ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Workflow of Data Analysis Using Stata

دانلود کتاب گردش کار تجزیه و تحلیل داده ها با استفاده از Stata

The Workflow of Data Analysis Using Stata

مشخصات کتاب

The Workflow of Data Analysis Using Stata

دسته بندی: سازمان و پردازش داده ها
ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 1597180475, 9781597180474 
ناشر: Stata Press 
سال نشر: 2009 
تعداد صفحات: 411 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 28,000



کلمات کلیدی مربوط به کتاب گردش کار تجزیه و تحلیل داده ها با استفاده از Stata: ریاضی و آمار، نرم افزار، کامپیوتر و فناوری، احتمال و آمار، کاربردی، ریاضیات، علوم و ریاضی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب The Workflow of Data Analysis Using Stata به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب گردش کار تجزیه و تحلیل داده ها با استفاده از Stata نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب گردش کار تجزیه و تحلیل داده ها با استفاده از Stata



جریان کاری تجزیه و تحلیل داده ها با استفاده از Stata، نوشته جی. اسکات لانگ، یک ابزار بهره وری ضروری برای تحلیلگران داده است. لانگ درس‌های به‌دست‌آمده از تجربه‌اش را ارائه می‌کند و نحوه طراحی و اجرای گردش‌های کاری کارآمد را برای پروژه‌های تک نفره و پروژه‌های تیمی نشان می‌دهد. پس از معرفی گردش کار و توضیح اینکه چگونه یک گردش کار بهتر می تواند کار با داده ها را آسان تر کند، لانگ برنامه ریزی، سازماندهی و مستندسازی کار شما را شرح می دهد. سپس نحوه نوشتن و اشکال زدایی Stata do-file و نحوه استفاده از ماکروهای محلی و سراسری را معرفی می کند. پس از بحث در مورد قراردادهایی که تجزیه و تحلیل داده ها را بسیار ساده می کند، نویسنده تمیز کردن، تجزیه و تحلیل و محافظت از داده ها را پوشش می دهد.


توضیحاتی درمورد کتاب به خارجی

The Workflow of Data Analysis Using Stata, by J. Scott Long, is an essential productivity tool for data analysts. Long presents lessons gained from his experience and demonstrates how to design and implement efficient workflows for both one-person projects and team projects. After introducing workflows and explaining how a better workflow can make it easier to work with data, Long describes planning, organizing, and documenting your work. He then introduces how to write and debug Stata do-files and how to use local and global macros. After a discussion of conventions that greatly simplify data analysis the author covers cleaning, analyzing, and protecting data.



فهرست مطالب

List of tables
List of figures
List of examples
Preface
A word about fonts, files, commands, and examples
1 Introduction
1.1 Replication: The guiding principle for workflow 
1.2 Steps in the workflow 
1.2.1 Cleaning data 
1.2.2 Running analysis 
1.2.3 Presenting results 
1.2.4 Protecting files
1.3 Tasks within each step 
1.3.1 Planning 
1.3.2 Organization 
1.3.3 Documentation 
1.3.4 Execution
1.4 Criteria for choosing a workflow 
1.4.1 Accuracy 
1.4.2 Efficiency 
1.4.3 Simplicity 
1.4.4 Standardization 
1.4.5 Automation 
1.4.6 Usability 
1.4.7 Scalability 
1.5 Changing your workflow 
1.6 How the book is organized
2 Planning, organizing, and documenting
2.1 The cycle of data analysis 
2.2 Planning 
2.3 Organization 
2.3.1 Principles for organization 
2.3.2 Organizing files and directories 
2.3.3 Creating your directory structure 
A directory structure for a small project 
A directory structure for a large, one-person project 
Directories for collaborative projects 
Special-purpose directories 
Remembering what directories contain 
Planning your directory structure 
Naming files 
Batch files 
2.3.4 Moving into a new directory structure (advanced topic) 
Example of moving into a new directory structure
2.4 Documentation 
2.4.1 What should you document? 
2.4.2 Levels of documentation 
2.4.3 Suggestions for writing documentation 
Evaluating your documentation 
2.4.4 The research log 
A sample page from a research log 
A template for research logs 
2.4.5 Codebooks 
A codebook based on the survey instrument 
2.4.6 Dataset documentation 
2.5 Conclusions 
3 Writing and debugging do-files
3.1 Three ways to execute commands 
3.1.1 The Command window 
3.1.2 Dialog boxes 
3.1.3 Do-files 
3.2 Writing effective do-files 
3.2.1 Making do-files robust 
Make do-files self-contained 
Use version control 
Exclude directory information 
Include seeds for random numbers 
3.2.2 Making do-files legible 
Use lots of comments 
Use alignment and indentation 
Use short lines 
Limit your abbreviations 
Be consistent 
3.2.3 Templates for do-files 
Commands that belong in every do-file 
A template for simple do-files 
A more complex do-file template 
3.3 Debugging do-files 
3.3.1 Simple errors and how to fix them 
Log file is open 
Log file already exists 
Incorrect command name 
Incorrect variable name 
Incorrect option 
Missing comma before options 
3.3.2 Steps for resolving errors 
Step 1: Update Stata and user-written programs 
Step 2: Start with a clean slate 
Step 3: Try other data 
Step 4: Assume everything could be wrong 
Step 5: Run the program in steps 
Step 6: Exclude parts of the do-file 
Step 7: Starting over 
Step 8: Sometimes it is not your mistake 
3.3.3 Example 1: Debugging a subtle syntax error 
3.3.4 Example 2: Debugging unanticipated results 
3.3.5 Advanced methods for debugging 
3.4 How to get help 
3.5 Conclusions 
4 Automating your work
4.1 Macros 
4.1.1 Local and global macros 
Local macros 
Global macros 
Using double quotes when defining macros 
Creating long strings 
4.1.2 Specifying groups of variables and nested models 
4.1.3 Setting options with locals 
4.2 Information returned by Stata commands 
Using returned results with local macros 
4.3 Loops: foreach and forvalues 
The foreach command 
The forvalues command 
4.3.1 Ways to use loops 
Loop example 1: Listing variable and value labels 
Loop example 2: Creating interaction variables 
Loop example 3: Fitting models with alternative measures of education
Loop example 4: Recoding multiple variables the same way 
Loop example 5: Creating a macro that holds accumulated information 
Loop example 6: Retrieving information returned by Stata 
4.3.2 Counters in loops 
Using loops to save results to a matrix 
4.3.3 Nested loops 
4.3.4 Debugging loops 
4.4 The include command 
4.4.1 Specifying the analysis sample with an include file 
4.4.2 Recoding data using include files 
4.4.3 Caution when using include files 
4.5 Ado-files 
4.5.1 A simple program to change directories 
4.5.2 Loading and deleting ado-files 
4.5.3 Listing variable names and labels 
4.5.4 A general program to change your working directory 
4.5.5 Words of caution 
4.6 Help files 
4.6.1 nmlabel.hlp 
4.6.2 help me 
4.7 Conclusions 
5 Names, notes, and labels
5.1 Posting files 
5.2 The dual workflow of data management and statistical analysis 
5.3 Names, notes, and labels 
5.4 Naming do-files 
5.4.1 Naming do-files to re-create datasets 
5.4.2 Naming do-files to reproduce statistical analysis 
5.4.3 Using master do-files 
Master log files 
5.4.4 A template for naming do-files 
Using subdirectories for complex analysis 
5.5 Naming and internally documenting datasets 
Never name it final! 
5.5.1 One time only and temporary datasets 
5.5.2 Datasets for larger projects 
5.5.3 Labels and notes for datasets 
5.5.4 The datasignature command 
A workflow using the datasignature command 
Changes datasignature does not detect 
5.6 Naming variables 
5.6.1 The fundamental principle for creating and naming variables 
5.6.2 Systems for naming variables 
Sequential naming systems 
Source naming systems 
Mnemonic naming systems 
5.6.3 Planning names 
5.6.4 Principles for selecting names 
Anticipate looking for variables 
Use simple, unambiguous names 
Try names before you decide 
5.7 Labeling variables 
5.7.1 Listing variable labels and other information 
Changing the order of variables in your dataset 
5.7.2 Syntax for label variable 
5.7.3 Principles for variable labels 
Beware of truncation 
Test labels before you post the file 
5.7.4 Temporarily changing variable labels 
5.7.5 Creating variable labels that include the variable name 
5.8 Adding notes to variables 
5.8.1 Commands for working with notes 
Listing notes 
Removing notes 
Searching notes 
5.8.2 Using macros and loops with notes 
5.9 Value labels 
5.9.1 Creating value labels is a two-step process 
Step 1: Defining labels 
Step 2: Assigning labels 
Why a two-step system? 
Removing labels 
5.9.2 Principles for constructing value labels 
1) Keep labels short 
2) Include the category number 
3) Avoid special characters 
4) Keeping track of where labels are used 
5.9.3 Cleaning value labels 
5.9.4 Consistent value labels for missing values 
5.9.5 Using loops when assigning value labels 
5.10 Using multiple languages 
5.10.1 Using label language for different written languages 
5.10.2 Using label language for short and long labels 
5.11 A workflow for names and labels 
Step 1: Plan the changes 
Step 2: Archive, clone, and rename 
Step 3: Revise variable labels 
Step 4: Revise value labels 
Step 5: Verify the changes 
5.11.1 Step 1: Check the source data 
Step 1a: List the current names and labels 
Step 1b: Try the current names and labels 
5.11.2 Step 2: Create clones and rename variables 
Step 2a: Create clones 
Step 2b: Create rename commands 
Step 2c: Rename variables 
5.11.3 Step 3: Revise variable labels 
Step 3a: Create variable-label commands 
Step 3b: Revise variable labels 
5.11.4 Step 4: Revise value labels 
Step 4a: List the current labels 
Step 4b: Create label define commands to edit 
Step 4c: Revise labels and add them to dataset 
5.11.5 Step 5: Check the new names and labels 
5.12 Conclusions 
6 Cleaning your data
6.1 Importing data 
6.1.1 Data formats 
ASCII data formats 
Binary-data formats 
6.1.2 Ways to import data 
Stata commands to import data 
Using other statistical packages to export data 
Using a data conversion program 
6.1.3 Verifying data conversion 
Converting the ISSP 2002 data from Russia 
6.2 Verifying variables 
6.2.1 Values review 
Values review of data about the scientific career 
Values review of data on family values 
6.2.2 Substantive review 
What does time to degree measure? 
Examining high-frequency values 
Links among variables 
Changes in survey questions 
6.2.3 Missing-data review 
Comparisons and missing values 
Creating indicators of whether cases are missing 
Using extended missing values 
Verifying and expanding missing-data codes 
Using include files 
6.2.4 Internal consistency review 
Consistency in data on the scientific career 
6.2.5 Principles for fixing data inconsistencies 
6.3 Creating variables for analysis 
6.3.1 Principles for creating new variables 
New variables get new names 
Verify that new variables are correct 
Document new variables 
Keep the source variables 
6.3.2 Core commands for creating variables 
The generate command 
The clonevar command 
The replace command 
6.3.3 Creating variables with missing values 
6.3.4 Additional commands for creating variables 
The recode command 
The egen command 
The tabulate, generate() command 
6.3.5 Labeling variables created by Stata 
6.3.6 Verifying that variables are correct 
Checking the code 
Listing variables 
Plotting continuous variables 
Tabulating variables 
Constructing variables multiple ways 
6.4 Saving datasets 
6.4.1 Selecting observations 
Deleting cases versus creating selection variables 
6.4.2 Dropping variables 
Selecting variables for the ISSP 2002 Russian data 
6.4.3 Ordering variables 
6.4.4 Internal documentation 
6.4.5 Compressing variables 
6.4.6 Running diagnostics 
The codebook, problem command 
Checking for unique ID variables 
6.4.7 Adding a data signature 
6.4.8 Saving the file 
6.4.9 After a file is saved 
6.5 Extended example of preparing data for analysis 
Creating control variables 
Creating binary indicators of positive attitudes 
Creating four-category scales of positive attitudes 
6.6 Merging files 
6.6.1 Match-merging 
Sorting the ID variable 
6.6.2 One-to-one merging 
Combining unrelated datasets 
6.6.3 Forgetting to match-merge 
6.7 Conclusions 
7 Analyzing data and presenting results
7.1 Planning and organizing statistical analysis 
7.1.1 Planning in the large 
7.1.2 Planning in the middle 
7.1.3 Planning in the small 
7.2 Organizing do-files 
7.2.1 Using master do-files 
7.2.2 What belongs in your do-file? 
7.3 Documentation for statistical analysis 
7.3.1 The research log and comments in do-files 
7.3.2 Documenting the provenance of results 
Captions on graphs 
7.4 Analyzing data using automation 
7.4.1 Locals to define sets of variables 
7.4.2 Loops for repeated analyses 
Computing t tests using loops 
Loops for alternative model specifications 
7.4.3 Matrices to collect and print results 
Collecting results of t tests 
Saving results from nested regressions 
Saving results from different transformations of articles 
7.4.4 Creating a graph from a matrix 
7.4.5 Include files to load data and select your sample 
7.5 Baseline statistics 
7.6 Replication 
7.6.1 Lost or forgotten files 
7.6.2 Software and version control 
7.6.3 Unknown seed for random numbers 
Bootstrap standard errors 
Letting Stata set the seed 
Training and confirmation samples 
7.6.4 Using a global that is not in your do-file 
7.7 Presenting results 
7.7.1 Creating tables 
Using spreadsheets 
Regression tables with esttab 
7.7.2 Creating graphs 
Colors, black, and white 
Font size 
7.7.3 Tips for papers and presentations 
Papers 
Presentations 
7.8 A project checklist 
7.9 Conclusions 
8 Protecting your files
8.1 Levels of protection and types of files 
8.2 Causes of data loss and issues in recovering a file 
8.3 Murphy’s law and rules for copying files 
8.4 A workflow for file protection 
Part 1: Mirroring active storage 
Part 2: Offline backups 
8.5 Archival preservation 
8.6 Conclusions 
9 Conclusions
A How Stata works
A.1 How Stata works 
Stata directories 
The working directory 
A.2 Working on a network 
A.3 Customizing Stata 
A.3.1 Fonts and window locations 
A.3.2 Commands to change preferences 
Options that can be set permanently 
Options that need to be set each session 
A.3.3 profile.do 
Function keys 
A.4 Additional resources 
References
Author index
Subject index




نظرات کاربران