دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Valentin Molotnikov. Antonina Molotnikova
سری:
ISBN (شابک) : 9783030666217, 9783030666224
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 447
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Theory of Elasticity and Plasticity: A Textbook of Solid Body Mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه کشش و انعطاف پذیری: کتاب درسی مکانیک بدن جامد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به عنوان یک متن اصلی برای برنامههای درسی دانشگاه در مکانیک بدن جامد عمل میکند و در عین حال، دستاوردهای اصلی تحقیقات پیشرفته در مکانیک مواد الاستیک و غیر الاستیک را بررسی میکند. این هدف اخیر کتاب از طریق منابع کتابشناختی غنی که بسیاری از آنها از آثار خود نویسنده هستند به دست می آید. نویسندگان جدا از متون مشابه، در این جلد هیچ ادعایی در مورد یک نظریه جهانی منفرد در مورد پلاستیسیته وجود ندارد. با این حال، راهحلهایی برای برخی مشکلات جدید و ساخت مدلهای مفید هم از نظر آموزشی برای دانشجویان و هم از نظر کاربردی برای مهندسین طراحی حرفهای ارائه شده است. به عنوان مثال می توان به تصمیمات نویسندگان در مورد آزمایش برزیلی، پایداری قرار گرفتن در معرض سنگ، و پایه های شمع اشاره کرد. مطالب این کتاب که هم برای دانشجویان سطح بالا و هم برای متخصصان مکانیک بدنه سخت تغییر شکلپذیر طراحی شده است، منبعی برای موضوعات متعدد دورهها و تمرکز دیپلم است.
This book serves as a core text for university curricula in solid body mechanics and, at the same time, examines the main achievements of state of the art research in the mechanics of elastic and non-elastic materials. This latter goal of the book is achieved through rich bibliographic references, many from the authors’ own work. authors. Distinct from similar texts, there are no claims in this volume to a single universal theory of plasticity. However, solutions are given to some new problems and to the construction of models useful both in pedagogic terms for students and practical terms for professional design engineers. Examples include the authors’ decisions about the Brazilian test, stability of rock exposure, and pile foundations. Designed for both upper-level university students and specialists in the mechanics of deformable hard body, the material in this book serves as a source for numerous topics of course and diploma concentration.
Dedication Preface to the English-Language Edition Preface Abstract Contents Notation Conventions Loads and Stresses Deformations and Movements Physical and Mechanical Characteristics of Materials Part I Basis of Elasticity Theory 1 Summary of Elasticity Theory: Basic Concepts 1.1 From the History of Elasticity Theory 1.2 Elasticity of Solid Bodies 1.3 Homogeneous Strain 1.4 Internal Forces: Method of Sections 1.5 Homogeneous Body 1.6 Stress Vector 1.7 Elongation of Steel Specimens 1.8 Permanent Deformations 1.9 Elastic Limit 1.10 Elastic Shear Deformation 1.11 Law of Twoness of Tangential Stresses 1.12 Homogeneous Stressed State 1.13 Generalized Hooke's Law 1.14 Another Form of Hooke's Law 1.15 Plane Stress-Strain State 1.16 Homogeneous Model of a Solid Body 1.17 Axisymmetric Plane Strain 1.18 Lame Task 1.19 Phenomenon of Stress Concentration 1.20 Saint-Venant Principle References 2 The First Basic Problem of Elasticity Theory 2.1 Equilibrium Equations 2.2 Expression of Strains Through Movements 2.3 Definition of Movements 2.4 Saint-Venant Identities 2.5 Compatibility Conditions 2.6 Boundary Conditions 2.7 The First Basic Problem of Elasticity Theory References 3 The Second Primary Problem of Elasticity Theory 3.1 Definition of Stresses Through Deformations 3.2 Equations of Elastic Body Strain 3.3 Application of Harmonic Functions 3.4 Trefftz Integral 3.5 Grodsky–Neyber–Papkovich Integral References 4 Three-Dimensional Harmonic Function 4.1 Simplest Examples of Harmonic Functions 4.2 Green Function 4.3 Green's Spatial Functions 4.4 Boundary Problems for Half-Space 4.5 Other Properties of Harmonic Functions References 5 Elastic Half-Space 5.1 Volumetric Expansion on Surface 5.2 Stress on Surface 5.3 Strain of Elastic Half-Space 5.3.1 Integral Operator of Formulas (5.18)–(5.20) 5.4 Examples References 6 Herz's Task 6.1 Deformation of Adjoining Bodies 6.2 Primary Assumptions 6.3 Axisymmetric Hertz Problem 6.4 Compression of Orthogonal Cylinders 6.4.1 Simplest Case 6.4.2 Primary Case 6.5 Compression of Barrel-Shaped Bodies 6.5.1 Rotation Bodies with Parallel Axes 6.5.2 Case of Intersecting Axes 6.6 Elongated Contact Area 6.7 Compression of Parallel Cylinders References 7 Stressed State in a Body Point 7.1 Principal Stresses 7.2 Maximum Stresses 7.3 Intensity of Stresses 7.4 Some Properties of Tangential Stresses References 8 Linear Elastic Systems 8.1 General Comments 8.2 Linear System 8.3 Potential Energy of a Helical Spring 8.4 Principle of Mutuality of Works 8.5 Castigliano's Theorem 8.6 Specific Potential Energy of Elastic Deformation References 9 Plane Problem of Elasticity Theory 9.1 Functions of Stresses 9.1.1 Example 1: Concentrated Force in the Wedge Apex 9.1.2 Example 2: Wedge Bending by Uniform Pressure 9.2 Complex Representation of a Bi-Harmonic Function 9.3 Kolosov Displacement Integral 9.4 Action of Concentrated Force 9.5 Solution of the First Principal Problem for a Circle 9.6 Annex to the Brazilian Test References 10 Mathematical Structural Imperfections 10.1 Mathematical and Physical Theories of Structural Imperfections 10.2 Edge Dislocation in an Infinite Body 10.3 Mathematical Wedge-Shaped Dislocation 10.4 Mathematical Biclination 10.5 Flat Dislocation of Somigliana 10.6 Somigliana Dislocation in Half-Plane 10.6.1 Functions , for the Plane with Dislocation 10.6.2 Functions , for a Half-Plane with Dislocation 10.6.3 Calculation of Galin Functions 10.6.4 Completion of Problem Solution 10.6.5 Addition to Geomechanics 10.7 Pair of Fislocations in a Plane 10.8 Edge Dislocation in a Half-Plane 10.9 Half-Plane with a System of Dislocations References 11 The Beginning of the Theory of Stability of Equilibrium 11.1 Stability and Instability 11.2 Work and Classification of Forces 11.3 Stability with Conservative and Dissipative Forces 11.4 Lyapunov–Chetaev Theorem 11.5 Instability in the First Approximation 11.6 Critical Load 11.7 The Theorem on Stability by the First Approximation 11.8 The Raus–Hurwitz criterion 11.9 Main Types of Stability Loss 11.10 Methods for Determining Critical Load 11.11 The Perturbed Motion of the Compressed Rod 11.12 Stability Under Non-conservative Load (Example) 11.12.1 Equations of Perturbed Motion 11.12.2 Area of Valid Stability 11.12.3 Investigation of the Value μ, (Formula (11.31)) 11.12.4 Investigation of the Effect of Friction 11.12.5 The influence of the spacing of the End Masses References Part II Principal Variants of Mathematical Plasticity Theory 12 Origin and Development of Plasticity Theory 12.1 Primary Definitions 12.2 The Subject and Tasks of the Theory of Plasticity 12.3 Early Development Stages of Plasticity Theory 12.4 Development of Plasticity Theory in the Twentieth Century 12.5 Soviet Period of Plasticity Theory Development 12.6 Russian Mechanics in the Post-Soviet Period 12.6.1 General Situation and Dangerous Trends 12.6.2 Plasticity Theory in Russia in the Post-Soviet Period 12.7 Abstract References 13 Initial Concepts of Plasticity Theory 13.1 Second-Rank Tensor in Euclidean Space 13.2 Tensors in Plasticity Theory 13.3 Decomposition of Stress and Strain Tensors 13.4 Other Invariants in Plasticity Theory 13.5 On the Criterion of Similarity of Stress and Strain Deviators 13.6 Stress Diagrams and Their Idealization References 14 On the Plasticity Conditions of an Isotropic Body 14.1 General Considerations 14.2 General Notes 14.3 Tresca Plasticity Condition 14.4 Huber–Mises Plasticity Condition 14.5 Experimental Study of Elastic–Plastic Materials 14.6 Volumetric Elasticity of Materials 14.7 Invariant Form of Hooke's Law References 15 Plasticity Theory of Henky–Nadai–Ilyushin 15.1 Laws of Active Elastic–Plastic Deformation 15.2 Defining the Universal Hardening Function 15.3 Some Properties of the Hardening Function 15.4 Another Form of Strain Ratios 15.5 Unloading Laws 15.6 Work of Stresses, Potential Energy, and Potentials 15.6.1 Stress Potential 15.6.2 Potential of Strains 15.7 Theorem of the Minimal Work of Inner Forces 15.8 Lagrange Equilibrium Variation Equation 15.9 Setting Boundary Problems of Plasticity Theory 15.10 Theorem of Simple Loading 15.11 Theorem of Unloading References 16 Solution of the Simplest Problems for the Strain Theory of Plasticity 16.1 Pure Bending of a Straight Beam 16.2 Torsion of a Round-Section Beam 16.3 Elastic–Plastic Inflation of a Spherical Vessel 16.4 Symmetric Strain of a Cylindrical Tube 16.5 Torsion of a Beam of Ideally Plastic Material 16.5.1 Elastic Torsion: Prandtl Analogy 16.5.2 Elastic–Plastic Beam Torsion 16.6 Rod of a Variable Section: Method of Elastic Solutions 16.6.1 Preparation of Initial Ratios 16.6.2 Specification of Problem Setting 16.6.3 Algorithm of the Elastic Solutions Method References 17 Additions and Generalizations to the Strain Theory of Plasticity 17.1 Generalizations of Goldenblatt and Prager 17.2 Tensor–Linear Ratios in Plasticity Theories 17.3 Vector Representation of Tensors 17.4 Transformations of Rotation and Reflection 17.5 Ilyushin's Isotropy Postulate 17.6 Delay Law 17.7 Loading Surface 17.8 Drucker Postulate 17.9 On the Applicability Limits of the Strain Theory of Plasticity References 18 Theories of Plastic Yield 18.1 General Ratios 18.2 Prandtl–Reuss Yield 18.3 Saint-Venant–Mises Yield Theory 18.4 Plastic Yield in Isotropic Hardening 18.5 Handelman–Lin–Prager Plasticity Theory 18.6 Yield for Plane Loading Surfaces 18.7 Yield for Some Loading Surfaces 18.8 Kadashevich–Novozhilov Plasticity Theory 18.9 Singular Loading Surfaces References 19 Other Variants of Plasticity Theories 19.1 Batdorf–Budiansky Slip Theory 19.2 Two-Dimensional Klyushnikov Model 19.3 Endochronic Plasticity Theory 19.4 On the Methods of Physical Mesomechanics and Synergetics References Part III Development of the Slip Concept in Plasticity Theory 20 Problem Setting 20.1 Initial Concepts and Definitions 20.2 Shift Resistance 20.3 Slip Synthesis 20.4 Definition of Principal Strains References 21 Strain Specifics of Plastic Bodies 21.1 Elongation Diagram of a Plastic Material Specimen 21.2 Delay of Yield 21.3 Yield Stress and Loading Rate References 22 Axioms of the Inelastic Body Model 22.1 Deformational Softening 22.2 Initial Shear Resistance 22.3 Function of Elastic Softening References 23 The Fluidity at the Finite Speed of Loading 23.1 Yield Strength at the Final Loading Speed 23.2 Defining the Aging Function 23.2.1 Example 23.3 Components of Deformational Softening 23.4 Almost Simple Strain References 24 Specimen Elongation with Yield Drop 24.1 Original Assumption 24.2 Occurrence of Non-elastic Strain 24.3 Origins of Boundary Layer Theory 24.4 Simplified Model of Non-elastic Strain Growth 24.5 Definition of the Plastic Zone Growth Rate 24.6 Steady-State Yield 24.7 Building an Elongation Diagram References 25 Building a Shear Resistance Operator 25.1 General Form of the Shear Resistance Operator 25.2 Boundary Condition 25.3 Special Cases References 26 Full Bauschinger Effect 26.1 Secondary Yield Stress 26.2 Proportional Primary Loading 26.3 Proportional Loading of an Opposite Sign 26.4 Function in Almost Simple Strain References 27 Non-elastic Uniaxial Elongation–Compression 27.1 Calculating Slip Intensity 27.2 Calculation of the Integral (27.5) 27.3 Solving the Integral Equation 27.4 Study of the Tensor Intensity of Slips 27.5 Determinant Equations in Uniaxial Elongation 27.6 Plastic Strain in Loading and Compression 27.6.1 Increment of Non-elastic Strain in Loading 27.6.2 Strain in Compression 27.7 Strain Creep and Stress Relaxation 27.8 Examples of Building Diagrams in an Uniaxial Stressed State References 28 Module of Additional Orthogonal Load 28.1 Problem Statement 28.2 Determining the Intensity of Additional Slips 28.3 Calculation of the Strain Increments and Additional Loading Modulus 28.4 Analysis of Results and Conclusions References 29 Plane-Plastic Strain 29.1 Theorem of Strain in Pure Shear 29.2 General Dependencies in Pure Shear 29.3 Monotonous Plane-Plastic Strain 29.3.1 Preparation of Initial Dependencies 29.3.2 Determinant Ratios 29.3.3 Continuity Condition 29.3.4 Monotony Conditions References Part IV Non-elastic Strain of Geomaterials 30 Complex Strain of Soils 30.1 Real State of the Mechanics of Non-elastic Strains 30.2 Simple Strain Model of Hardening Dense Soils 30.3 Defining the Form of the Function G 30.3.1 Building the G Function for a Material with High Hardening 30.3.2 Universal G Function for Hardening Soils References 31 Simple Loadings of Geomaterials 31.1 Uniaxial Compression 31.2 Creep in Uniaxial Compression 31.3 Uniaxial Elongation 31.4 Pure Shift 31.5 Determination of Model Parameters 31.6 Comparison of Experimental and Calculation Results References 32 On Boundary Value Problems of Inelastic Body Mechanics 32.1 General Formulation of the Problem of Inelastic Solid Mechanics 32.2 More About the Method of Elastic Solutions 32.3 An Example of Using the Birger Method 32.3.1 The Initial Stage of the Process with Linear Hardening 32.3.2 Case of Semi-Infinite Plastic Zone 32.3.3 Auxiliary Task 32.3.4 Final Length of the Plastic Zone 32.3.5 The Dependence of the Tensile Force and Pressure p on the Length of the Plastic Zone 32.4 Perfectly Plastic Body Case 32.5 Using the Kröner Theory of Residual Stresses 32.6 Kröner Method for Plane Deformation 32.7 More About Incompatible Deformations 32.7.1 Distributed Wedge Dislocations 32.7.2 Strain Incompatibility Tensor 32.8 The Application of Kröner's Method to the Brazilian Test 32.8.1 Zero Approximation 32.8.2 Green's Tensor Function for a Circle 32.8.3 Definition of Deformation in a First Approximation References Index