ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Organic Chemistry of Sugars

دانلود کتاب شیمی آلی قندها

The Organic Chemistry of Sugars

مشخصات کتاب

The Organic Chemistry of Sugars

دسته بندی: شیمی ارگانیک
ویرایش: 1 
نویسندگان: ,   
سری:  
ISBN (شابک) : 0824753550, 9781420027952 
ناشر:  
سال نشر: 2005 
تعداد صفحات: 870 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 28 مگابایت 

قیمت کتاب (تومان) : 38,000



کلمات کلیدی مربوط به کتاب شیمی آلی قندها: شیمی و صنایع شیمیایی، شیمی آلی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 24


در صورت تبدیل فایل کتاب The Organic Chemistry of Sugars به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی آلی قندها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شیمی آلی قندها

ویراستاران شیمی آلی قندها که به همان اندازه ماهیت پیچیده آن را مجذوب خود کرده اند، منبعی پیشگامانه در شیمی کربوهیدرات گردآوری کرده اند که نشان دهنده سهولت دستکاری قندها در انواع واکنش های آلی است. هر فصل شامل مثال‌های متعددی است که روش‌ها و استراتژی‌هایی را نشان می‌دهد که شیمی آلی اصلی را برای اصلاح شیمیایی قندها اعمال می‌کند. این کتاب ابتدا کشف، توسعه و تأثیر کربوهیدرات ها را توضیح می دهد، و سپس در مورد استراتژی های محافظت از گروه، تکنیک های گلیکوزیلاسیون و سنتز الیگوساکاریدها بحث می کند. چندین فصل بر واکنش‌هایی تمرکز دارند که قندها و کربوهیدرات‌ها را به مولکول‌های غیر کربوهیدراتی تبدیل می‌کنند، از جمله جایگزینی گروه‌های هیدروکسیل قند به گروه‌های جدید با علاقه مصنوعی یا بیولوژیکی، سیکلیتول‌ها و کرباسوگرها، و همچنین جایگزین‌های هترواتم درون حلقه‌ای. فصول بعدی استفاده از قندها در کاتالیز کایرال، نقش آنها به عنوان مواد اولیه مناسب برای سنتزهای پیچیده شامل مراکز استریوژنیک متعدد، و سنتز برای مونوساکاریدها را نشان می دهد. فصول پایانی بر فناوری‌های جدید و نوظهور، از جمله رویکردهای شیمی کربوهیدرات ترکیبی، اهمیت بیولوژیکی و سنتز شیمیایی گلیکوپپتیدها، و مفهوم دارویی مهم گلیکومیمتیک تمرکز دارند. شیمی آلی قندها با ارائه شیمی آلی قندها به عنوان راه حلی برای بسیاری از چالش های پیچیده مصنوعی، شیمی آلی قندها یک درمان جامع از دستکاری قندها و اهمیت آنها در شیمی آلی اصلی ارائه می دهد. دانیل ای. لوی، سردبیر سری کشف دارو، بنیانگذار DEL BioPharma، یک سرویس مشاوره برای برنامه های کشف دارو است. او همچنین وبلاگی دارد که شیمی آلی را بررسی می کند.


توضیحاتی درمورد کتاب به خارجی

Intrigued as much by its complex nature as by its outsider status in traditional organic chemistry, the editors of The Organic Chemistry of Sugars compile a groundbreaking resource in carbohydrate chemistry that illustrates the ease at which sugars can be manipulated in a variety of organic reactions. Each chapter contains numerous examples demonstrating the methods and strategies that apply mainstream organic chemistry to the chemical modification of sugars. The book first describes the discovery, development, and impact of carbohydrates, followed by a discussion of protecting group strategies, glycosylation techniques, and oligosaccharide syntheses. Several chapters focus on reactions that convert sugars and carbohydrates to non-carbohydrate molecules including the substitution of sugar hydroxyl groups to new groups of synthetic or biological interest, cyclitols and carbasugars, as well as endocyclic heteroatom substitutions. Subsequent chapters demonstrate the use of sugars in chiral catalysis, their roles as convenient starting materials for complex syntheses involving multiple stereogenic centers, and syntheses for monosaccharides. The final chapters focus on new and emerging technologies, including approaches to combinatorial carbohydrate chemistry, the biological importance and chemical synthesis of glycopeptides, and the medicinally significant concept of glycomimetics. Presenting the organic chemistry of sugars as a solution to many complex synthetic challenges, The Organic Chemistry of Sugars provides a comprehensive treatment of the manipulation of sugars and their importance in mainstream organic chemistry. Daniel E. Levy, editor of the Drug Discovery Series, is the founder of DEL BioPharma, a consulting service for drug discovery programs. He also maintains a blog that explores organic chemistry.



فهرست مطالب

The organic chemistry of sugars
	The Organic Chemistry of Sugars
		Table of Contents
		Dedications
		Foreword
		Preface
		About the Editors
		Contributors
DK3103_CH01
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Part I: A Discussion of Carbohydrate Chemistry
		Chapter 01: An Historical Overview
			1.1 INTRODUCTION
			1.2 THE BEGINNINGS
			1.3 THE ERA OF EMIL FISCHER
			1.4 THE POST-FISCHER ERA
			1.5 NEW METHODS: NEW THINKING
			1.6 NEW HORIZONS: GLYCOBIOLOGY
			1.7 THE BEGINNING OF THE 21ST CENTURY
			1.8 POSTSCRIPT
			ACKNOWLEDGMENT
			REFERENCES
DK3103_CH02
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 02: Introduction to Carbohydrates
			2.1 DEFINITIONS AND CONVENTIONS
			2.2 ACYCLIC DERIVATIVES
				2.2.1 RULES OF THE FISCHER PROJECTION
				2.2.2 TRIVIAL AND SYSTEMATIC NAMES
				2.2.3 ABSOLUTE AND RELATIVE CONFIGURATION
				2.2.4 DEPICTION OF THE CONFORMATION OF OPEN CHAIN CARBOHYDRATES
				2.2.5 THE NEWMAN PROJECTION
			2.3 CYCLIC DERIVATIVES
				2.3.1 RULES OF THE FISCHER PROJECTION
				2.3.2 MUTAROTATION
				2.3.3 THE HAWORTH PROJECTION
				2.3.4 THE MILLS PROJECTION
				2.3.5 THE REEVES PROJECTION
				2.3.6 CONFORMATIONS OF THE SIX- MEMBERED RINGS
				2.3.7 CONFORMATIONS OF THE FIVE-MEMBERED RINGS
				2.3.8 CONFORMATIONS OF THE SEVEN- MEMBERED RINGS
				2.3.9 CONFORMATIONS OF FUSED RINGS
				2.3.10 STERIC FACTORS
				2.3.11 The ANOMERIC AND EXO-ANOMERIC EFFECTS
			2.4 DEFINITION AND NOMENCLATURE OF DI- AND OLIGOSACCHARIDES
				2.4.1 DISACCHARIDES
				2.4.2 OLIGOSACCHARIDES
			FURTHER READING
DK3103_CH03
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 03: Protective Group Strategies
			3.1 INTRODUCTION
			3.2 PROTECTING GROUPS
				3.2.1 HYDROXYL PROTECTING GROUPS
					3.2.1.1 Permanent Protecting Groups
						3.2.1.1.1 Esters (Acetates and Benzoates)
						3.2.1.1.2 Ethers (Benzyl Groups)
						3.2.1.1.3 Cyclic Acetals
					3.2.1.2 Temporary Protecting Groups
						3.2.1.2.1 Esters
						3.2.1.2.2 Ethers
						3.2.1.2.3 Acetals
						3.2.1.2.4 Miscellaneous Protecting Groups
				3.2.2 ANOMERIC (HEMIACETAL) PROTECTING GROUPS
				3.2.3 AMINO PROTECTING GROUPS
				3.2.4 CARBOXYL PROTECTING GROUPS
			3.3 SELECTIVE PROTECTION METHODOLOGIES (REGIOSELECTIVE PROTECTION OF HYDROXYL GROUPS)
				3.3.1 SELECTIVE PROTECTION
					3.3.1.1 Utilizing the Different Reactivity of OH-Groups
					3.3.1.2 Stannyl Activation
					3.3.1.3 Phase-Transfer Alkylations and Acylations
					3.3.1.4 Cu(II) Activation
					3.3.1.5 Reductive Opening of Acetals
					3.3.1.6 Orthoester Opening
				3.3.2 SELECTIVE DEPROTECTION
			3.4 SELECTIVE PROTECTION STRATEGIES
				3.4.1 MONOSACCHARIDES
					3.4.1.1 Galactosides
					3.4.1.2 Mannosides
					3.4.1.3 Glucosides
				3.4.2 DISACCHARIDES
					3.4.2.1 Lactose
					3.4.2.2 Sucrose
				3.4.3 OLIGOSACCHARIDES
					3.4.3.1 Lewisx
			3.5 SUMMARY AND CONCLUSIONS
			REFERENCES
DK3103_CH04
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 04: Glycosylation Methods
			4.1 INTRODUCTION
			4.2 STEREOCHEMICAL ASPECTS OF GLYCOSIDE BOND FORMATION
			4.3 GLYCOSYLATIONS BY NUCLEOPHILIC SUBSTITUTIONS AT THE ANOMERIC CARBON
				4.3.1 SYNTHESIS OF GLYCOSIDES FROM GLYCOSYL HALIDES
					4.3.1.1 Glycosyl Bromides and Chlorides
					4.3.1.2 Glycosyl Fluorides
					4.3.1.3 Glycosyl Iodides
				4.3.2 SYNTHESIS OF GLYCOSIDES FROM ANOMERIC T HIO DERIVATIVES
					4.3.2.1 Thioglycosides
					4.3.2.2 Glycosyl Sulfoxides and Sulfones
					4.3.2.3 Other Anomeric Thio Derivatives
				4.3.3 SYNTHESIS OF GLYCOSIDES FROM ANOMERIC O-DERIVATIVES
					4.3.3.1 Glycosyl Imidates
						4.3.3.1.1 Glycosyl Acetimidates
						4.3.3.1.2 Glycosyl Trichloroacetimidates
						4.3.3.1.3 Glycosyl Trifluoroacetimidates
					4.3.3.2 Glycosyl Esters
					4.3.3.3 O-Glycosides
						4.3.3.3.1 n-Pentenyl Glycosides
						4.3.3.3.2 Enol Ether-Type Glycosides
	4.3.3.3.3 Heteroaryl Glycosides
						4.3.3.3.4 Dinitrosalicylate Glycosides
						4.3.3.3.5 2'-Carboxybenzyl Glycosides
						4.3.3.3.6 Other O-Glycosides
					4.3.3.4 Hemiacetals
						4.3.3.4.1 Glycosylation of Unprotected Sugars — Fischer Glycosylation
						4.3.3.4.2 Activation via Glycosyl Halides
						4.3.3.4.3 Activation via Glycosyl Sulfonates
						4.3.3.4.4 Activation via Oxophosphonium Intermediates
						4.3.3.4.5 Activation via Oxosulfonium Intermediates
						4.3.3.4.6 Activation with Lewis Acids
						4.3.3.4.7 Other Methods of Activation
					4.3.3.5 1,2-Anhydro Derivatives
					4.3.3.6 Glycosyl Phosphites, Phosphates and Other Phosphorus Compounds
						4.3.3.6.1 Glycosyl Phosphites
						4.3.3.6.2 Glycosyl Phosphates
						4.3.3.6.3 Other Phosphorus Compounds
					4.3.3.7 Orthoesters and Related Derivatives
					4.3.3.8 Carbonates and Related Derivatives
					4.3.3.9 Silyl Ethers
					4.3.3.10 Oxazolines
					4.3.3.11 Other Glycosyl Donors with Glycosyl– Oxygen Bonds
				4.3.4 SYNTHESIS OF GLYCOSIDES FROM DONORS WITH OTHER HETEROATOMS AT THE ANOMERIC CENTER
					4.3.4.1 Selenoglycosides and Telluroglycosides
					4.3.4.2 Glycosyl Donors with Nitrogen at the Anomeric Center
			4.4 GLYCOSYLATIONS BY NUCLEOPHILIC SUBSTITUTION AT THE AGLYCONE CARBON
			4.5 SYNTHESIS OF GLYCOSIDES BY ADDITION REACTIONS
			4.6 OTHER GLYCOSYLATION METHODS
			4.7 SUMMARY AND OUTLOOK
			REFERENCES
DK3103_CH05
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 05: Oligosaccharide Synthesis
			5.1 INTRODUCTION
			5.2 GENERAL CONCEPT OF OLIGOSACCHARIDE SYNTHESIS
			5.3 STEPWISE AND BLOCK SYNTHESES OF OLIGOSACCHARIDES
			5.4 GLYCOSYLATION STRATEGIES IN BLOCK SYNTHESES
				5.4.1 REACTIVATION BY EXCHANGE OF THE ANOMERIC SUBSTITUENT
				5.4.2 SEQUENTIAL GLYCOSYLATIONS WITH DIFFERENT TYPES OF GLYCOSYL DONORS
				5.4.3 TWO- STAGE ACTIVATION
				5.4.4 ORTHOGONAL GLYCOSYLATIONS
				5.4.5 ARMED–DISARMED GLYCOSYLATIONS
				5.4.6 ACTIVE–LATENT GLYCOSYLATIONS
			5.5 METHODS AND TECHNIQUES IN OLIGOSACCHARIDE SYNTHESIS
				5.5.1 INTRAMOLECULAR AGLYCONE DELIVERY
				5.5.2 ONE-POT MULTISTEP GLYCOSYLATIONS
				5.5.3 POLYMER-SUPPORTED AND SOLID-PHASE OLIGOSACCHARIDE SYNTHESIS
			5.6 SUMMARY AND OUTLOOK
			REFERENCES
DK3103_CH06
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Part II: From Sugars to Sugar-Like Structures to Non-Sugars
		Chapter 06: Functionalization of Sugars
			6.1 INTRODUCTION
				6.1.1 DEFINITION OF CONCEPT
				6.1.2 SN2 REACTIONS
			6.2 SPECIAL CONSIDERATIONS WITH SUGARS
				6.2.1 AXIAL VS. EQUATORIAL  APPROACH
				6.2.2 SUBSTITUTION VS. ELIMINATION
				6.2.3 NEIGHBORING GROUP PARTICIPATION
					6.2.3.1 Esters
					6.2.3.2 Amides
					6.2.3.3 Nucleotides
			6.3 FORMATION OF LEAVING GROUPS
				6.3.1 HALIDES AS LEAVING GROUPS
				6.3.2 SULFONATES AS LEAVING GROUPS
				6.3.3 EPOXYSUGARS (ANHYDRO SUGARS)
				6.3.4 OTHER LEAVING GROUPS (MITSUNOBU REACTION, CHLOROSULFATE ESTERS, CYCLIC SULFATES)
			6.4 HALOGENATION REACTIONS
				6.4.1 SN2 DISPLACEMENTS OF SULFONATES
				6.4.2 SN2 OPENING OF EPOXIDES
				6.4.3 USE OF ALKYLPHOSPHONIUM SALTS
				6.4.4 USE OF CHLOROSULFATE ESTERS
				6.4.5 USE OF IMINOESTERS AND SULFONYLCHLORIDES
				6.4.6 FLUORINATION REACTIONS
				6.4.7 HALOGENATION OF O-BENZYLIDENE ACETALS
				6.4.8 RADICAL PROCESSES
			6.5 REACTIONS INVOLVING NITROGEN
				6.5.1 SN2 REACTIONS
				6.5.2 FORMATION OF NITROSUGARS
				6.5.3 THE MITSUNOBU REACTION
			6.6 REACTIONS INVOLVING OXYGEN AND SULFUR
				6.6.1 MANIPULATION OF SUGAR HYDROXYL GROUPS
					6.6.1.1 Formation of Epoxysugars (Anhydrosugars)
					6.6.1.2 Ring Opening of Epoxides
					6.6.1.3 Inversion of Stereocenters
				6.6.2 DEOXYGENATION REACTIONS
					6.6.2.1 Removal of Hydroxyl Groups
					6.6.2.2 Elimination/Dehydration to Olefins
						6.6.2.2.1 1,2-Unsaturated Sugars (Glycals)
						6.6.2.2.2 2,3-Unsaturated Sugars
						6.6.2.2.3 3,4-Unsaturated Sugars
						6.6.2.2.4 4,5-Unsaturated Sugars
						6.6.2.2.5 5,6-Unsaturated Sugars
				6.6.3 SULFURATION REACTIONS
				6.6.4 DESULFURATION REACTIONS
			6.7 FORMATION OF CARBON–CARBON BONDS
				6.7.1 ADDITION OF NUCLEOPHILES
					6.7.1.1 Grignard Reagents
					6.7.1.2 Organosodium, Organolithium and Organopotassium Reagents
					6.7.1.3 Cuprates
					6.7.1.4 Sulfur Ylide Epoxidations/Wittig Reactions on Epoxides
				6.7.2 CONDENSATION REACTIONS
					6.7.2.1 The Cyanohydrin Chain Extension
					6.7.2.2 The Nitromethane Condensation
				6.7.3 WITTIG /HORNER–EMMONS REACTIONS
				6.7.4 CLAISEN REARRANGEMENTS
			6.8 REDUCTIONS AND OXIDATIONS
				6.8.1 REDUCTION REACTIONS
					6.8.1.1 Reduction of Halides and Sulfonates
					6.8.1.2 Reduction of Epoxides
					6.8.1.3 Reduction of Olefins
						6.8.1.3.1 Catalytic Methods
						6.8.1.3.2 Hydroborations
				6.8.2 OXIDATION REACTIONS
			6.9 REARRANGEMENTS AND ISOMERIZATIONS
				6.9.1 BASE CATALYZED ISOMERIZATIONS
				6.9.2 THE AMADORI REARRANGEMENT
			6.10 CONCLUSION
			REFERENCES
DK3103_CH07
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 07: Strategies towards C-Glycosides
			7.1 INTRODUCTION
				7.1.1 DEFINITION AND NOMENCLATURE OF C-GLYCOSIDES
				7.1.2 O-GLYCOSIDES VS. C-GLYCOSIDES: COMPARISONS OF PHYSICAL PROPERTIES, ANOMERIC EFFECTS, H-BONDING ABILITIES, STABILITIES AND CONFORMATIONS
				7.1.3 NATURAL OCCURRING C-GLYCOSIDES
				7.1.4 C-GLYCOSIDES AS STABLE PHARMACOPHORES
			7.2 SYNTHESIS OF C-GLYCOSIDES VIA ELECTROPHILIC SUBSTITUTIONS
				7.2.1 ANOMERIC ACTIVATING GROUPS AND STEREOSELECTIVITY
				7.2.2 CYANATION REACTIONS
					7.2.2.1 Cyanation Reactions on Activated Glycosyl Derivatives
					7.2.2.2 Cyanation Reactions on Glycals
					7.2.2.3 Cyanation Reactions on Activated Furanosides
					7.2.2.4 Cyanation Reactions with Metallocyanide Reagents
					7.2.2.5 Other Cyanation Reactions
					7.2.2.6 Cyanoglycoside Transformations
				7.2.3 ALKYLATION, ALLENYLATION, ALLYLATION AND ALKYNATION REACTIONS
					7.2.3.1 Use of Activated Glycosyl Derivatives and Anionic Nucleophiles
					7.2.3.2 Use of Activated Glycosyl Derivatives and Organometallic Reagents
					7.2.3.3 Use of Modified Sugars and Anionic Nucleophiles
					7.2.3.4 Lewis Acid-Mediated Couplings with Olefins
				7.2.4 ARYLATION REACTIONS
					7.2.4.1 Reactions with Metallated Aryl Compounds
					7.2.4.2 Electrophilic Aromatic Substitutions
					7.2.4.3 Intramolecular Electrophilic Aromatic Substitutions
					7.2.4.4 O-C Migrations
				7.2.5 REACTIONS WITH ENOL ETHERS, SILYLENOL ETHERS AND ENAMINES
					7.2.5.1 Reactions with Enolates
					7.2.5.2 Reactions with Silylenol Ethers
					7.2.5.3 Reactions with Enamines
				7.2.6 NITROALKYLATION REACTIONS
				7.2.7 REACTIONS WITH ALLYLIC ETHERS
				7.2.8 WITTIG REACTIONS WITH LACTOLS
					7.2.8.1 Wittig Reactions
					7.2.8.2 Horner– Emmons Reactions
					7.2.8.3 Reactions with Sulfur Ylides
				7.2.9 NUCLEOPHILIC ADDITIONS TO SUGAR LACTONES FOLLOWED BY LACTOL REDUCTIONS
					7.2.9.1 Lewis Acid-Trialkylsilane Reductions
					7.2.9.2 Other Reductions
					7.2.9.3 Sugar–Sugar Couplings
				7.2.10 NUCLEOPHILIC ADDITIONS TO SUGARS CONTAINING ENONES
				7.2.11 TRANSITION METAL-MEDIATED CARBON MONOXIDE INSERTIONS
					7.2.11.1 Manganese Glycosides
					7.2.11.2 Cobalt-Mediated Glycosidations
				7.2.12 REACTIONS INVOLVING ANOMERIC CARBENES
				7.2.13 REACTIONS INVOLVING EXOANOMERIC METHYLENES
			7.3 SYNTHESIS OF C-GLYCOSIDES VIA NUCLEOPHILIC SUGAR SUBSTITUTIONS
				7.3.1 C-1 LITHIATED ANOMERIC CARBANIONS BY DIRECT METAL EXCHANGE
					7.3.1.1 Hydrogen–Metal Exchanges
					7.3.1.2 Metal–Metal Exchanges
					7.3.1.3 Halogen–Metal Exchanges
				7.3.2 C-1 LITHIATED ANOMERIC CARBANIONS BY REDUCTION
				7.3.3 C-1 CARBANIONS STABILIZED BY SULFONES, SULFOXIDES, CARBOXYL AND NITRO GROUPS
					7.3.3.1 Sulfone Stabilized Anions
					7.3.3.2 Sulfide and Sulfoxide Stabilized Anions
					7.3.3.3 Carboxy Stabilized Anions
					7.3.3.4 Nitro Stabilized Anions
			7.4 SYNTHESIS OF C-GLYCOSIDES VIA TRANSITION METAL-BASED METHODOLOGIES
				7.4.1 DIRECT COUPLING OF GLYCALS WITH ARYL GROUPS
					7.4.1.1 Arylation Reactions with Unsubstituted Aromatic Rings
					7.4.1.2 Arylation Reactions with Metallated Aromatic Rings
					7.4.1.3 Arylation Reactions with Halogenated Aromatic Rings
				7.4.2 COUPLING OF SUBSTITUTED GLYCALS WITH ARYL GROUPS
				7.4.3 COUPLING OF p -ALLYL COMPLEXES OF GLYCALS
			7.5 SYNTHESIS OF C-GLYCOSIDES VIA ANOMERIC RADICALS
				7.5.1 SOURCES OF ANOMERIC RADICALS AND STEREOCHEMICAL CONSEQUENCES
					7.5.1.1 Nitroalkyl C-Glycosides as Radical Sources
					7.5.1.2 Radicals from Activated Sugars
				7.5.2 ANOMERIC COUPLINGS WITH RADICAL ACCEPTORS
					7.5.2.1 Non-Halogenated Radical Sources
					7.5.2.2 Glycosyl Halides as Radical Sources
				7.5.3 INTRAMOLECULAR RADICAL REACTIONS
			7.6 SYNTHESIS OF C-GLYCOSIDES VIA REARRANGEMENTS AND CYCLOADDITIONS
				7.6.1 REARRANGEMENTS BY SUBSTITUENT CLEAVAGE AND RECOMBINATION
					7.6.1.1 Wittig Rearrangements
					7.6.1.2 Carbenoid Rearrangements
				7.6.2 ELECTROCYCLIC REARRANGEMENTS INVOLVING GLYCALS
				7.6.3 REARRANGEMENTS FROM THE 2-HYDROXYL GROUP
			7.7 SYNTHESIS OF C-GLYCOSIDES VIA FORMATION OF THE SUGAR RING
				7.7.1 WITTIG REACTIONS OF LACTOLS FOLLOWED BY RING CLOSURES
				7.7.2 ADDITION OF GRIGNARD AND ORGANOZINC REAGENTS TO LACTOLS
				7.7.3 CYCLIZATION OF SUITABLY SUBSTITUTED POLYOLS
					7.7.3.1 Cyclizations via Ether Formations
					7.7.3.2 Cyclizations via Ketal Formations
					7.7.3.3 Cyclizations via Halide Displacements
				7.7.4 REARRANGEMENTS
					7.7.4.1 Electrocyclic Rearrangements
					7.7.4.2 Ring Contractions
					7.7.4.3 Other Rearrangements
				7.7.5 CYCLOADDITIONS
				7.7.6 OTHER METHODS FOR THE FORMATION OF SUGAR RINGS
			7.8 FURTHER READING
			ACKNOWLEDGMENT
			REFERENCES
DK3103_CH08
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 08: From Sugars to Carba-Sugars
			8.1 INTRODUCTION
			8.2 WHY SYNTHESIZE CARBA-SUGARS?
				8.2.1 CARBA- MONOSACCHARIDES
				8.2.2 CARBA- OLIGOSACCHARIDES
				8.2.3 CARBA- GLYCOSYL-PHOSPHATES
			8.3 SYNTHESIS OF CARBA-SUGARS FROM SUGARS
				8.3.1 CYCLIZATION OF OPEN-CHAIN SUGARS
					8.3.1.1 Carbanionic Cyclizations
						8.3.1.1.1 Malonates
						8.3.1.1.2 The Use of Nitro Groups
						8.3.1.1.3 Phosphorus Ylides
						8.3.1.1.4 Incorporation of Aldol Methodology
					8.3.1.2 Carbocationic Cyclizations
					8.3.1.3 Radical Cyclizations
					8.3.1.4 Ring-Closing Metathesis
					8.3.1.5 SmI2-Mediated Pinacol Coupling
				8.3.2 REARRANGEMENTS OF CYCLIC SUGARS
					8.3.2.1 The Ferrier-II Rearrangement
					8.3.2.2 Endocylic Cleavage Induced Rearrangements
					8.3.2.3 The Claisen Rearrangement
			8.4 CONCLUSION
			REFERENCES
DK3103_CH09
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 09: Sugars with Endocyclic Heteroatoms Other than Oxygen
			9.1 INTRODUCTION
			9.2 THIOSUGARS WITH SULFUR IN THE RING
				9.2.1 FURANOID SYSTEMS
					9.2.1.1 4-Thioaldopentoses, 4-Thiopentonolactones and Derivatives
					9.2.1.2 4-Thioaldohexoses and Derivatives
					9.2.1.3 5-Thioketopentoses, 5-Thioketohexoses and Derivatives
				9.2.2 PYRANOID SYSTEMS — 5-THIOALDOHEXOSES, 6-THIOKETOHEXOSES AND DERIVATIVES
				9.2.3 SEPTANOSES AND DERIVATIVES
				9.2.4 EXAMPLES OF GLYCOMIMETICS WITH SULFUR IN THE RING
					9.2.4.1 Natural Products
					9.2.4.2 Synthetic Compounds
						9.2.4.2.1 Glycosidase Inhibitors
						9.2.4.2.2 Other Compounds
						9.2.4.2.3 Glycosyl Transferase Substrates
						9.2.4.2.4 Nucleosides
			9.3 IMINOSUGARS
				9.3.1 TYPICAL APPROACHES TO IMINOSUGARS AND ANALOGS
				9.3.2 BIOLOGICAL ACTIVITIES AND APPLICATIONS
					9.3.2.1 Glycosidase Inhibitory Activities
					9.3.2.2 Antidiabetic Properties
					9.3.2.3 Inhibition of Glycoprotein Processing
					9.3.2.4 Anti-Infective Properties
						9.3.2.4.1 Antiviral Activities
							9.3.2.4.1.1 a -Glucosidase Inhibitors.
							9.3.2.4.1.2 a - L -Fucosidase Inhibitors.
							9.3.2.4.1.3 Neuraminidase Inhibitors — Siastatin B and Derivatives.
						9.3.2.4.2 Compounds with (Potential) Antibacterial Activities
							9.3.2.4.2.1 UDP-Gal Mutase Inhibitors.
							9.3.2.4.2.2 Inhibitors of Bacterial Cell Wall Biosynthesis.
						9.3.2.4.3 Compounds with Antifungal and/or Antiprotozoan Activities
						9.3.2.4.4 Others
							9.3.2.4.4.1 Plant Growth Reducing Activity.
							9.3.2.4.4.2 Nematicidal Properties.
							9.3.2.4.4.3 Insect Antifeedant Activity.
			9.4 OTHER HETEROATOMS IN THE RING
			9.5 FURTHER READING
			REFERENCES
DK3103_CH10
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Part III: Sugars as Tools, Chiral Pool Starting Materials and Formidable Synthetic Targets
		Chapter 10: Sugars as Chiral Auxiliaries
			10.1 INTRODUCTION
			10.2 ASYMMETRIC CYCLOADDITION REACTIONS
				10.2.1 [2+1] CYCLOADDITIONS
				10.2.2 [2+2] CYCLOADDITIONS
				10.2.3 [3+2] CYCLOADDITIONS
					10.2.3.1 Carbohydrate-Linked Nitrones
					10.2.3.2 Carbohydrate-Linked Dipolarophiles
				10.2.4 [4+2] CYCLOADDITIONS (DIELS–ALDER REACTIONS)
				10.2.5 HETERO DIELS – ALDER REACTIONS
			10.3 STEREOSELECTIVE ADDITION AND SUBSTITUTION REACTIONS
				10.3.1 ADDITIONS TO GLYCOSYL IMINES AND OTHER NUCLEOPHILIC ADDITIONS
				10.3.2 CONJUGATE ADDITIONS
					10.3.2.1 Conjugate Additions to Bicyclic Carbohydrate Oxazolidinones
					10.3.2.2 Synthesis of Enantiomerically Pure Alkaloids Using Carbohydrate Auxiliaries
				10.3.3 REACTIONS INVOLVING ENOLATES
					10.3.3.1 Alkylations
					10.3.3.2 Halogenations and Acylations
					10.3.3.3 Aldol Reactions
			10.4 REARRANGEMENT REACTIONS
			10.5 RADICAL REACTIONS
			10.6 MISCELLANEOUS APPLICATIONS OF CARBOHYDRATE AUXILIARIES
			10.7 CONCLUSION
			REFERENCES
DK3103_CH11
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 11: Sugars as Chiral Starting Materials in Enantiospecific Synthesis
			11.1 INTRODUCTION
			11.2 CARBOHYDRATES AS SOURCES OF CARBON ATOMS IN TOTAL SYNTHESES
			11.3 BRANCHING A CARBON CHAIN ON THE CARBOHYDRATE RING
				11.3.1 USING EPOXIDES
				11.3.2 USING UNSATURATED CARBOHYDRATES
					11.3.2.1 Using Enones
					11.3.2.2 Using Allylic Esters
				11.3.3 USING KETO-SUGARS
					11.3.3.1 Nucleophilic Additions to Keto-Sugars
					11.3.3.2 Wittig Type Olefinations
				11.3.4 USING CARBOHYDRATES AS NUCLEOPHILES
				11.3.5 USING REARRANGEMENTS
			11.4 CHAIN EXTENSIONS OF SUGARS
				11.4.1 CHAIN EXTENSIONS AT THE PRIMARY CARBON ATOM
					11.4.1.1 Using Nucleophilic Additions to Aldehydes
					11.4.1.2 Using Wittig Olefinations
					11.4.1.3 Direct Substitutions at the Primary Carbon Atom
				11.4.2 CHAIN EXTENSIONS AT THE ANOMERIC CENTER
					11.4.2.1 Using Dithioacetals
					11.4.2.2 Using Wittig Olefinations
					11.4.2.3 Miscellaneous Methods
			11.5 CREATION OF C-GLYCOSIDIC BONDS
				11.5.1 CREATION OF C-GLYCOSIDIC BONDS WITH RETENTION OF THE ANOMERIC HYDROXYL GROUP
				11.5.2 CREATION OF C-GLYCOSIDIC BONDS WITH REPLACEMENT OF THE ANOMERIC HYDROXYL GROUP
					11.5.2.1 Cyclization Reactions
					11.5.2.2 Direct C-Glycosylations
						11.5.2.2.1 Allylations
						11.5.2.2.2 Anomeric Anions
						11.5.2.2.3 Rearrangements
						11.5.2.2.4 Radical Reactions
						11.5.2.2.5 Direct Olefination of Lactones
						11.5.2.2.6 Miscellaneous Methods
			11.6 FORMATION OF CARBOCYCLES
				11.6.1 CARBOCYCLIZATION OF THE SUGAR BACKBONE
					11.6.1.1 Ferrier Carbocyclization
					11.6.1.2 Radical Cyclizations
					11.6.1.3 Aldolisation and Related Methods
				11.6.2 ANNULATION REACTIONS ON THE SUGAR TEMPLATE
					11.6.2.1 Cycloadditions
					11.6.2.2 Anionic Cyclizations
					11.6.2.3 Radical Cyclizations
			11.7 CONCLUSIONS
			REFERENCES
DK3103_CH12
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 12: Synthesis of Carbohydrate Containing Complex Natural Compounds
			12.1 INTRODUCTION
			12.2 O-GLYCOSIDE ANTIBIOTICS
				12.2.1 METHYMYCIN
				12.2.2 ERYTHROMYCIN A
				12.2.3 TYLOSIN
				12.2.4 MYCINAMICINS IV AND VII
				12.2.5 AVERMECTINS
				12.2.6 EFROTOMYCIN
				12.2.7 AMPHOTERICIN B
				12.2.8 ELAIOPHYLIN
				12.2.9 CYTOVARICIN
				12.2.10 CALICHEAMICIN yI1
				12.2.11 NEOCARZINOSTATIN CHROMOPHORE
				12.2.12 ELEUTHEROBIN
				12.2.13 OLIVOMYCIN A
				12.2.14 EVERNINOMICIN 13,284-1
				12.2.15 POLYCAVERNOSIDE A
				12.2.16 VANCOMYCIN
				12.2.17 APOPTOLIDIN
			12.3 C-GLYCOSIDE ANTIBIOTICS
				12.3.1 VINEOMYCINONE B2 METHYL ESTER
				12.3.2 MEDERMYCIN
				12.3.3 URDAMYCINONE B
				12.3.4 GILVOCARCIN M
			12.4 OTHERS
				12.4.1 BIDESMOSIDIC TRITERPENE  APONIN
				12.4.2 DIGITOXIN
			12.5 CONCLUDING REMARKS
			REFERENCES
DK3103_CH13
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 13: Total Asymmetric Synthesis of Monosaccharides and Analogs
			13.1 INTRODUCTION
			13.2 THE FORMOSE REACTION
			13.3 PREBIOTIC SYNTHESIS OF CARBOHYDRATES
			13.4 ALDOLASE-CATALYZED ASYMMETRIC ALDOL CONDENSATIONS
				13.4.1 RESOLUTION OF RACEMIC ALDEHYDES
				13.4.2 ONE-POT TOTAL SYNTHESES OF CARBOHYDRATES
				13.4.3 SYNTHESIS OF 1,5-DIDEOXY-1,5-IMINOALDITOLS
				13.4.4 SYNTHESIS OF 2,5-DIDEOXY-2,5-IMINOALDITOLS
				13.4.5 SYNTHESIS OF DEOXY-THIOHEXOSES
			13.5 CHAIN ELONGATION OF ALDEHYDES THROUGH NUCLEOPHILIC ADDITIONS
				13.5.1 TOTAL SYNTHESIS OF D- AND L-GLYCERALDEHYDE AND OTHER C-3 ALDOSE DERIVATIVES
				13.5.2 ONE-CARBON HOMOLOGATION OF ALDOSES: THE THIAZOLE-BASED METHOD
				13.5.3 OTHER METHODS OF ONE-CARBON CHAIN ELONGATION OF ALDOSES
				13.5.4 ADDITIONS OF ENANTIOMERICALLY PURE ONE-CARBON SYNTHONS
				13.5.5 TWO-CARBON CHAIN ELONGATION OF ALDEHYDES
					13.5.5.1 Asymmetric Aldol Reactions
					13.5.5.2 Nucleophilic Additions to Enantiomerically Pure Aldehydes
					13.5.5.3 Nitro-Aldol Condensations
					13.5.5.4 Nucleophilic Additions of Enantiomerically Pure Enolates
					13.5.5.5 Aldehyde Olefinations and Asymmetric Epoxidations
					13.5.5.6 Aldehyde Olefinations and Dihydroxylations
					13.5.5.7 Aldehyde Olefinations and Conjugate Additions
					13.5.5.8 Allylation and Subsequent Ozonolysis
				13.5.6 THREE-CARBON CHAIN ELONGATIONS
					13.5.6.1 Allylmetal Additions
					13.5.6.2 Wittig–Horner–Emmons Olefinations
					13.5.6.3 Aldol Reactions
					13.5.6.4 Propenyllithium Additions to Carboxylic Esters
				13.5.7 FOUR-CARBON CHAIN ELONGATIONS
					13.5.7.1 But-2-en-1-yl Metal Additions
					13.5.7.2 Nucleophilic Additions of a -Furyl Derivatives
					13.5.7.3 Hydroxyalkylation of Pyrrole Derivatives
				13.5.8 SYNTHESIS OF BRANCHED-CHAIN MONOSACCHARIDES FROM C3-ALDOSES
			13.6 HETERO DIELS–ALDER ADDITIONS
				13.6.1 ACHIRAL ALDEHYDES AS DIENOPHILES
				13.6.2 CHIRAL ALDEHYDES AS DIENOPHILES: SYNTHESIS OF LONG-CHAIN SUGARS
				13.6.3 HETERO DIELS–ALDER ADDITIONS OF 1-OXA-1,3-DIENES
					13.6.3.1 With Chiral 1-Oxa-1,3-dienes
					13.6.3.2 With Chiral Enol Ethers as Dienophiles
					13.6.3.3 Induced Asymmetry by Lewis-Acid Catalysts
				13.6.4 NITROSO DIENOPHILES: SYNTHESIS OF AZASUGARS
				13.6.5 N-METHYLTRIAZOLINE -3,5-DIONE AS A DIENOPHILE: SYNTHESIS OF 1-AZAFAGOMINE
			13.7 CYCLOADDITIONS OF FURANS
				13.7.1 DIELS–ALDER ADDITIONS
				13.7.2 T HE“ NAKED SUGARS OF THE FIRST GENERATION ”
					13.7.2.1 Total Synthesis of Pentoses and Hexoses
					13.7.2.2 Total Synthesis of Deoxyhexoses
					13.7.2.3 Total Synthesis of Aminodeoxyhexoses and Derivatives
					13.7.2.4 Long-Chain Carbohydrates and Analogs
					13.7.2.5 “Naked Sugars of the Second Generation”: Synthesis of Doubly Branched-Chain Sugars
				13.7.3 DIPOLAR CYCLOADDITIONS OF FURANS
				13.7.4 [4+3]-CYCLOADDITIONS OF FURAN
			13.8 CARBOHYDRATES AND ANALOGS FROM ACHIRAL HYDROCARBONS
				13.8.1 FROM CYCLOPENTADIENE
				13.8.2 FROM BENZENE AND DERIVATIVES
				13.8.3 FROM CYCLOHEPTATRIENE
				13.8.4 FROM PENTA-1,4-DIENE
			13.9 ENANTIOSELECTIVE EPOXIDATION OF ALLYLIC ALCOHOLS
				13.9.1 DESYMMETRIZATION OF MESO DIENOLS
				13.9.2 KINETIC RESOLUTION OF RACEMIC ALLYLIC ALCOHOLS
			13.10 ENANTIOSELECTIVE SHARPLESS DIHYDROXYLATIONS AND AMINOHYDROXYLATIONS
			13.11 CONCLUSION
			REFERENCES
DK3103_CH14
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Part IV: Additional Topics
		Chapter 14: Combinatorial Carbohydrate Chemistry
			14.1 INTRODUCTION
			14.2 SOLUTION-PHASE LIBRARY SYNTHESIS OF CARBOHYDRATES
				14.2.1 HINDSGAUL’S RANDOM GLYCOSYLATION
				14.2.2 BOONS’S LATENT-ACTIVE GLYCOSYLATION
				14.2.3 ICHIKAWA’S STEREOSELECTIVE (AND NONREGIOSELECTIVE) GLYCOSYLATION
				14.2.4 ORTHOGONAL PROTECTION IN LIBRARY SYNTHESIS
			14.3 SOLID-PHASE LIBRARY SYNTHESIS OF CARBOHYDRATES
				14.3.1 KAHNE’S SPLIT- MIX APPROACH TO GLYCOSYLATION
				14.3.2 BOONS’S TWO- DIRECTIONAL APPROACH
				14.3.3 ITO’S CAPTURE AND RELEASE STRATEGY
				14.3.4 LINKERS IN SOLID- PHASE SYNTHESIS
			14.4 DYNAMIC COMBINATORIAL CHEMISTRY
			14.5 CARBOHYDRATE SCAFFOLDS IN COMBINATORIAL CHEMISTRY
			14.6 CARBOHYDRATE/GLYCOCONJUGATE-LIKE COMPOUNDS (GLYCOMIMETICS) BY COMBINATORIAL CHEMISTRY
				14.6.1 MULTIPLE COMPONENT CONDENSATIONS (MCC)
				14.6.2 GLYCOHYBRIDS
			14.7 GLYCOPEPTIDE-LIKE DERIVATIVES BY COMBINATORIAL CHEMISTRY
				14.7.1 GLYCOSYLATED AMINO ACIDS AS BUILDING BLOCKS
				14.7.2 CYCLIC ARTIFICIAL GLYCOPEPTIDES
				14.7.3 AUTOMATED SYNTHESIS OF ARTIFICIAL GLYCOPEPTIDES
			14.8 SUMMARY AND OUTLOOK
			ACKNOWLEDGMENTS
			REFERENCES
DK3103_CH15
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 15: Glycopeptides
			15.1 STRUCTURES AND BIOLOGICAL FUNCTIONS OF PROTEIN-LINKED CARBOHYDRATES
			15.2 GENERAL ASPECTS OF GLYCOPEPTIDE SYNTHESIS
				15.2.1 STRATEGIC CONSIDERATIONS
				15.2.2 SELECTION OF PROTECTING-GROUPS
					15.2.2.1 Protection of the a-Amino Group
					15.2.2.2 Protection of the a-Carboxyl Group
					15.2.2.3 Protection of the Carbohydrate Hydroxyl Groups
				15.2.3 PRACTICAL ASPECTS OF SOLID- PHASE SYNTHESIS
			15.3 SYNTHESIS OF O-LINKED GLYCOPEPTIDES
				15.3.1 1,2-TRANS-O-LINKED GLYCOPEPTIDES
					15.3.1.1 The B-D-Xyl-(1-O)-Ser Linkage
					15.3.1.2 The B-D-Glc-(1-O)-Ser Linkage
					15.3.1.3 The B-D-Gal-(1-O)-Hyl Linkage
					15.3.1.4 The a-D-Man-(1-O)-Ser/Thr Linkage
					15.3.1.5 The B-D-GlcNAc-(1-O)-Ser/Thr Linkage
				15.3.2 1,2-CIS-O-LINKED GLYCOPEPTIDES
					15.3.2.1 The a-L-Fuc-(1-O)-Ser/Thr Linkage
					15.3.2.2 The a-D-GalNAc-(1-O)-Ser/Thr Linkage
						15.3.2.2.1 Synthesis of the Tn Antigen (a-D-GalNAc-Ser/Thr)
						15.3.2.2.2 Synthesis of the T Antigen [B-D-Gal(1-3)-a-D-GalNAc-Ser/Thr]
						15.3.2.2.3 Synthesis of the Sialyl-Tn Antigen [a-NeuNAc-(2-6)-a-D-GalNAc-Ser/Thr]
						15.3.2.2.4 Synthesis of the 2,3-Sialyl-T Antigen [a-NeuNAc-(2-3)-B-D-Gal-(1-3)-a-D-GalNAc-Ser/Thr]
						15.3.2.2.5 Synthesis of the 2,6-Sialyl-T Antigen {B-D-Gal-(1-3)-[a-NeuNAc-(2-6)]-a-D-GalNAc-Ser/Thr}
			15.4 SYNTHESIS OF N-LINKED GLYCOPEPTIDES
			15.5 CHEMOENZYMATIC SYNTHESIS OF GLYCOPEPTIDES
			15.6 SYNTHESIS OF GLYCOPROTEINS
			REFERENCES
DK3103_CH16
	The Organic Chemistry of Sugars
		Table of Contents	file://DK3103_FM.pdf		Chapter 16: Carbohydrate Mimetics in Drug Discovery
			16.1 INTRODUCTION
			16.2 MAG ANTAGONISTS
				16.2.1 BIOLOGICAL RATIONALE
				16.2.2 THE SIGLEC FAMILY
				16.2.3 MAG ANTAGONISTS
				16.2.4 SUMMARY OF THE STRUCTURE AFFINITY RELATIONSHIP
					16.2.4.1 Neuraminic Acid Residues
					16.2.4.2 The Hydroxyl Groups on Sialic Acid
					16.2.4.3 The N-Acetyl Residue at C-5 of Sialic Acid
					16.2.4.4 The Subterminal Saccharide
				16.2.5 SUMMARY AND OUTLOOK
			16.3 GLYCOSIDASE INHIBITORS
				16.3.1 BIOLOGICAL RATIONALE
				16.3.2 a-GLUCOSIDASE INHIBITORS
					16.3.2.1 Background: Diabetes Mellitus
					16.3.2.2 a-Glucosidase Inhibitors for Treatment of Type 2 Diabetes
					16.3.2.3 Summary and Outlook
				16.3.3 NEURAMINIDASE INHIBITORS
					16.3.3.1 Background: Influenza
					16.3.3.2 The Role of Neuraminidase in Influenza Virus Replication
					16.3.3.3 Structure Affinity Relationship
					16.3.3.4 Mimetics of Neu5Ac2en as Neuraminidase Inhibitors
					16.3.3.5 Summary and Outlook
			16.4 SELECTIN ANTAGONISTS
				16.4.1 BIOLOGICAL RATIONALE
				16.4.2 STRUCTURE AFFINITY RELATIONSHIP
					16.4.2.1 Selectin Structure
					16.4.2.2 Solution and Bioactive Conformation of sLex
				16.4.3 FAMILIES OF ANTAGONISTS IDENTIFIED SO FAR
					16.4.3.1 Mimetics of sLex
					16.4.3.2 Modifications of sLex
						16.4.3.2.1 GlcNAc-Moiety
						16.4.3.2.2 Gal-B(1-4)-GlcNAc Moiety
						16.4.3.2.3 Glycopeptides
					16.4.3.3 Peptidic Antagonists
				16.4.4 BIOLOGICAL EVALUATION
				16.4.5 SUMMARY AND OUTLOOK
			ACKNOWLEDGMENT
			REFERENCES




نظرات کاربران