دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Henry Clyde Foust III
سری:
ISBN (شابک) : 3030873862, 9783030873868
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 419
[408]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Thermodynamics, Gas Dynamics, and Combustion به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترمودینامیک، دینامیک گاز و احتراق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی به دانشآموزانی که برای اولین بار ترمودینامیک را مطالعه میکنند، یک پرایمر قابل دسترس و خواندنی در مورد این موضوع ارائه میکند. این کتاب در سه بخش نوشته شده است: بخش اول اصول ترمودینامیک را پوشش می دهد، بخش دوم در مورد دینامیک گاز است و بخش سوم بر احتراق تمرکز دارد. فصلها بهطور واضح و مختصر نوشته شدهاند و شامل مثالها و مسائلی برای پشتیبانی از مفاهیم مطرحشده در متن هستند. این کتاب با بحث در مورد مبانی ترمودینامیک آغاز می شود و شامل تجزیه و تحلیل کامل دستگاه های مهندسی است. این کتاب به برنامههای کاربردی در دینامیک گاز و احتراق میپردازد تا موضوعات پیشرفتهای مانند جریان بحرانی دو فازی و نظریه انفجار را شامل شود. این کتاب برای استفاده در دوره های مقدماتی ترمودینامیک، ترمودینامیک پیشرفته و مقدمه ای بر احتراق نوشته شده است، این کتاب به طور منحصر به فرد ترمودینامیک، دینامیک گاز و احتراق را به شیوه ای واضح و مختصر پوشش می دهد و اتصالات یکپارچه را در سطح پیشرفته کارشناسی یا کارشناسی ارشد نشان می دهد.
This textbook provides students studying thermodynamics for the first time with an accessible and readable primer on the subject. The book is written in three parts: Part I covers the fundamentals of thermodynamics, Part II is on gas dynamics, and Part III focuses on combustion. Chapters are written clearly and concisely and include examples and problems to support the concepts outlined in the text. The book begins with a discussion of the fundamentals of thermodynamics and includes a thorough analysis of engineering devices. The book moves on to address applications in gas dynamics and combustion to include advanced topics such as two-phase critical flow and blast theory. Written for use in Introduction to Thermodynamics, Advanced Thermodynamics, and Introduction to Combustion courses, this book uniquely covers thermodynamics, gas dynamics, and combustion in a clear and concise manner, showing the integral connections at an advanced undergraduate or graduate student level.
Preface Contents Part I: Fundamentals of Thermodynamics Chapter 1: Equations of State 1.1 Preview 1.2 Ideal Gas Law 1.3 Ideal Gas Law Applications 1.4 Lee/Kessler Charts 1.5 Cubic Equations of State 1.5.1 Van der Waal 1.5.2 Redlich-Kwong 1.5.3 Acentric Factor 1.5.4 Redlich-Kwong-Soave 1.6 Examples and Problems 1.6.1 Examples 1.6.2 Problems Appendix 1.1: Table of Ideal Gas Constants Appendix 1.2: Lee/Kessler Chart (website) Appendix 1.3: Virial Equations of State (website) Appendix 1.4: EOS (website) References Chapter 2: Heat and Work 2.1 Preview 2.2 Reversible and Irreversible Processes 2.3 Specific Heat, Internal Energy, and Enthalpy 2.4 Polytropic Processes and Work 2.5 Examples and Problems 2.5.1 Examples 2.5.2 Problems References Chapter 3: First Law of Thermodynamics 3.1 Preview 3.2 Linear Interpolation 3.3 Using Thermodynamic Tables or NIST Chemistry Webbook 3.4 Conservation of Mass 3.5 First Law 3.5.1 Control Volumes 3.5.2 Closed Systems 3.6 First Law, Open System 3.7 Engineering Devices 3.8 Cycles 3.9 Rankine Cycle 3.10 Problem Solving Procedure for Thermodynamics Problems 3.11 Examples and Problems 3.11.1 Examples 3.11.2 Problems Appendix 3.1: Rankine Cycle Worksheet Appendix 3.2: Linear Interpolation (website) References Chapter 4: Entropy and the Second Law of Thermodynamics 4.1 Preview 4.2 Reversible and Irreversible Systems 4.3 Carnot Heat Engine and Carnot Heat Pump 4.4 Clausius Inequality 4.4.1 Reversible Heat Engines 4.4.2 Irreversible Heat Engines 4.5 Definition of Entropy, Entropy as a State Function, and Area under T Vs. Ds Graphs 4.5.1 Definition of Entropy 4.5.2 Entropy as State Function 4.5.3 Graph of T Versus S 4.6 Second Law of Thermodynamics 4.7 Entropy of Solids and Liquids 4.8 Entropy of Gases 4.8.1 Entropy of an Ideal, Perfect Gas 4.8.2 Entropy Change of an Ideal, Non-Perfect Gas 4.9 Engineering Efficiency 4.9.1 Engineering Devices for Work out 4.9.2 Engineering Device for Work in 4.10 Examples and Problems 4.10.1 Examples 4.10.2 Problems References Chapter 5: Various Heat Engines and Refrigeration Cycles 5.1 Preview 5.2 Vapor Phase Cycles 5.2.1 Improvements to Rankine Cycle 5.2.2 Effects of Engineering Efficiency on Overall Thermal Efficiency 5.2.3 Reverse Rankine Cycle 5.3 Gas Cycles 5.3.1 Brayton Cycle 5.3.2 Reverse Brayton Cycle 5.4 Examples and Problems 5.4.1 Problems Appendix 5.1: Rankine Cycle Worksheet (website) Appendix 5.2: Reverse Rankine Cycle Worksheet (website) Appendix 5.3: Brayton Cycle Worksheet (website) References Chapter 6: Thermodynamic Properties and Gas Mixtures 6.1 Preview 6.2 Maxwell’s Equations 6.3 Enthalpy and Entropy as Functions of T and P 6.3.1 Enthalpy and Entropy Functions for Ideal, Perfect Gases 6.3.2 Enthalpy and Entropy Functions for Van der Waal Gas 6.4 Composition of Mixtures 6.4.1 Molar Basis 6.4.2 Mass Basis 6.5 Gas Mixtures, Part I 6.5.1 Ideal Gas Mixtures 6.5.2 Kay’s Rule 6.6 Gas Mixtures, Part II 6.7 Examples and Problems 6.7.1 Examples 6.7.2 Problems Appendix 6.1: Thermodynamic Relationships References Part II: Fundamentals of Gas Dynamics Chapter 7: Conservation Principles for a Gaseous System, Part I 7.1 Preview 7.2 Conservation Principles 7.2.1 Conservation of Energy 7.2.2 Conservation of Mass 7.2.3 Conservation of Momentum 7.3 Speed of Sound 7.3.1 Speed of Sound in an Ideal Gas 7.3.2 Speed of Sound in Liquids and Solids 7.4 Normal Shocks 7.5 Examples & Problems 7.5.1 Examples 7.5.2 Problems Appendix 7.1: Moving Shock Wave Frame of Reference Appendix 7.2: Moving Shock Wave Frame of Reference References Chapter 8: Conservation Principles for a Gaseous System, Part II 8.1 Preview 8.2 More General Conservation Principles for Detonations 8.2.1 Conservation of Mass 8.2.2 Conservation of Momentum 8.2.3 Conservation of Energy 8.2.4 Conservation of Energy for Detonation System 8.3 Reversible, Adiabatic (Isentropic) Compressible Flow 8.4 Mass Transfer 8.4.1 Fick’s Law and Species Conservation Principles 8.4.2 Understanding Diffusion from Kinetic Theory of Gases 8.5 More General Conservation Principles for Premixed Laminar Flames 8.5.1 Conservation of Mass 8.5.2 Conservation of Momentum 8.5.3 Conservation of Energy 8.6 More General Conservation Principles for a Non-premixed Laminar Flame 8.6.1 Conservation of Mass 8.6.2 Conservation of Momentum 8.6.3 Conservation of Energy 8.7 Problems References Chapter 9: Critical Flow 9.1 Preview 9.2 Effect of Area Changes on Gas Dynamic States 9.3 Ideal Gas 9.4 Van der Waal Gas 9.5 Liquid/Gas Flows 9.6 Speed of Sound in a Two-Phase Flow 9.7 Critical Flow for a Two-Phase Flow System 9.8 Problems Appendix 9.1: Critical Flow, Ideal Gas (website) Appendix 9.2: Speed of Sound in a Two-Phase Flow (website) Appendix 9.3: Omega Method (website) References Part III: Fundamentals of Combustion Chapter 10: Physically Based Combustion 10.1 Preview 10.2 Standard Rankine-Hugoniot Theory 10.2.1 Deriving the Rankine Line 10.2.2 Mass Flux 10.2.3 Derivation for −∆KE 10.2.4 Deriving the Hugoniot Curve 10.2.5 Delineating Combustion Regions 10.3 Chapman-Jouget (CJ) Point for Standard RH System 10.3.1 Derivation for X(cj) 10.3.2 Derivation for Ma(cj) 10.4 Partially Complete Reactions 10.5 Fay’s System and RH Theory 10.5.1 Rankine Line 10.5.2 Mass Flux 10.5.3 Deriving Hugoniot Curve 10.6 Determination of States to Include Ma(cj) 10.6.1 Determination of States without Thermodynamic Changes (Coleman) 10.6.2 Determination of States with Thermodynamic Changes (Adamson) 10.6.3 Ma(cj) for a Detonation System with and without Area Divergence 10.7 Problems Appendix 10.1: Derivation for Eq. 10.100 Appendix 10.2: More Exact Solution for CJ Conditions Appendix 10.3: Standard Rankine-Hugoniot Worksheet (website) Appendix 10.4: Partially Combusted Rankine-Hugoniot Worksheet (website) Appendix 10.5: Ma(cj) Worksheet (website) References Chapter 11: Combustion Chemistry 11.1 Preview 11.2 Stoichiometry 11.3 Enthalpy (Revisited) 11.3.1 Sensible Enthalpy 11.3.2 Latent Enthalpy 11.3.3 Enthalpy of Formation 11.4 Chemical Equilibrium 11.4.1 Gibb’s Free Energy and Chemical Potential 11.4.2 Chemical Reactions 11.4.3 Chemical Reactions and Gibb’s Free Energy 11.4.4 Fugacity 11.4.5 Chemical Equilibrium Constant 11.5 Chemical Kinetics 11.5.1 Reaction Fundamentals 11.5.2 Chemical Kinetic Complexity 11.5.3 Temperature Effects on Reaction Rates 11.6 Adiabatic Flame Temperature 11.6.1 Complete Reaction 11.6.2 Incomplete Reactions 11.7 Problems Appendix 11.1: Chemical Equilibrium (website) Appendix 11.2: Chemical Kinetics (website) References Chapter 12: Deflagration 12.1 Preview 12.2 Qualitative Differences Between Various Combustion Phenomena 12.3 Premixed Deflagration (Laminar Flames) 12.3.1 Mallard and Le Chatelier’s Laminar Flame Speed 12.3.2 Spalding’s Laminar Flame Speed Theory 12.3.3 Metghalachi and Keck’s Correlations for Laminar Flame Speed 12.4 Non-premixed Deflagration (Diffusion Flames) 12.4.1 Reacting, Constant Density Laminar Jet Flow (Burke and Schumann) 12.4.2 Reacting, Buoyant Laminar Jet Flow (Roper) 12.5 Problems Appendix 12.1: Laminar Flame Speed (website) Appendix 12.2: Laminar Flame Speed Correlations (website) Appendix 12.3: Burke and Schumann’s Model (website) Appendix 12.4: Roper’s Model (website) References Chapter 13: Detonations 13.1 Preview 13.2 Constant Volume Combustion 13.3 Constant Pressure Combustion 13.4 Illustrated Example 13.5 Dynamic Detonation Models 13.5.1 Introduction 13.5.2 Reaction Rates 13.5.3 Derivation of Dynamic Detonation Model 13.5.4 Dynamic Detonation Model with Single Reaction 13.5.5 Dynamic Detonation Model with Double Reactions 13.6 Detonation Structures 13.7 Problems Appendix 13.1: Illustrated Example (website) Appendix 13.2: Dynamic Detonation Model – One Step Model (website) References Chapter 14: Blast Waves 14.1 Preview 14.2 Euler’s Reactive Flow Equations 14.3 G.I. Taylor’s Blast Theory (G.I. Taylor) 14.3.1 Overview 14.3.2 Similarity Arguments 14.3.3 Numerical Solutions 14.3.4 Approximate Forms 14.3.5 Energy Released 14.4 More General Theory (JHS Lee) 14.4.1 Reduced Forms 14.4.2 Numerical Solutions 14.5 Illustrated Example (Explosions Associated with Rotating Stars) 14.5.1 Reduce Form 14.5.2 Numerical Solutions 14.5.3 Approximate Forms 14.6 Problems Appendix 14.1: Similarity Arguments (website) Appendix 14.2: GI Taylor’s Work (website) Appendix 14.3: JHS Lee’s Work (website) Appendix 14.4: Fisk, Tjandra and Vaughan’s Work (website) References Index