دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: شیمی ارگانیک ویرایش: 1 نویسندگان: Daniel E. Levy, Péter Fügedi سری: ISBN (شابک) : 0824753550, 9781420027952 ناشر: سال نشر: 2005 تعداد صفحات: 870 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 مگابایت
کلمات کلیدی مربوط به کتاب شیمی آلی قندها: شیمی و صنایع شیمیایی، شیمی آلی
در صورت تبدیل فایل کتاب The Organic Chemistry of Sugars به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی آلی قندها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویراستاران شیمی آلی قندها که به همان اندازه ماهیت پیچیده آن را مجذوب خود کرده اند، منبعی پیشگامانه در شیمی کربوهیدرات گردآوری کرده اند که نشان دهنده سهولت دستکاری قندها در انواع واکنش های آلی است. هر فصل شامل مثالهای متعددی است که روشها و استراتژیهایی را نشان میدهد که شیمی آلی اصلی را برای اصلاح شیمیایی قندها اعمال میکند. این کتاب ابتدا کشف، توسعه و تأثیر کربوهیدرات ها را توضیح می دهد، و سپس در مورد استراتژی های محافظت از گروه، تکنیک های گلیکوزیلاسیون و سنتز الیگوساکاریدها بحث می کند. چندین فصل بر واکنشهایی تمرکز دارند که قندها و کربوهیدراتها را به مولکولهای غیر کربوهیدراتی تبدیل میکنند، از جمله جایگزینی گروههای هیدروکسیل قند به گروههای جدید با علاقه مصنوعی یا بیولوژیکی، سیکلیتولها و کرباسوگرها، و همچنین جایگزینهای هترواتم درون حلقهای. فصول بعدی استفاده از قندها در کاتالیز کایرال، نقش آنها به عنوان مواد اولیه مناسب برای سنتزهای پیچیده شامل مراکز استریوژنیک متعدد، و سنتز برای مونوساکاریدها را نشان می دهد. فصول پایانی بر فناوریهای جدید و نوظهور، از جمله رویکردهای شیمی کربوهیدرات ترکیبی، اهمیت بیولوژیکی و سنتز شیمیایی گلیکوپپتیدها، و مفهوم دارویی مهم گلیکومیمتیک تمرکز دارند. شیمی آلی قندها با ارائه شیمی آلی قندها به عنوان راه حلی برای بسیاری از چالش های پیچیده مصنوعی، شیمی آلی قندها یک درمان جامع از دستکاری قندها و اهمیت آنها در شیمی آلی اصلی ارائه می دهد. دانیل ای. لوی، سردبیر سری کشف دارو، بنیانگذار DEL BioPharma، یک سرویس مشاوره برای برنامه های کشف دارو است. او همچنین وبلاگی دارد که شیمی آلی را بررسی می کند.
Intrigued as much by its complex nature as by its outsider status in traditional organic chemistry, the editors of The Organic Chemistry of Sugars compile a groundbreaking resource in carbohydrate chemistry that illustrates the ease at which sugars can be manipulated in a variety of organic reactions. Each chapter contains numerous examples demonstrating the methods and strategies that apply mainstream organic chemistry to the chemical modification of sugars. The book first describes the discovery, development, and impact of carbohydrates, followed by a discussion of protecting group strategies, glycosylation techniques, and oligosaccharide syntheses. Several chapters focus on reactions that convert sugars and carbohydrates to non-carbohydrate molecules including the substitution of sugar hydroxyl groups to new groups of synthetic or biological interest, cyclitols and carbasugars, as well as endocyclic heteroatom substitutions. Subsequent chapters demonstrate the use of sugars in chiral catalysis, their roles as convenient starting materials for complex syntheses involving multiple stereogenic centers, and syntheses for monosaccharides. The final chapters focus on new and emerging technologies, including approaches to combinatorial carbohydrate chemistry, the biological importance and chemical synthesis of glycopeptides, and the medicinally significant concept of glycomimetics. Presenting the organic chemistry of sugars as a solution to many complex synthetic challenges, The Organic Chemistry of Sugars provides a comprehensive treatment of the manipulation of sugars and their importance in mainstream organic chemistry. Daniel E. Levy, editor of the Drug Discovery Series, is the founder of DEL BioPharma, a consulting service for drug discovery programs. He also maintains a blog that explores organic chemistry.
The organic chemistry of sugars The Organic Chemistry of Sugars Table of Contents Dedications Foreword Preface About the Editors Contributors DK3103_CH01 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Part I: A Discussion of Carbohydrate Chemistry Chapter 01: An Historical Overview 1.1 INTRODUCTION 1.2 THE BEGINNINGS 1.3 THE ERA OF EMIL FISCHER 1.4 THE POST-FISCHER ERA 1.5 NEW METHODS: NEW THINKING 1.6 NEW HORIZONS: GLYCOBIOLOGY 1.7 THE BEGINNING OF THE 21ST CENTURY 1.8 POSTSCRIPT ACKNOWLEDGMENT REFERENCES DK3103_CH02 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 02: Introduction to Carbohydrates 2.1 DEFINITIONS AND CONVENTIONS 2.2 ACYCLIC DERIVATIVES 2.2.1 RULES OF THE FISCHER PROJECTION 2.2.2 TRIVIAL AND SYSTEMATIC NAMES 2.2.3 ABSOLUTE AND RELATIVE CONFIGURATION 2.2.4 DEPICTION OF THE CONFORMATION OF OPEN CHAIN CARBOHYDRATES 2.2.5 THE NEWMAN PROJECTION 2.3 CYCLIC DERIVATIVES 2.3.1 RULES OF THE FISCHER PROJECTION 2.3.2 MUTAROTATION 2.3.3 THE HAWORTH PROJECTION 2.3.4 THE MILLS PROJECTION 2.3.5 THE REEVES PROJECTION 2.3.6 CONFORMATIONS OF THE SIX- MEMBERED RINGS 2.3.7 CONFORMATIONS OF THE FIVE-MEMBERED RINGS 2.3.8 CONFORMATIONS OF THE SEVEN- MEMBERED RINGS 2.3.9 CONFORMATIONS OF FUSED RINGS 2.3.10 STERIC FACTORS 2.3.11 The ANOMERIC AND EXO-ANOMERIC EFFECTS 2.4 DEFINITION AND NOMENCLATURE OF DI- AND OLIGOSACCHARIDES 2.4.1 DISACCHARIDES 2.4.2 OLIGOSACCHARIDES FURTHER READING DK3103_CH03 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 03: Protective Group Strategies 3.1 INTRODUCTION 3.2 PROTECTING GROUPS 3.2.1 HYDROXYL PROTECTING GROUPS 3.2.1.1 Permanent Protecting Groups 3.2.1.1.1 Esters (Acetates and Benzoates) 3.2.1.1.2 Ethers (Benzyl Groups) 3.2.1.1.3 Cyclic Acetals 3.2.1.2 Temporary Protecting Groups 3.2.1.2.1 Esters 3.2.1.2.2 Ethers 3.2.1.2.3 Acetals 3.2.1.2.4 Miscellaneous Protecting Groups 3.2.2 ANOMERIC (HEMIACETAL) PROTECTING GROUPS 3.2.3 AMINO PROTECTING GROUPS 3.2.4 CARBOXYL PROTECTING GROUPS 3.3 SELECTIVE PROTECTION METHODOLOGIES (REGIOSELECTIVE PROTECTION OF HYDROXYL GROUPS) 3.3.1 SELECTIVE PROTECTION 3.3.1.1 Utilizing the Different Reactivity of OH-Groups 3.3.1.2 Stannyl Activation 3.3.1.3 Phase-Transfer Alkylations and Acylations 3.3.1.4 Cu(II) Activation 3.3.1.5 Reductive Opening of Acetals 3.3.1.6 Orthoester Opening 3.3.2 SELECTIVE DEPROTECTION 3.4 SELECTIVE PROTECTION STRATEGIES 3.4.1 MONOSACCHARIDES 3.4.1.1 Galactosides 3.4.1.2 Mannosides 3.4.1.3 Glucosides 3.4.2 DISACCHARIDES 3.4.2.1 Lactose 3.4.2.2 Sucrose 3.4.3 OLIGOSACCHARIDES 3.4.3.1 Lewisx 3.5 SUMMARY AND CONCLUSIONS REFERENCES DK3103_CH04 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 04: Glycosylation Methods 4.1 INTRODUCTION 4.2 STEREOCHEMICAL ASPECTS OF GLYCOSIDE BOND FORMATION 4.3 GLYCOSYLATIONS BY NUCLEOPHILIC SUBSTITUTIONS AT THE ANOMERIC CARBON 4.3.1 SYNTHESIS OF GLYCOSIDES FROM GLYCOSYL HALIDES 4.3.1.1 Glycosyl Bromides and Chlorides 4.3.1.2 Glycosyl Fluorides 4.3.1.3 Glycosyl Iodides 4.3.2 SYNTHESIS OF GLYCOSIDES FROM ANOMERIC T HIO DERIVATIVES 4.3.2.1 Thioglycosides 4.3.2.2 Glycosyl Sulfoxides and Sulfones 4.3.2.3 Other Anomeric Thio Derivatives 4.3.3 SYNTHESIS OF GLYCOSIDES FROM ANOMERIC O-DERIVATIVES 4.3.3.1 Glycosyl Imidates 4.3.3.1.1 Glycosyl Acetimidates 4.3.3.1.2 Glycosyl Trichloroacetimidates 4.3.3.1.3 Glycosyl Trifluoroacetimidates 4.3.3.2 Glycosyl Esters 4.3.3.3 O-Glycosides 4.3.3.3.1 n-Pentenyl Glycosides 4.3.3.3.2 Enol Ether-Type Glycosides 4.3.3.3.3 Heteroaryl Glycosides 4.3.3.3.4 Dinitrosalicylate Glycosides 4.3.3.3.5 2'-Carboxybenzyl Glycosides 4.3.3.3.6 Other O-Glycosides 4.3.3.4 Hemiacetals 4.3.3.4.1 Glycosylation of Unprotected Sugars — Fischer Glycosylation 4.3.3.4.2 Activation via Glycosyl Halides 4.3.3.4.3 Activation via Glycosyl Sulfonates 4.3.3.4.4 Activation via Oxophosphonium Intermediates 4.3.3.4.5 Activation via Oxosulfonium Intermediates 4.3.3.4.6 Activation with Lewis Acids 4.3.3.4.7 Other Methods of Activation 4.3.3.5 1,2-Anhydro Derivatives 4.3.3.6 Glycosyl Phosphites, Phosphates and Other Phosphorus Compounds 4.3.3.6.1 Glycosyl Phosphites 4.3.3.6.2 Glycosyl Phosphates 4.3.3.6.3 Other Phosphorus Compounds 4.3.3.7 Orthoesters and Related Derivatives 4.3.3.8 Carbonates and Related Derivatives 4.3.3.9 Silyl Ethers 4.3.3.10 Oxazolines 4.3.3.11 Other Glycosyl Donors with Glycosyl– Oxygen Bonds 4.3.4 SYNTHESIS OF GLYCOSIDES FROM DONORS WITH OTHER HETEROATOMS AT THE ANOMERIC CENTER 4.3.4.1 Selenoglycosides and Telluroglycosides 4.3.4.2 Glycosyl Donors with Nitrogen at the Anomeric Center 4.4 GLYCOSYLATIONS BY NUCLEOPHILIC SUBSTITUTION AT THE AGLYCONE CARBON 4.5 SYNTHESIS OF GLYCOSIDES BY ADDITION REACTIONS 4.6 OTHER GLYCOSYLATION METHODS 4.7 SUMMARY AND OUTLOOK REFERENCES DK3103_CH05 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 05: Oligosaccharide Synthesis 5.1 INTRODUCTION 5.2 GENERAL CONCEPT OF OLIGOSACCHARIDE SYNTHESIS 5.3 STEPWISE AND BLOCK SYNTHESES OF OLIGOSACCHARIDES 5.4 GLYCOSYLATION STRATEGIES IN BLOCK SYNTHESES 5.4.1 REACTIVATION BY EXCHANGE OF THE ANOMERIC SUBSTITUENT 5.4.2 SEQUENTIAL GLYCOSYLATIONS WITH DIFFERENT TYPES OF GLYCOSYL DONORS 5.4.3 TWO- STAGE ACTIVATION 5.4.4 ORTHOGONAL GLYCOSYLATIONS 5.4.5 ARMED–DISARMED GLYCOSYLATIONS 5.4.6 ACTIVE–LATENT GLYCOSYLATIONS 5.5 METHODS AND TECHNIQUES IN OLIGOSACCHARIDE SYNTHESIS 5.5.1 INTRAMOLECULAR AGLYCONE DELIVERY 5.5.2 ONE-POT MULTISTEP GLYCOSYLATIONS 5.5.3 POLYMER-SUPPORTED AND SOLID-PHASE OLIGOSACCHARIDE SYNTHESIS 5.6 SUMMARY AND OUTLOOK REFERENCES DK3103_CH06 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Part II: From Sugars to Sugar-Like Structures to Non-Sugars Chapter 06: Functionalization of Sugars 6.1 INTRODUCTION 6.1.1 DEFINITION OF CONCEPT 6.1.2 SN2 REACTIONS 6.2 SPECIAL CONSIDERATIONS WITH SUGARS 6.2.1 AXIAL VS. EQUATORIAL APPROACH 6.2.2 SUBSTITUTION VS. ELIMINATION 6.2.3 NEIGHBORING GROUP PARTICIPATION 6.2.3.1 Esters 6.2.3.2 Amides 6.2.3.3 Nucleotides 6.3 FORMATION OF LEAVING GROUPS 6.3.1 HALIDES AS LEAVING GROUPS 6.3.2 SULFONATES AS LEAVING GROUPS 6.3.3 EPOXYSUGARS (ANHYDRO SUGARS) 6.3.4 OTHER LEAVING GROUPS (MITSUNOBU REACTION, CHLOROSULFATE ESTERS, CYCLIC SULFATES) 6.4 HALOGENATION REACTIONS 6.4.1 SN2 DISPLACEMENTS OF SULFONATES 6.4.2 SN2 OPENING OF EPOXIDES 6.4.3 USE OF ALKYLPHOSPHONIUM SALTS 6.4.4 USE OF CHLOROSULFATE ESTERS 6.4.5 USE OF IMINOESTERS AND SULFONYLCHLORIDES 6.4.6 FLUORINATION REACTIONS 6.4.7 HALOGENATION OF O-BENZYLIDENE ACETALS 6.4.8 RADICAL PROCESSES 6.5 REACTIONS INVOLVING NITROGEN 6.5.1 SN2 REACTIONS 6.5.2 FORMATION OF NITROSUGARS 6.5.3 THE MITSUNOBU REACTION 6.6 REACTIONS INVOLVING OXYGEN AND SULFUR 6.6.1 MANIPULATION OF SUGAR HYDROXYL GROUPS 6.6.1.1 Formation of Epoxysugars (Anhydrosugars) 6.6.1.2 Ring Opening of Epoxides 6.6.1.3 Inversion of Stereocenters 6.6.2 DEOXYGENATION REACTIONS 6.6.2.1 Removal of Hydroxyl Groups 6.6.2.2 Elimination/Dehydration to Olefins 6.6.2.2.1 1,2-Unsaturated Sugars (Glycals) 6.6.2.2.2 2,3-Unsaturated Sugars 6.6.2.2.3 3,4-Unsaturated Sugars 6.6.2.2.4 4,5-Unsaturated Sugars 6.6.2.2.5 5,6-Unsaturated Sugars 6.6.3 SULFURATION REACTIONS 6.6.4 DESULFURATION REACTIONS 6.7 FORMATION OF CARBON–CARBON BONDS 6.7.1 ADDITION OF NUCLEOPHILES 6.7.1.1 Grignard Reagents 6.7.1.2 Organosodium, Organolithium and Organopotassium Reagents 6.7.1.3 Cuprates 6.7.1.4 Sulfur Ylide Epoxidations/Wittig Reactions on Epoxides 6.7.2 CONDENSATION REACTIONS 6.7.2.1 The Cyanohydrin Chain Extension 6.7.2.2 The Nitromethane Condensation 6.7.3 WITTIG /HORNER–EMMONS REACTIONS 6.7.4 CLAISEN REARRANGEMENTS 6.8 REDUCTIONS AND OXIDATIONS 6.8.1 REDUCTION REACTIONS 6.8.1.1 Reduction of Halides and Sulfonates 6.8.1.2 Reduction of Epoxides 6.8.1.3 Reduction of Olefins 6.8.1.3.1 Catalytic Methods 6.8.1.3.2 Hydroborations 6.8.2 OXIDATION REACTIONS 6.9 REARRANGEMENTS AND ISOMERIZATIONS 6.9.1 BASE CATALYZED ISOMERIZATIONS 6.9.2 THE AMADORI REARRANGEMENT 6.10 CONCLUSION REFERENCES DK3103_CH07 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 07: Strategies towards C-Glycosides 7.1 INTRODUCTION 7.1.1 DEFINITION AND NOMENCLATURE OF C-GLYCOSIDES 7.1.2 O-GLYCOSIDES VS. C-GLYCOSIDES: COMPARISONS OF PHYSICAL PROPERTIES, ANOMERIC EFFECTS, H-BONDING ABILITIES, STABILITIES AND CONFORMATIONS 7.1.3 NATURAL OCCURRING C-GLYCOSIDES 7.1.4 C-GLYCOSIDES AS STABLE PHARMACOPHORES 7.2 SYNTHESIS OF C-GLYCOSIDES VIA ELECTROPHILIC SUBSTITUTIONS 7.2.1 ANOMERIC ACTIVATING GROUPS AND STEREOSELECTIVITY 7.2.2 CYANATION REACTIONS 7.2.2.1 Cyanation Reactions on Activated Glycosyl Derivatives 7.2.2.2 Cyanation Reactions on Glycals 7.2.2.3 Cyanation Reactions on Activated Furanosides 7.2.2.4 Cyanation Reactions with Metallocyanide Reagents 7.2.2.5 Other Cyanation Reactions 7.2.2.6 Cyanoglycoside Transformations 7.2.3 ALKYLATION, ALLENYLATION, ALLYLATION AND ALKYNATION REACTIONS 7.2.3.1 Use of Activated Glycosyl Derivatives and Anionic Nucleophiles 7.2.3.2 Use of Activated Glycosyl Derivatives and Organometallic Reagents 7.2.3.3 Use of Modified Sugars and Anionic Nucleophiles 7.2.3.4 Lewis Acid-Mediated Couplings with Olefins 7.2.4 ARYLATION REACTIONS 7.2.4.1 Reactions with Metallated Aryl Compounds 7.2.4.2 Electrophilic Aromatic Substitutions 7.2.4.3 Intramolecular Electrophilic Aromatic Substitutions 7.2.4.4 O-C Migrations 7.2.5 REACTIONS WITH ENOL ETHERS, SILYLENOL ETHERS AND ENAMINES 7.2.5.1 Reactions with Enolates 7.2.5.2 Reactions with Silylenol Ethers 7.2.5.3 Reactions with Enamines 7.2.6 NITROALKYLATION REACTIONS 7.2.7 REACTIONS WITH ALLYLIC ETHERS 7.2.8 WITTIG REACTIONS WITH LACTOLS 7.2.8.1 Wittig Reactions 7.2.8.2 Horner– Emmons Reactions 7.2.8.3 Reactions with Sulfur Ylides 7.2.9 NUCLEOPHILIC ADDITIONS TO SUGAR LACTONES FOLLOWED BY LACTOL REDUCTIONS 7.2.9.1 Lewis Acid-Trialkylsilane Reductions 7.2.9.2 Other Reductions 7.2.9.3 Sugar–Sugar Couplings 7.2.10 NUCLEOPHILIC ADDITIONS TO SUGARS CONTAINING ENONES 7.2.11 TRANSITION METAL-MEDIATED CARBON MONOXIDE INSERTIONS 7.2.11.1 Manganese Glycosides 7.2.11.2 Cobalt-Mediated Glycosidations 7.2.12 REACTIONS INVOLVING ANOMERIC CARBENES 7.2.13 REACTIONS INVOLVING EXOANOMERIC METHYLENES 7.3 SYNTHESIS OF C-GLYCOSIDES VIA NUCLEOPHILIC SUGAR SUBSTITUTIONS 7.3.1 C-1 LITHIATED ANOMERIC CARBANIONS BY DIRECT METAL EXCHANGE 7.3.1.1 Hydrogen–Metal Exchanges 7.3.1.2 Metal–Metal Exchanges 7.3.1.3 Halogen–Metal Exchanges 7.3.2 C-1 LITHIATED ANOMERIC CARBANIONS BY REDUCTION 7.3.3 C-1 CARBANIONS STABILIZED BY SULFONES, SULFOXIDES, CARBOXYL AND NITRO GROUPS 7.3.3.1 Sulfone Stabilized Anions 7.3.3.2 Sulfide and Sulfoxide Stabilized Anions 7.3.3.3 Carboxy Stabilized Anions 7.3.3.4 Nitro Stabilized Anions 7.4 SYNTHESIS OF C-GLYCOSIDES VIA TRANSITION METAL-BASED METHODOLOGIES 7.4.1 DIRECT COUPLING OF GLYCALS WITH ARYL GROUPS 7.4.1.1 Arylation Reactions with Unsubstituted Aromatic Rings 7.4.1.2 Arylation Reactions with Metallated Aromatic Rings 7.4.1.3 Arylation Reactions with Halogenated Aromatic Rings 7.4.2 COUPLING OF SUBSTITUTED GLYCALS WITH ARYL GROUPS 7.4.3 COUPLING OF p -ALLYL COMPLEXES OF GLYCALS 7.5 SYNTHESIS OF C-GLYCOSIDES VIA ANOMERIC RADICALS 7.5.1 SOURCES OF ANOMERIC RADICALS AND STEREOCHEMICAL CONSEQUENCES 7.5.1.1 Nitroalkyl C-Glycosides as Radical Sources 7.5.1.2 Radicals from Activated Sugars 7.5.2 ANOMERIC COUPLINGS WITH RADICAL ACCEPTORS 7.5.2.1 Non-Halogenated Radical Sources 7.5.2.2 Glycosyl Halides as Radical Sources 7.5.3 INTRAMOLECULAR RADICAL REACTIONS 7.6 SYNTHESIS OF C-GLYCOSIDES VIA REARRANGEMENTS AND CYCLOADDITIONS 7.6.1 REARRANGEMENTS BY SUBSTITUENT CLEAVAGE AND RECOMBINATION 7.6.1.1 Wittig Rearrangements 7.6.1.2 Carbenoid Rearrangements 7.6.2 ELECTROCYCLIC REARRANGEMENTS INVOLVING GLYCALS 7.6.3 REARRANGEMENTS FROM THE 2-HYDROXYL GROUP 7.7 SYNTHESIS OF C-GLYCOSIDES VIA FORMATION OF THE SUGAR RING 7.7.1 WITTIG REACTIONS OF LACTOLS FOLLOWED BY RING CLOSURES 7.7.2 ADDITION OF GRIGNARD AND ORGANOZINC REAGENTS TO LACTOLS 7.7.3 CYCLIZATION OF SUITABLY SUBSTITUTED POLYOLS 7.7.3.1 Cyclizations via Ether Formations 7.7.3.2 Cyclizations via Ketal Formations 7.7.3.3 Cyclizations via Halide Displacements 7.7.4 REARRANGEMENTS 7.7.4.1 Electrocyclic Rearrangements 7.7.4.2 Ring Contractions 7.7.4.3 Other Rearrangements 7.7.5 CYCLOADDITIONS 7.7.6 OTHER METHODS FOR THE FORMATION OF SUGAR RINGS 7.8 FURTHER READING ACKNOWLEDGMENT REFERENCES DK3103_CH08 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 08: From Sugars to Carba-Sugars 8.1 INTRODUCTION 8.2 WHY SYNTHESIZE CARBA-SUGARS? 8.2.1 CARBA- MONOSACCHARIDES 8.2.2 CARBA- OLIGOSACCHARIDES 8.2.3 CARBA- GLYCOSYL-PHOSPHATES 8.3 SYNTHESIS OF CARBA-SUGARS FROM SUGARS 8.3.1 CYCLIZATION OF OPEN-CHAIN SUGARS 8.3.1.1 Carbanionic Cyclizations 8.3.1.1.1 Malonates 8.3.1.1.2 The Use of Nitro Groups 8.3.1.1.3 Phosphorus Ylides 8.3.1.1.4 Incorporation of Aldol Methodology 8.3.1.2 Carbocationic Cyclizations 8.3.1.3 Radical Cyclizations 8.3.1.4 Ring-Closing Metathesis 8.3.1.5 SmI2-Mediated Pinacol Coupling 8.3.2 REARRANGEMENTS OF CYCLIC SUGARS 8.3.2.1 The Ferrier-II Rearrangement 8.3.2.2 Endocylic Cleavage Induced Rearrangements 8.3.2.3 The Claisen Rearrangement 8.4 CONCLUSION REFERENCES DK3103_CH09 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 09: Sugars with Endocyclic Heteroatoms Other than Oxygen 9.1 INTRODUCTION 9.2 THIOSUGARS WITH SULFUR IN THE RING 9.2.1 FURANOID SYSTEMS 9.2.1.1 4-Thioaldopentoses, 4-Thiopentonolactones and Derivatives 9.2.1.2 4-Thioaldohexoses and Derivatives 9.2.1.3 5-Thioketopentoses, 5-Thioketohexoses and Derivatives 9.2.2 PYRANOID SYSTEMS — 5-THIOALDOHEXOSES, 6-THIOKETOHEXOSES AND DERIVATIVES 9.2.3 SEPTANOSES AND DERIVATIVES 9.2.4 EXAMPLES OF GLYCOMIMETICS WITH SULFUR IN THE RING 9.2.4.1 Natural Products 9.2.4.2 Synthetic Compounds 9.2.4.2.1 Glycosidase Inhibitors 9.2.4.2.2 Other Compounds 9.2.4.2.3 Glycosyl Transferase Substrates 9.2.4.2.4 Nucleosides 9.3 IMINOSUGARS 9.3.1 TYPICAL APPROACHES TO IMINOSUGARS AND ANALOGS 9.3.2 BIOLOGICAL ACTIVITIES AND APPLICATIONS 9.3.2.1 Glycosidase Inhibitory Activities 9.3.2.2 Antidiabetic Properties 9.3.2.3 Inhibition of Glycoprotein Processing 9.3.2.4 Anti-Infective Properties 9.3.2.4.1 Antiviral Activities 9.3.2.4.1.1 a -Glucosidase Inhibitors. 9.3.2.4.1.2 a - L -Fucosidase Inhibitors. 9.3.2.4.1.3 Neuraminidase Inhibitors — Siastatin B and Derivatives. 9.3.2.4.2 Compounds with (Potential) Antibacterial Activities 9.3.2.4.2.1 UDP-Gal Mutase Inhibitors. 9.3.2.4.2.2 Inhibitors of Bacterial Cell Wall Biosynthesis. 9.3.2.4.3 Compounds with Antifungal and/or Antiprotozoan Activities 9.3.2.4.4 Others 9.3.2.4.4.1 Plant Growth Reducing Activity. 9.3.2.4.4.2 Nematicidal Properties. 9.3.2.4.4.3 Insect Antifeedant Activity. 9.4 OTHER HETEROATOMS IN THE RING 9.5 FURTHER READING REFERENCES DK3103_CH10 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Part III: Sugars as Tools, Chiral Pool Starting Materials and Formidable Synthetic Targets Chapter 10: Sugars as Chiral Auxiliaries 10.1 INTRODUCTION 10.2 ASYMMETRIC CYCLOADDITION REACTIONS 10.2.1 [2+1] CYCLOADDITIONS 10.2.2 [2+2] CYCLOADDITIONS 10.2.3 [3+2] CYCLOADDITIONS 10.2.3.1 Carbohydrate-Linked Nitrones 10.2.3.2 Carbohydrate-Linked Dipolarophiles 10.2.4 [4+2] CYCLOADDITIONS (DIELS–ALDER REACTIONS) 10.2.5 HETERO DIELS – ALDER REACTIONS 10.3 STEREOSELECTIVE ADDITION AND SUBSTITUTION REACTIONS 10.3.1 ADDITIONS TO GLYCOSYL IMINES AND OTHER NUCLEOPHILIC ADDITIONS 10.3.2 CONJUGATE ADDITIONS 10.3.2.1 Conjugate Additions to Bicyclic Carbohydrate Oxazolidinones 10.3.2.2 Synthesis of Enantiomerically Pure Alkaloids Using Carbohydrate Auxiliaries 10.3.3 REACTIONS INVOLVING ENOLATES 10.3.3.1 Alkylations 10.3.3.2 Halogenations and Acylations 10.3.3.3 Aldol Reactions 10.4 REARRANGEMENT REACTIONS 10.5 RADICAL REACTIONS 10.6 MISCELLANEOUS APPLICATIONS OF CARBOHYDRATE AUXILIARIES 10.7 CONCLUSION REFERENCES DK3103_CH11 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 11: Sugars as Chiral Starting Materials in Enantiospecific Synthesis 11.1 INTRODUCTION 11.2 CARBOHYDRATES AS SOURCES OF CARBON ATOMS IN TOTAL SYNTHESES 11.3 BRANCHING A CARBON CHAIN ON THE CARBOHYDRATE RING 11.3.1 USING EPOXIDES 11.3.2 USING UNSATURATED CARBOHYDRATES 11.3.2.1 Using Enones 11.3.2.2 Using Allylic Esters 11.3.3 USING KETO-SUGARS 11.3.3.1 Nucleophilic Additions to Keto-Sugars 11.3.3.2 Wittig Type Olefinations 11.3.4 USING CARBOHYDRATES AS NUCLEOPHILES 11.3.5 USING REARRANGEMENTS 11.4 CHAIN EXTENSIONS OF SUGARS 11.4.1 CHAIN EXTENSIONS AT THE PRIMARY CARBON ATOM 11.4.1.1 Using Nucleophilic Additions to Aldehydes 11.4.1.2 Using Wittig Olefinations 11.4.1.3 Direct Substitutions at the Primary Carbon Atom 11.4.2 CHAIN EXTENSIONS AT THE ANOMERIC CENTER 11.4.2.1 Using Dithioacetals 11.4.2.2 Using Wittig Olefinations 11.4.2.3 Miscellaneous Methods 11.5 CREATION OF C-GLYCOSIDIC BONDS 11.5.1 CREATION OF C-GLYCOSIDIC BONDS WITH RETENTION OF THE ANOMERIC HYDROXYL GROUP 11.5.2 CREATION OF C-GLYCOSIDIC BONDS WITH REPLACEMENT OF THE ANOMERIC HYDROXYL GROUP 11.5.2.1 Cyclization Reactions 11.5.2.2 Direct C-Glycosylations 11.5.2.2.1 Allylations 11.5.2.2.2 Anomeric Anions 11.5.2.2.3 Rearrangements 11.5.2.2.4 Radical Reactions 11.5.2.2.5 Direct Olefination of Lactones 11.5.2.2.6 Miscellaneous Methods 11.6 FORMATION OF CARBOCYCLES 11.6.1 CARBOCYCLIZATION OF THE SUGAR BACKBONE 11.6.1.1 Ferrier Carbocyclization 11.6.1.2 Radical Cyclizations 11.6.1.3 Aldolisation and Related Methods 11.6.2 ANNULATION REACTIONS ON THE SUGAR TEMPLATE 11.6.2.1 Cycloadditions 11.6.2.2 Anionic Cyclizations 11.6.2.3 Radical Cyclizations 11.7 CONCLUSIONS REFERENCES DK3103_CH12 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 12: Synthesis of Carbohydrate Containing Complex Natural Compounds 12.1 INTRODUCTION 12.2 O-GLYCOSIDE ANTIBIOTICS 12.2.1 METHYMYCIN 12.2.2 ERYTHROMYCIN A 12.2.3 TYLOSIN 12.2.4 MYCINAMICINS IV AND VII 12.2.5 AVERMECTINS 12.2.6 EFROTOMYCIN 12.2.7 AMPHOTERICIN B 12.2.8 ELAIOPHYLIN 12.2.9 CYTOVARICIN 12.2.10 CALICHEAMICIN yI1 12.2.11 NEOCARZINOSTATIN CHROMOPHORE 12.2.12 ELEUTHEROBIN 12.2.13 OLIVOMYCIN A 12.2.14 EVERNINOMICIN 13,284-1 12.2.15 POLYCAVERNOSIDE A 12.2.16 VANCOMYCIN 12.2.17 APOPTOLIDIN 12.3 C-GLYCOSIDE ANTIBIOTICS 12.3.1 VINEOMYCINONE B2 METHYL ESTER 12.3.2 MEDERMYCIN 12.3.3 URDAMYCINONE B 12.3.4 GILVOCARCIN M 12.4 OTHERS 12.4.1 BIDESMOSIDIC TRITERPENE APONIN 12.4.2 DIGITOXIN 12.5 CONCLUDING REMARKS REFERENCES DK3103_CH13 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 13: Total Asymmetric Synthesis of Monosaccharides and Analogs 13.1 INTRODUCTION 13.2 THE FORMOSE REACTION 13.3 PREBIOTIC SYNTHESIS OF CARBOHYDRATES 13.4 ALDOLASE-CATALYZED ASYMMETRIC ALDOL CONDENSATIONS 13.4.1 RESOLUTION OF RACEMIC ALDEHYDES 13.4.2 ONE-POT TOTAL SYNTHESES OF CARBOHYDRATES 13.4.3 SYNTHESIS OF 1,5-DIDEOXY-1,5-IMINOALDITOLS 13.4.4 SYNTHESIS OF 2,5-DIDEOXY-2,5-IMINOALDITOLS 13.4.5 SYNTHESIS OF DEOXY-THIOHEXOSES 13.5 CHAIN ELONGATION OF ALDEHYDES THROUGH NUCLEOPHILIC ADDITIONS 13.5.1 TOTAL SYNTHESIS OF D- AND L-GLYCERALDEHYDE AND OTHER C-3 ALDOSE DERIVATIVES 13.5.2 ONE-CARBON HOMOLOGATION OF ALDOSES: THE THIAZOLE-BASED METHOD 13.5.3 OTHER METHODS OF ONE-CARBON CHAIN ELONGATION OF ALDOSES 13.5.4 ADDITIONS OF ENANTIOMERICALLY PURE ONE-CARBON SYNTHONS 13.5.5 TWO-CARBON CHAIN ELONGATION OF ALDEHYDES 13.5.5.1 Asymmetric Aldol Reactions 13.5.5.2 Nucleophilic Additions to Enantiomerically Pure Aldehydes 13.5.5.3 Nitro-Aldol Condensations 13.5.5.4 Nucleophilic Additions of Enantiomerically Pure Enolates 13.5.5.5 Aldehyde Olefinations and Asymmetric Epoxidations 13.5.5.6 Aldehyde Olefinations and Dihydroxylations 13.5.5.7 Aldehyde Olefinations and Conjugate Additions 13.5.5.8 Allylation and Subsequent Ozonolysis 13.5.6 THREE-CARBON CHAIN ELONGATIONS 13.5.6.1 Allylmetal Additions 13.5.6.2 Wittig–Horner–Emmons Olefinations 13.5.6.3 Aldol Reactions 13.5.6.4 Propenyllithium Additions to Carboxylic Esters 13.5.7 FOUR-CARBON CHAIN ELONGATIONS 13.5.7.1 But-2-en-1-yl Metal Additions 13.5.7.2 Nucleophilic Additions of a -Furyl Derivatives 13.5.7.3 Hydroxyalkylation of Pyrrole Derivatives 13.5.8 SYNTHESIS OF BRANCHED-CHAIN MONOSACCHARIDES FROM C3-ALDOSES 13.6 HETERO DIELS–ALDER ADDITIONS 13.6.1 ACHIRAL ALDEHYDES AS DIENOPHILES 13.6.2 CHIRAL ALDEHYDES AS DIENOPHILES: SYNTHESIS OF LONG-CHAIN SUGARS 13.6.3 HETERO DIELS–ALDER ADDITIONS OF 1-OXA-1,3-DIENES 13.6.3.1 With Chiral 1-Oxa-1,3-dienes 13.6.3.2 With Chiral Enol Ethers as Dienophiles 13.6.3.3 Induced Asymmetry by Lewis-Acid Catalysts 13.6.4 NITROSO DIENOPHILES: SYNTHESIS OF AZASUGARS 13.6.5 N-METHYLTRIAZOLINE -3,5-DIONE AS A DIENOPHILE: SYNTHESIS OF 1-AZAFAGOMINE 13.7 CYCLOADDITIONS OF FURANS 13.7.1 DIELS–ALDER ADDITIONS 13.7.2 T HE“ NAKED SUGARS OF THE FIRST GENERATION ” 13.7.2.1 Total Synthesis of Pentoses and Hexoses 13.7.2.2 Total Synthesis of Deoxyhexoses 13.7.2.3 Total Synthesis of Aminodeoxyhexoses and Derivatives 13.7.2.4 Long-Chain Carbohydrates and Analogs 13.7.2.5 “Naked Sugars of the Second Generation”: Synthesis of Doubly Branched-Chain Sugars 13.7.3 DIPOLAR CYCLOADDITIONS OF FURANS 13.7.4 [4+3]-CYCLOADDITIONS OF FURAN 13.8 CARBOHYDRATES AND ANALOGS FROM ACHIRAL HYDROCARBONS 13.8.1 FROM CYCLOPENTADIENE 13.8.2 FROM BENZENE AND DERIVATIVES 13.8.3 FROM CYCLOHEPTATRIENE 13.8.4 FROM PENTA-1,4-DIENE 13.9 ENANTIOSELECTIVE EPOXIDATION OF ALLYLIC ALCOHOLS 13.9.1 DESYMMETRIZATION OF MESO DIENOLS 13.9.2 KINETIC RESOLUTION OF RACEMIC ALLYLIC ALCOHOLS 13.10 ENANTIOSELECTIVE SHARPLESS DIHYDROXYLATIONS AND AMINOHYDROXYLATIONS 13.11 CONCLUSION REFERENCES DK3103_CH14 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Part IV: Additional Topics Chapter 14: Combinatorial Carbohydrate Chemistry 14.1 INTRODUCTION 14.2 SOLUTION-PHASE LIBRARY SYNTHESIS OF CARBOHYDRATES 14.2.1 HINDSGAUL’S RANDOM GLYCOSYLATION 14.2.2 BOONS’S LATENT-ACTIVE GLYCOSYLATION 14.2.3 ICHIKAWA’S STEREOSELECTIVE (AND NONREGIOSELECTIVE) GLYCOSYLATION 14.2.4 ORTHOGONAL PROTECTION IN LIBRARY SYNTHESIS 14.3 SOLID-PHASE LIBRARY SYNTHESIS OF CARBOHYDRATES 14.3.1 KAHNE’S SPLIT- MIX APPROACH TO GLYCOSYLATION 14.3.2 BOONS’S TWO- DIRECTIONAL APPROACH 14.3.3 ITO’S CAPTURE AND RELEASE STRATEGY 14.3.4 LINKERS IN SOLID- PHASE SYNTHESIS 14.4 DYNAMIC COMBINATORIAL CHEMISTRY 14.5 CARBOHYDRATE SCAFFOLDS IN COMBINATORIAL CHEMISTRY 14.6 CARBOHYDRATE/GLYCOCONJUGATE-LIKE COMPOUNDS (GLYCOMIMETICS) BY COMBINATORIAL CHEMISTRY 14.6.1 MULTIPLE COMPONENT CONDENSATIONS (MCC) 14.6.2 GLYCOHYBRIDS 14.7 GLYCOPEPTIDE-LIKE DERIVATIVES BY COMBINATORIAL CHEMISTRY 14.7.1 GLYCOSYLATED AMINO ACIDS AS BUILDING BLOCKS 14.7.2 CYCLIC ARTIFICIAL GLYCOPEPTIDES 14.7.3 AUTOMATED SYNTHESIS OF ARTIFICIAL GLYCOPEPTIDES 14.8 SUMMARY AND OUTLOOK ACKNOWLEDGMENTS REFERENCES DK3103_CH15 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 15: Glycopeptides 15.1 STRUCTURES AND BIOLOGICAL FUNCTIONS OF PROTEIN-LINKED CARBOHYDRATES 15.2 GENERAL ASPECTS OF GLYCOPEPTIDE SYNTHESIS 15.2.1 STRATEGIC CONSIDERATIONS 15.2.2 SELECTION OF PROTECTING-GROUPS 15.2.2.1 Protection of the a-Amino Group 15.2.2.2 Protection of the a-Carboxyl Group 15.2.2.3 Protection of the Carbohydrate Hydroxyl Groups 15.2.3 PRACTICAL ASPECTS OF SOLID- PHASE SYNTHESIS 15.3 SYNTHESIS OF O-LINKED GLYCOPEPTIDES 15.3.1 1,2-TRANS-O-LINKED GLYCOPEPTIDES 15.3.1.1 The B-D-Xyl-(1-O)-Ser Linkage 15.3.1.2 The B-D-Glc-(1-O)-Ser Linkage 15.3.1.3 The B-D-Gal-(1-O)-Hyl Linkage 15.3.1.4 The a-D-Man-(1-O)-Ser/Thr Linkage 15.3.1.5 The B-D-GlcNAc-(1-O)-Ser/Thr Linkage 15.3.2 1,2-CIS-O-LINKED GLYCOPEPTIDES 15.3.2.1 The a-L-Fuc-(1-O)-Ser/Thr Linkage 15.3.2.2 The a-D-GalNAc-(1-O)-Ser/Thr Linkage 15.3.2.2.1 Synthesis of the Tn Antigen (a-D-GalNAc-Ser/Thr) 15.3.2.2.2 Synthesis of the T Antigen [B-D-Gal(1-3)-a-D-GalNAc-Ser/Thr] 15.3.2.2.3 Synthesis of the Sialyl-Tn Antigen [a-NeuNAc-(2-6)-a-D-GalNAc-Ser/Thr] 15.3.2.2.4 Synthesis of the 2,3-Sialyl-T Antigen [a-NeuNAc-(2-3)-B-D-Gal-(1-3)-a-D-GalNAc-Ser/Thr] 15.3.2.2.5 Synthesis of the 2,6-Sialyl-T Antigen {B-D-Gal-(1-3)-[a-NeuNAc-(2-6)]-a-D-GalNAc-Ser/Thr} 15.4 SYNTHESIS OF N-LINKED GLYCOPEPTIDES 15.5 CHEMOENZYMATIC SYNTHESIS OF GLYCOPEPTIDES 15.6 SYNTHESIS OF GLYCOPROTEINS REFERENCES DK3103_CH16 The Organic Chemistry of Sugars Table of Contents file://DK3103_FM.pdf Chapter 16: Carbohydrate Mimetics in Drug Discovery 16.1 INTRODUCTION 16.2 MAG ANTAGONISTS 16.2.1 BIOLOGICAL RATIONALE 16.2.2 THE SIGLEC FAMILY 16.2.3 MAG ANTAGONISTS 16.2.4 SUMMARY OF THE STRUCTURE AFFINITY RELATIONSHIP 16.2.4.1 Neuraminic Acid Residues 16.2.4.2 The Hydroxyl Groups on Sialic Acid 16.2.4.3 The N-Acetyl Residue at C-5 of Sialic Acid 16.2.4.4 The Subterminal Saccharide 16.2.5 SUMMARY AND OUTLOOK 16.3 GLYCOSIDASE INHIBITORS 16.3.1 BIOLOGICAL RATIONALE 16.3.2 a-GLUCOSIDASE INHIBITORS 16.3.2.1 Background: Diabetes Mellitus 16.3.2.2 a-Glucosidase Inhibitors for Treatment of Type 2 Diabetes 16.3.2.3 Summary and Outlook 16.3.3 NEURAMINIDASE INHIBITORS 16.3.3.1 Background: Influenza 16.3.3.2 The Role of Neuraminidase in Influenza Virus Replication 16.3.3.3 Structure Affinity Relationship 16.3.3.4 Mimetics of Neu5Ac2en as Neuraminidase Inhibitors 16.3.3.5 Summary and Outlook 16.4 SELECTIN ANTAGONISTS 16.4.1 BIOLOGICAL RATIONALE 16.4.2 STRUCTURE AFFINITY RELATIONSHIP 16.4.2.1 Selectin Structure 16.4.2.2 Solution and Bioactive Conformation of sLex 16.4.3 FAMILIES OF ANTAGONISTS IDENTIFIED SO FAR 16.4.3.1 Mimetics of sLex 16.4.3.2 Modifications of sLex 16.4.3.2.1 GlcNAc-Moiety 16.4.3.2.2 Gal-B(1-4)-GlcNAc Moiety 16.4.3.2.3 Glycopeptides 16.4.3.3 Peptidic Antagonists 16.4.4 BIOLOGICAL EVALUATION 16.4.5 SUMMARY AND OUTLOOK ACKNOWLEDGMENT REFERENCES