دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سازمان و پردازش داده ها ویرایش: 1 نویسندگان: James Scott Long سری: ISBN (شابک) : 1597180475, 9781597180474 ناشر: Stata Press سال نشر: 2009 تعداد صفحات: 411 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
کلمات کلیدی مربوط به کتاب گردش کار تجزیه و تحلیل داده ها با استفاده از Stata: ریاضی و آمار، نرم افزار، کامپیوتر و فناوری، احتمال و آمار، کاربردی، ریاضیات، علوم و ریاضی
در صورت تبدیل فایل کتاب The Workflow of Data Analysis Using Stata به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گردش کار تجزیه و تحلیل داده ها با استفاده از Stata نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جریان کاری تجزیه و تحلیل داده ها با استفاده از Stata، نوشته جی. اسکات لانگ، یک ابزار بهره وری ضروری برای تحلیلگران داده است. لانگ درسهای بهدستآمده از تجربهاش را ارائه میکند و نحوه طراحی و اجرای گردشهای کاری کارآمد را برای پروژههای تک نفره و پروژههای تیمی نشان میدهد. پس از معرفی گردش کار و توضیح اینکه چگونه یک گردش کار بهتر می تواند کار با داده ها را آسان تر کند، لانگ برنامه ریزی، سازماندهی و مستندسازی کار شما را شرح می دهد. سپس نحوه نوشتن و اشکال زدایی Stata do-file و نحوه استفاده از ماکروهای محلی و سراسری را معرفی می کند. پس از بحث در مورد قراردادهایی که تجزیه و تحلیل داده ها را بسیار ساده می کند، نویسنده تمیز کردن، تجزیه و تحلیل و محافظت از داده ها را پوشش می دهد.
The Workflow of Data Analysis Using Stata, by J. Scott Long, is an essential productivity tool for data analysts. Long presents lessons gained from his experience and demonstrates how to design and implement efficient workflows for both one-person projects and team projects. After introducing workflows and explaining how a better workflow can make it easier to work with data, Long describes planning, organizing, and documenting your work. He then introduces how to write and debug Stata do-files and how to use local and global macros. After a discussion of conventions that greatly simplify data analysis the author covers cleaning, analyzing, and protecting data.
List of tables List of figures List of examples Preface A word about fonts, files, commands, and examples 1 Introduction 1.1 Replication: The guiding principle for workflow 1.2 Steps in the workflow 1.2.1 Cleaning data 1.2.2 Running analysis 1.2.3 Presenting results 1.2.4 Protecting files 1.3 Tasks within each step 1.3.1 Planning 1.3.2 Organization 1.3.3 Documentation 1.3.4 Execution 1.4 Criteria for choosing a workflow 1.4.1 Accuracy 1.4.2 Efficiency 1.4.3 Simplicity 1.4.4 Standardization 1.4.5 Automation 1.4.6 Usability 1.4.7 Scalability 1.5 Changing your workflow 1.6 How the book is organized 2 Planning, organizing, and documenting 2.1 The cycle of data analysis 2.2 Planning 2.3 Organization 2.3.1 Principles for organization 2.3.2 Organizing files and directories 2.3.3 Creating your directory structure A directory structure for a small project A directory structure for a large, one-person project Directories for collaborative projects Special-purpose directories Remembering what directories contain Planning your directory structure Naming files Batch files 2.3.4 Moving into a new directory structure (advanced topic) Example of moving into a new directory structure 2.4 Documentation 2.4.1 What should you document? 2.4.2 Levels of documentation 2.4.3 Suggestions for writing documentation Evaluating your documentation 2.4.4 The research log A sample page from a research log A template for research logs 2.4.5 Codebooks A codebook based on the survey instrument 2.4.6 Dataset documentation 2.5 Conclusions 3 Writing and debugging do-files 3.1 Three ways to execute commands 3.1.1 The Command window 3.1.2 Dialog boxes 3.1.3 Do-files 3.2 Writing effective do-files 3.2.1 Making do-files robust Make do-files self-contained Use version control Exclude directory information Include seeds for random numbers 3.2.2 Making do-files legible Use lots of comments Use alignment and indentation Use short lines Limit your abbreviations Be consistent 3.2.3 Templates for do-files Commands that belong in every do-file A template for simple do-files A more complex do-file template 3.3 Debugging do-files 3.3.1 Simple errors and how to fix them Log file is open Log file already exists Incorrect command name Incorrect variable name Incorrect option Missing comma before options 3.3.2 Steps for resolving errors Step 1: Update Stata and user-written programs Step 2: Start with a clean slate Step 3: Try other data Step 4: Assume everything could be wrong Step 5: Run the program in steps Step 6: Exclude parts of the do-file Step 7: Starting over Step 8: Sometimes it is not your mistake 3.3.3 Example 1: Debugging a subtle syntax error 3.3.4 Example 2: Debugging unanticipated results 3.3.5 Advanced methods for debugging 3.4 How to get help 3.5 Conclusions 4 Automating your work 4.1 Macros 4.1.1 Local and global macros Local macros Global macros Using double quotes when defining macros Creating long strings 4.1.2 Specifying groups of variables and nested models 4.1.3 Setting options with locals 4.2 Information returned by Stata commands Using returned results with local macros 4.3 Loops: foreach and forvalues The foreach command The forvalues command 4.3.1 Ways to use loops Loop example 1: Listing variable and value labels Loop example 2: Creating interaction variables Loop example 3: Fitting models with alternative measures of education Loop example 4: Recoding multiple variables the same way Loop example 5: Creating a macro that holds accumulated information Loop example 6: Retrieving information returned by Stata 4.3.2 Counters in loops Using loops to save results to a matrix 4.3.3 Nested loops 4.3.4 Debugging loops 4.4 The include command 4.4.1 Specifying the analysis sample with an include file 4.4.2 Recoding data using include files 4.4.3 Caution when using include files 4.5 Ado-files 4.5.1 A simple program to change directories 4.5.2 Loading and deleting ado-files 4.5.3 Listing variable names and labels 4.5.4 A general program to change your working directory 4.5.5 Words of caution 4.6 Help files 4.6.1 nmlabel.hlp 4.6.2 help me 4.7 Conclusions 5 Names, notes, and labels 5.1 Posting files 5.2 The dual workflow of data management and statistical analysis 5.3 Names, notes, and labels 5.4 Naming do-files 5.4.1 Naming do-files to re-create datasets 5.4.2 Naming do-files to reproduce statistical analysis 5.4.3 Using master do-files Master log files 5.4.4 A template for naming do-files Using subdirectories for complex analysis 5.5 Naming and internally documenting datasets Never name it final! 5.5.1 One time only and temporary datasets 5.5.2 Datasets for larger projects 5.5.3 Labels and notes for datasets 5.5.4 The datasignature command A workflow using the datasignature command Changes datasignature does not detect 5.6 Naming variables 5.6.1 The fundamental principle for creating and naming variables 5.6.2 Systems for naming variables Sequential naming systems Source naming systems Mnemonic naming systems 5.6.3 Planning names 5.6.4 Principles for selecting names Anticipate looking for variables Use simple, unambiguous names Try names before you decide 5.7 Labeling variables 5.7.1 Listing variable labels and other information Changing the order of variables in your dataset 5.7.2 Syntax for label variable 5.7.3 Principles for variable labels Beware of truncation Test labels before you post the file 5.7.4 Temporarily changing variable labels 5.7.5 Creating variable labels that include the variable name 5.8 Adding notes to variables 5.8.1 Commands for working with notes Listing notes Removing notes Searching notes 5.8.2 Using macros and loops with notes 5.9 Value labels 5.9.1 Creating value labels is a two-step process Step 1: Defining labels Step 2: Assigning labels Why a two-step system? Removing labels 5.9.2 Principles for constructing value labels 1) Keep labels short 2) Include the category number 3) Avoid special characters 4) Keeping track of where labels are used 5.9.3 Cleaning value labels 5.9.4 Consistent value labels for missing values 5.9.5 Using loops when assigning value labels 5.10 Using multiple languages 5.10.1 Using label language for different written languages 5.10.2 Using label language for short and long labels 5.11 A workflow for names and labels Step 1: Plan the changes Step 2: Archive, clone, and rename Step 3: Revise variable labels Step 4: Revise value labels Step 5: Verify the changes 5.11.1 Step 1: Check the source data Step 1a: List the current names and labels Step 1b: Try the current names and labels 5.11.2 Step 2: Create clones and rename variables Step 2a: Create clones Step 2b: Create rename commands Step 2c: Rename variables 5.11.3 Step 3: Revise variable labels Step 3a: Create variable-label commands Step 3b: Revise variable labels 5.11.4 Step 4: Revise value labels Step 4a: List the current labels Step 4b: Create label define commands to edit Step 4c: Revise labels and add them to dataset 5.11.5 Step 5: Check the new names and labels 5.12 Conclusions 6 Cleaning your data 6.1 Importing data 6.1.1 Data formats ASCII data formats Binary-data formats 6.1.2 Ways to import data Stata commands to import data Using other statistical packages to export data Using a data conversion program 6.1.3 Verifying data conversion Converting the ISSP 2002 data from Russia 6.2 Verifying variables 6.2.1 Values review Values review of data about the scientific career Values review of data on family values 6.2.2 Substantive review What does time to degree measure? Examining high-frequency values Links among variables Changes in survey questions 6.2.3 Missing-data review Comparisons and missing values Creating indicators of whether cases are missing Using extended missing values Verifying and expanding missing-data codes Using include files 6.2.4 Internal consistency review Consistency in data on the scientific career 6.2.5 Principles for fixing data inconsistencies 6.3 Creating variables for analysis 6.3.1 Principles for creating new variables New variables get new names Verify that new variables are correct Document new variables Keep the source variables 6.3.2 Core commands for creating variables The generate command The clonevar command The replace command 6.3.3 Creating variables with missing values 6.3.4 Additional commands for creating variables The recode command The egen command The tabulate, generate() command 6.3.5 Labeling variables created by Stata 6.3.6 Verifying that variables are correct Checking the code Listing variables Plotting continuous variables Tabulating variables Constructing variables multiple ways 6.4 Saving datasets 6.4.1 Selecting observations Deleting cases versus creating selection variables 6.4.2 Dropping variables Selecting variables for the ISSP 2002 Russian data 6.4.3 Ordering variables 6.4.4 Internal documentation 6.4.5 Compressing variables 6.4.6 Running diagnostics The codebook, problem command Checking for unique ID variables 6.4.7 Adding a data signature 6.4.8 Saving the file 6.4.9 After a file is saved 6.5 Extended example of preparing data for analysis Creating control variables Creating binary indicators of positive attitudes Creating four-category scales of positive attitudes 6.6 Merging files 6.6.1 Match-merging Sorting the ID variable 6.6.2 One-to-one merging Combining unrelated datasets 6.6.3 Forgetting to match-merge 6.7 Conclusions 7 Analyzing data and presenting results 7.1 Planning and organizing statistical analysis 7.1.1 Planning in the large 7.1.2 Planning in the middle 7.1.3 Planning in the small 7.2 Organizing do-files 7.2.1 Using master do-files 7.2.2 What belongs in your do-file? 7.3 Documentation for statistical analysis 7.3.1 The research log and comments in do-files 7.3.2 Documenting the provenance of results Captions on graphs 7.4 Analyzing data using automation 7.4.1 Locals to define sets of variables 7.4.2 Loops for repeated analyses Computing t tests using loops Loops for alternative model specifications 7.4.3 Matrices to collect and print results Collecting results of t tests Saving results from nested regressions Saving results from different transformations of articles 7.4.4 Creating a graph from a matrix 7.4.5 Include files to load data and select your sample 7.5 Baseline statistics 7.6 Replication 7.6.1 Lost or forgotten files 7.6.2 Software and version control 7.6.3 Unknown seed for random numbers Bootstrap standard errors Letting Stata set the seed Training and confirmation samples 7.6.4 Using a global that is not in your do-file 7.7 Presenting results 7.7.1 Creating tables Using spreadsheets Regression tables with esttab 7.7.2 Creating graphs Colors, black, and white Font size 7.7.3 Tips for papers and presentations Papers Presentations 7.8 A project checklist 7.9 Conclusions 8 Protecting your files 8.1 Levels of protection and types of files 8.2 Causes of data loss and issues in recovering a file 8.3 Murphy’s law and rules for copying files 8.4 A workflow for file protection Part 1: Mirroring active storage Part 2: Offline backups 8.5 Archival preservation 8.6 Conclusions 9 Conclusions A How Stata works A.1 How Stata works Stata directories The working directory A.2 Working on a network A.3 Customizing Stata A.3.1 Fonts and window locations A.3.2 Commands to change preferences Options that can be set permanently Options that need to be set each session A.3.3 profile.do Function keys A.4 Additional resources References Author index Subject index