turnip Mosaic Virus Nanoparticles 8.3 Applications of TuMV Nanoparticles 8.3.1 Theranostics 8.3.1.1 Immunotherapy 8.3.1.2 Immunization and Antibody Sensing 8.3.1.3 Anti-tumor Therapy 8.3.2 Tissue Engineering 8.3.3 Industrial Biotechnology 8.3.4 Agricultural Applications 8.4 Future Prospects References Chapter 9: Targeting Chloroplasts for Plant Molecular Farming 9.1 Introduction 9.1.1 Chloroplast Transformation 9.1.2 Chloroplast Transformation and Molecular Farming 9.2 Methods of Chloroplast Transformation 9.2.1 Biolistic Method 9.2.1.1 Advantages of Biolistic Method 9.2.1.2 Disadvantages of Biolistic Method 9.2.2 Polyethylene Glycol (PEG) Method 9.2.2.1 Advantages and Disadvantages of PEG 9.2.3 Carbon Nanotube Carriers 9.2.4 UV Laser Microbeam 9.2.5 Agrobacterium-Mediated Transformation 9.3 Plants Transformed by Chloroplast Transformation 9.4 Applications of Plastid Transformation 9.4.1 Applications in Basic Science 9.4.2 Antigen Vaccines and Protein-Based Drugs 9.4.3 Industrial Enzymes and Biomaterials 9.5 Limitations of Chloroplast Transformation in Plant Molecular Farming References Chapter 10: Plant Molecular Farming for Developing Countries: Current Status and Future Perspectives 10.1 Plant Molecular Farming 10.2 Plant Transformation Strategies 10.2.1 Transient Expression 10.2.2 Stable Transformation 10.2.2.1 Agrobacterium-Mediated Nuclear Transformation 10.2.2.2 Chloroplast Transformation 10.2.2.2.1 Biolistic or Gene Gun 10.3 Developing Countries and Their Problems 10.3.1 Population Growth 10.3.2 Poverty 10.3.3 Climate Vulnerability 10.3.4 Healthcare Systems 10.4 Developing Countries and Plant Molecular Farming 10.5 Issues Faced by Developing Countries for Adopting PMF as Local Industries 10.5.1 Selection of the Potential Targets for PMF 10.5.2 Support to Developing Countries in Technology Transfer 10.5.3 Need of Regulatory Bodies and Framework 10.5.4 Encourage Suitable Intellectual Property Management and Socially Responsible Licensing 10.6 Benefits Achieved So Far Via PMF 10.6.1 Poverty, Food Shortage, and Hunger 10.6.2 Medicine and Health 10.6.3 Industrial Products and Economy 10.7 Conclusions References Chapter 11: Plant Molecular Farming: A Boon for Developing Countries 11.1 Introduction 11.2 A General Look at Developing Countries 11.3 Common Diseases of Developing Countries 11.4 The Plant Molecular Farming Platform 11.5 Advantages of the PMF Platform 11.6 Boosting Molecular Farming Efforts 11.7 Cape Bio Pharms/Cape Biologix Technologies: An African Story 11.8 Products of Molecular Farming 11.9 Plant-Made Proteins Already Combatting Developing Country Diseases 11.10 Edible Vaccines 11.11 Regulatory and Government Involvement 11.12 One Health 11.13 Conclusions References Chapter 12: Plant Molecular Pharming: A Promising Solution for COVID-19 12.1 Introduction 12.1.1 Structure of SARS-CoV-2 12.1.2 The Global Impact of SARS-CoV-2 12.1.3 The Impact of SARS-CoV-2 Vaccine Equity on the African Continent 12.2 Why Plant-Based Platforms? 12.2.1 A Brief Account of Our Story as Cape Bio Pharms 12.3 Available Plant-Based Platforms to Produce Recombinant Vaccines and Biologics 12.3.1 Plant Cell Suspension Cultures 12.3.2 Transient Expression Systems 12.3.3 Vaccines 12.3.3.1 Plant-Derived Vaccine Candidates in Preclinical Trials 12.3.3.2 Plant-Derived Vaccine Candidates in Clinical Trials 12.3.3.2.1 Phase 1: Baiya SARS-CoV-2 VAX 1 12.3.3.2.2 Phase 2: KBP-201 12.3.3.2.3 Phase 3: PT Bio Farma 12.3.3.3 Are There Any Approved Plant-Derived Vaccines Against SARS-CoV-2? 12.3.4 The “Scientific Journey” of CoVLP 12.3.5 Therapeutic Interventions 12.3.5.1 Antiviral Therapies 12.3.5.2 Monoclonal Antibody (mAb) Therapies 12.3.5.2.1 The Future of Plant-Derived mAbs as Therapeutics and/or Diagnostics Potential Role of Plant-Derived mAbs in Combating SARS-CoV-2 Induced Cytokine Storm Therapeutic Cocktail mAb Therapies Candidate Plant-Derived Cocktail mAb Therapies Diagnostic Monoclonal Antibodies 12.3.5.3 Repurposing of Existing Therapies 12.4 Conclusions References Chapter 13: Biopharming’s Growing Pains 13.1 An Introduction to Biopharming 13.2 Regulation of Plant “Biopharming” 13.3 Navigating Plant Molecular Pharming Regulation for Commercial Products 13.4 Conclusions References Chapter 14: Biosafety, Risk Analysis, and Regulatory Framework for Molecular Farming in Europe 14.1 Introduction 14.2 Risk Analysis 14.2.1 GMO Risk Assessment 14.2.2 Ways to Minimize Gene Flow from Molecular Farming Plants 14.3 Regulation of Molecular Farming 14.3.1 Process-Specific Regulation 14.3.2 Product-Specific Regulation of Molecular Farming 14.4 Conclusions References Chapter 15: Deep and Meaningful: An Iterative Approach to Developing an Authentic Narrative for Public Engagement for Plant Molecular Technologies in Human and Animal Health 15.1 Introduction 15.2 Background: Shifting Perspectives 15.3 Co-design for Empathetic and Flexible Stakeholder Engagement 15.4 Methodological Approach 15.4.1 Phase 1: Preliminary Work 15.4.2 Phase 2: Research and Engagement 15.4.2.1 Science and Technology Partner Engagement 15.4.2.2 Partner Co-design Tools 15.4.2.3 Stakeholder Recruitment 15.4.2.4 Stakeholder Co-design Tools 15.4.2.5 Stakeholder Engagement 15.4.3 Phase 3: Dissemination and Communication 15.4.3.1 Workshop Data Analysis and Sensemaking 15.4.3.2 Translation from the Workshops to the Public Exhibitions 15.5 Science and Technology Partner Feedback 15.5.1 Results and Discussion: The Value of a Deep and Meaningful Narrative 15.5.2 Value to Scientists at the Start of the Project 15.5.3 Value to Patients, Healthcare Professionals and General Audiences 15.5.4 Value to Scientists and Technology Innovation Developers, Project Partners at the End of the Projects 15.6 Conclusions Bibliography Correction to: Plant-Based Antibody Manufacturing Correction to: Chapter 7 in: C. Kole et al. (eds.), Tools & Techniques of Plant Molecular Farming, Concepts and Strategies in Plant Sciences, https://doi.org/10.1007/978-981-99-4859-8_7