ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Thermodynamics Concepts and Applications

دانلود کتاب مفاهیم و کاربردهای ترمودینامیک

Thermodynamics Concepts and Applications

مشخصات کتاب

Thermodynamics Concepts and Applications

دسته بندی: ترمودینامیک و مکانیک آماری
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780521850421, 2005033974 
ناشر:  
سال نشر: 2006 
تعداد صفحات: 1120 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 68 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Thermodynamics Concepts and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مفاهیم و کاربردهای ترمودینامیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مفاهیم و کاربردهای ترمودینامیک

اگرچه تمرکز این کتاب درسی بر مباحث ترمودینامیک سنتی است، اما این کتاب به معرفی علوم حرارتی سیالات نیز می پردازد. این برای مربی طراحی شده است که موضوعات را انتخاب کند و آنها را به طور یکپارچه با مطالب سایر فصل ها ترکیب کند. ابزارهای آموزشی عبارتند از: اهداف یادگیری، مروری بر فصل ها و خلاصه ها، دیدگاه های تاریخی، و مثال های متعدد، پرسش ها، مسائل و تصاویر فاخر. دانشجویان تشویق می شوند از پایگاه داده خواص آنلاین موسسه ملی علم و فناوری (NIST) استفاده کنند.


توضیحاتی درمورد کتاب به خارجی

Although the focus of this textbook is on traditional thermodynamics topics, the book is concerned with introducing the thermal-fluid sciences as well. It is designed for the instructor to select topics and seamlessly combine them with material from other chapters. Pedagogical devices include: learning objectives, chapter overviews and summaries, historical perspectives, and numerous examples, questions, problems and lavish illustrations. Students are encouraged to use the National Institute of Science and Technology (NIST) online properties database.



فهرست مطالب

Half Title
Title Page
Copyright
Dedication
Contents
Sample Syllabus
Preface
Acknowledgments
Chapter 1 • Beginnings
	Learning Objectives
	Overview
	1.1 What is Thermodynamics
	1.2 Some Applications
		1.2a Fossil-Fueled Steam Power Plants
		1.2b Spark-Ignition Engines
		1.2c Jet Engines
	1.3 Physical Frameworks for Analysis
		1.3a Systems
		1.3b Control Volumes
	1.4 Preview of Conservation Principles
		1.4a Generalized Formulation
		1.4b Motivation to Study Properties
	1.5 Key Concepts and Definitions
		1.5a Properties
		1.5b States
		1.5c Processes
		1.5d Cycles
		1.5e Equilibrium and the Quasi-Equilibrium Process
	1.6 Dimensions and Units
	1.7 Problem-Solving Method
	1.8 How to Use this Book
	Summary
	Key Concepts & Definitions Checklist
	References
	Questions and Problems
	Appendix 1A: Spark-Ignition Engines
Chapter 2 • Thermodynamic Properties, Property Relationships, and Processes
	Learning Objectives
	Overview
	2.1 Key Definitions
	2.2 Frequently Used Thermodynamic Properties
		2.2a Properties Related to the Equation of State
			Mass
			Number of Moles
			Volume
			Density
			Specific Volume
			Pressure
			Temperature
		2.2b Properties Related to the First Law and Calorific Equation of State
			Internal Energy
			Enthalpy
			Specific Heats and Specific-Heat Ratio
		2.2c Properties Related to the Second Law
			Entropy
			Gibbs Free Energy or Gibbs Function
			Helmholtz Free Energy or Helmholtz Function
	2.3 Concept of State Relationships
		2.3a State Principle
		2.3b P–v–T Equations of State
		2.3c Calorific Equations of State
		2.3d Temperature–Entropy (Gibbs) Relationships
	2.4 Ideal Gases as Pure Substances
		2.4a Ideal Gas Definition
		2.4b Ideal-Gas Equation of State
		2.4c Processes in P–v–T Space
		2.4d Ideal-Gas Calorific Equations of State
		2.4e Ideal-Gas Temperature–Entropy (Gibbs) Relationships
		2.4f Ideal-Gas Isentropic Process Relationships
		2.4g Processes in T–s and P–v Space
		2.4h Polytropic Processes
	2.5 Nonideal Gas Properties
		2.5a State (P–v–T) Relationships
			Tabulated Properties
	Tutorial 1—How to Interpolate
		Other Equations of State
		Generalized Compressibility
	2.5b Calorific Relationships
	2.5c Second-Law Relationships
	2.6 Pure Substances Involving Liquid and Vapor Phases
		2.6a State (P–v–T ) Relationships
			Phase Boundaries
			A New Property—Quality
			Property Tables and Databases
	Tutorial 2—How to Use the NIST Software
	Tutorial 3—How to Define a Thermodynamic State
		T–v Diagrams
		P–v Diagrams
	2.6b Calorific and Second-Law Properties
		T–s Diagrams
		h–s Diagrams
	2.7 Liquid Property Approximations
	2.8 Solids
	2.9 Ideal-Gas Mixtures
		2.9a Specifying Mixture Composition
		2.9b State (P–v–T ) Relationships for Mixtures
		2.9c Standardized Properties
		2.9d Calorific Relationships for Mixtures
		2.9e Second-Law Relationships for Mixtures
	2.10 Some Properties of Reacting Mixtures
		2.10a Enthalpy of Combustion
		2.10b Heating Values
	Summary
	Key Concepts & Definitions Checklist
	References
	Nomenclature
	Questions
	Problems
	Appendix 2A: Molecular Interpretation of Entropy
Chapter 3 • Conservation of Mass
	Learning Objectives
	Overview
	3.1 Historical Context
	3.2 Mass Conservation for a System
	3.3 Mass Conservation for a Control Volume
		3.3a Flow rates
			Uniform Velocity
			Distributed Velocity
			Generalized Definition
		3.3b Average Velocity
		3.3c General View of Mass Conservation for Control Volumes
		3.3d Steady-State, Steady Flow
		3.3e Unsteady Flows
	3.4 Reacting Systems
		3.4a Atom Balances
		3.4b Stoichiometry
	Summary
	Key Concepts & Definitions Checklist
	References
	Nomenclature
	Questions
	Problems
Chapter 4 • Energy and Energy Transfer
	Learning Objectives
	Overview
	4.1 Historical Context
	4.2 System and Control-Volume Energy
		4.2a Energy Associated with System or Control Volume as a Whole
		4.2b Energy Associated with Matter at a Microscopic Level
	4.3 Energy Transfer Across Boundaries
		4.3a Heat
			Definition
			Semantics
		4.3b Work
			Definition
			Types
	4.4 Sign Conventions and Units
	4.5 Rate Laws for Heat Transfer
		4.5a Conduction
		4.5b Convection
		4.5c Radiation
	Summary
	Key Concepts & Definitions Checklist
	References
	Nomenclature
	Questions
	Problems
Chapter 5 • Conservation of Energy
	Learning Objectives
	Overview
	5.1 Historical Context
	5.2 Energy Conservation for a System
		5.2a General Integral Forms
			For an Incremental Change
			For a Change in State
			At an Instant
		5.2b Reacting Systems
			Constant-Pressure Combustion
			Constant-Volume Combustion
	5.3 Energy Conservation for Control Volumes
		5.3a Integral Control Volumes with Steady Flow
		5.3b Road Map for Study
		5.3c Special Form for Flows with Friction
		5.3d Integral Control Volumes with Unsteady Flow
	Summary
	Key Concepts & Definitions Checklist
	References
	Nomenclature
	Questions
	Problems
Chapter 6 • Second Law of Thermodynamics and Some of Its Consequences
	Learning Objectives
	Overview
	6.1 Historical Context
	6.2 Usefulness of the Second Law
	6.3 One Fundamental Statement of the Second Law
		6.3a Reservoirs
		6.3b Heat Engines
		6.3c Thermal Efficiency and Coefficients of Performance
		6.3d Reversibility
	6.4 Consequences of the Kelvin–planck statement
		6.4a Kelvin’s Absolute Temperature Scale
		6.4b The Carnot Efficiency
		6.4c Some Reversible Cycles
			Carnot Cycle
			Stirling Cycle
	6.5 Alternative Statements of the Second Law
	6.6 Entropy Revisited
		6.6a Definition
		6.6b Connecting Entropy to the Second Law
		6.6c Entropy Balances
			Systems Undergoing a Change of State
			Control Volumes with a Single Inlet and Outlet
		6.6d Criterion for Spontaneous Change
		6.6e Isentropic Efficiency
		6.6f Entropy Production, Head Loss, and Isentropic Efficiency
	6.7 The Second Law and Equilibrium
		6.7a Chemical Equilibrium
			Conditions of Fixed Internal Energy and Volume
			Conditions of Fixed Temperature and Pressure
			Multiple Equilibrium Reactions
		6.7b Phase Equilibrium
	6.8 Availability (Exergy)
		6.8a Definitions
		6.8b Closed System Availability
		6.8c Closed System Availability Balance
		6.8d Control Volume Availability
		6.8e Control Volume Availability Balance
	Summary
	Key Concepts & Definitions Checklist
	References
	Nomenclature
	Questions
	Problems
Chapter 7 • Steady-Flow Devices
	Learning Objectives
	Overview
	7.1 Steady-Flow Devices
	7.2 Nozzles and Diffusers
		7.2a General Analysis
			Mass Conservation
			Energy Conservation
		7.2b Incompressible Flow
		7.2c Compressible Flow
			A Few New Concepts and Definitions
			Mach Number–Based Conservation Principles and Property Relationships
			Converging and Converging–Diverging Nozzles
			Nozzle Efficiency
	7.3 Throttles
		7.3a Analysis
			Mass Conservation
			Energy Conservation
			Mechanical Energy Conservation
		7.3b Applications
	7.4 Pumps, Compressors, and Fans
		7.4a Classifications
		7.4b Analysis
			Control Volume Choice
			Application of Conservation Principles
			Efficiencies
	7.5 Turbines
		7.5a Classifications and Applications
		7.5b Analysis
	7.6 Heat Exchangers
		7.6a Classifications and Applications
		7.6b Analysis
			Conservation of Mass
			Conservation of Energy
	7.7 Furnaces, Boilers, and Combustors
		7.7a Some Applications
		7.7b Analysis
			Assumptions
			Mass Conservation
			Energy Conservation
	Summary
	Key Concepts & Definitions Checklist
	References
	Nomenclature
	Questions
	Problems
Chapter 8 • Systems for Power Production, Propulsion, and Heating and Cooling
	Learning Objectives
	Overview
	8.1 Fossil-Fueled Steam Power Plants
		8.1a Rankine Cycle Revisited
		8.1b Rankine Cycle with Superheat and Reheat
			Superheat
			Reheat
		8.1c Rankine Cycle with Regeneration
			Mass Conservation
			Energy Conservation
		8.1d Energy Input from Combustion
		8.1e Overall Energy Utilization
	8.2 Jet Engines
		8.2a Basic Operation of a Turbojet Engine
		8.2b Integral Control Volume Analysis of a Turbojet
			Assumptions
			Mass Conservation
			Energy Conservation
			Momentum Conservation
		8.2c Turbojet Cycle Analysis
			Given Conditions
			Assumptions
			Approach
		8.2d Propulsive Efficiency
		8.2e Other Performance Measures
		8.2f Combustor Analysis
			Assumptions
			Mass Conservation
			Energy Conservation
	8.3 Gas-Turbine Engines
		8.3a Integral Control Volume Analysis
			Assumptions
			Mass Conservation
			Energy Conservation
		8.3b Cycle Analysis and Performance Measures
			Air-Standard Brayton Cycle
			Air-Standard Thermal Efficiency
			Process Thermal Efficiency and Specific Fuel Consumption
			Power and Size
	8.4 Refrigerators and Heat Pumps
		8.4a Energy Conservation for a Reversed Cycle
		8.4b Performance Measures
		8.4c Vapor-Compression Refrigeration Cycle
			Cycle Analysis
			Coefficients of Performance
	8.5 Air Conditioning, Humidification, and Related Systems
		8.5a Physical Systems
		8.5b General Analysis
			Assumptions
			Mass Conservation
			Energy Conservation
		8.5c Some New Concepts and Definitions
			Psychrometry
			Thermodynamic Treatment of Water Vapor in Dry Air
			Humidity Ratio
			Relative Humidity
			Dew Point
		8.5d Recast Conservation Equations
		8.5e Humidity Measurement
			Adiabatic Saturation
			Wet- and Dry-Bulb Temperatures
			The Psychrometric Chart
	Summary
	Key Concepts & Definitions Checklist
	References
	Nomenclature
	Questions
	Problems
	Appendix 8A: Turbojet Engine Analysis Revisited
Appendix A: Timeline
Appendix B: Thermodynamic Properties of Ideal Gases and Carbon
	Table B.1 CO
	Table B.2 CO[sub(2)]
	Table B.3 H[sub(2)]
	Table B.4 H
	Table B.5 OH
	Table B.6 H[sub(2)]O
	Table B.7 N[sub(2)]
	Table B.8 N
	Table B.9 NO
	Table B.10 NO[sub(2)]
	Table B.11 O[sub(2)]
	Table B.12 O
	Table B.13 C(s) (Graphite)
	Table B.14 Curve-Fit Coefficients
Appendix C: Thermodynamic and Thermo-Physical Properties of Air
	Table C.1 Approximate Composition, Apparent Molecular Weight, and Gas Constant for Dry Air
	Table C.2 Thermodynamic Properties of Air at 1 atm
	Table C.3 Thermo-Physical Properties of Air
Appendix D: Thermodynamic Properties of H[sub(2)]O
	Table D.1 Saturation Properties of Water and Steam—Temperature Increments
	Table D.2 Saturation Properties of Water and Steam—Pressure Increments
	Table D.3 Superheated Vapor (Steam)
	Table D.4 Compressed Liquid (Water)
	Table D.5 Vapor Properties: Saturated Solid (Ice)–Vapor
Appendix E: Various Thermodynamic Data
	Table E.1 Critical Constants and Specific Heats for Selected Gases
	Table E.2 Van der Waals Constants for Selected Gases
Appendix F: Thermo-Physical Properties of Selected Gases at 1 ATM
	Table F.1 Thermo-Physical Properties of Selected Gases (1 atm)
Appendix G: Thermo-Physical Properties of Selected Liquids
	Table G.1 Thermo-Physical Properties of Saturated Water
	Table G.2 Thermo-Physical Properties of Various Saturated Liquids
Appendix H: Thermo-Physical Properties of Hydrocarbon Fuels
	Table H.1 Selected Properties of Hydrocarbon Fuels
	Table H.2 Curve-Fit Coefficients for Fuel Specific Heat and Enthalpy
	Table H.3 Curve-Fit Coefficients for Fuel Vapor Thermal Conductivity, Viscosity, and Specific Heat
Appendix I: Thermo-Physical Properties of Selected Solids
	Table I.1 Thermo-Physical Properties of Selected Metallic Solids
	Table I.2 Thermo-Physical Properties of Selected Nonmetallic Solids
	Table I.3 Thermo-Physical Properties of Common Materials
Appendix J: Radiation Properties of Selected Materials and Substances
	Table J.1 Total, Normal (n), or Hemispherical (h) Emissivity of Selected Surfaces: Metallic Solids and Their Oxides
	Table J.2 Total, Normal (n), or Hemispherical (h) Emissivity of Selected Surfaces: Nonmetallic Substances
Appendix K: Mach Number Relationships for Compressible Flow
	Table K.1 One-Dimensional, Isentropic, Variable-Area Flow of Air with Constant Properties (γ = 1.4)
	Table K.2 One-Dimensional Normal-Shock Functions for Air with Constant Properties (γ = 1.4)
Appendix L: Psychrometric Charts
	Figure L.1 Psychrometric Chart in SI Units (P = 1 atm).
	Figure L.2 Psychrometric Chart in U.S. Customary Units (P = 14.7 psia).
Answers to Selected Problems
Illustration Credits
Index




نظرات کاربران