دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Andy Hector
سری:
ISBN (شابک) : 9780198798170, 0198798180
ناشر: Oxford University Press
سال نشر: 2021
تعداد صفحات: 277
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب The New Statistics with R: An Introduction for Biologists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار جدید با R: مقدمه ای برای زیست شناسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover The New Statistics with R: An Introduction for Biologists Copyright Dedication Acknowledgements Contents 1: Introduction 1.1 Introduction to the second edition 1.2 The aim of this book 1.3 Changes in the second edition 1.4 The R programming language for statistics and graphics 1.5 Scope 1.6 What is not covered 1.7 The approach 1.8 The new statistics? 1.9 Getting started 1.10 References 2: Motivation 2.1 A matter of life and death 2.2 Summary: Statistics 2.3 Summary: R 2.4 References 3: Description 3.1 Introduction 3.1.1 r packages 3.2 Darwin’s maize pollination data 3.2.1 know your data 3.2.2 summarizing and describing data 3.2.3 comparing groups 3.3 Summary: Statistics 3.4 Summary: R 3.5 References 4: Reproducible Research 4.1 The reproducibility crisis 4.1.1 R packages 4.2 R scripts 4.3 Analysis notebooks 4.4 R Markdown 4.5 Summary: Statistics 4.6 Summary: R 4.7 References 5: Estimation 5.1 Introduction 5.1.1 R Packages 5.2 Quick tests 5.3 Differences between groups 5.4 Standard deviations and standard errors 5.5 The normal distribution and the central limit theorem 5.6 Confidence intervals 5.7 Summary: Statistics 5.8 Summary: R Appendix 5a: R code for Fig. 5.1 6: Linear Models 6.1 Introduction 6.1.1 R Packages 6.2 A linear-model analysis for comparing groups 6.3 Standard error of the difference 6.4 Confidence intervals 6.5 Answering Darwin’s question 6.6 Relevelling to get the other treatment mean and standard error 6.7 Assumption checking 6.7.1 Normality 6.7.2 Equal Variance 6.8 Summary: Statistics 6.9 Summary: R 6.10 Reference Appendix 6a: R graphics Appendix 6b: Robust linear models Appendix 6c: Exercise 7: Regression 7.1 Introduction 7.1.1 R Packages 7.2 Linear regression 7.3 The Janka timber hardness data 7.4 Correlation 7.5 Linear regression in R 7.6 Assumptions 7.7 Summary: Statistics 7.8 Summary: R 7.9 Reference Appendix 7a: R graphics Appendix 7b: Least squares linear regression 8: Prediction 8.1 Introduction 8.1.1 R Packages 8.2 Predicting timber hardness from wood density 8.3 Confidence intervals and prediction intervals 8.4 Summary: Statistics 8.5 Summary: R 9: Testing 9.1 Significance testing: Time for t 9.1.1 R Packages 9.2 Student’s t-test: Darwin’s maize 9.3 Summary: Statistics 9.4 Summary: R 9.5 References 10: Intervals 10.1 Comparisons using estimates and intervals 10.1.1 R Packages 10.2 Estimation-based analysis 10.3 Descriptive statistics 10.3.1 Error Bars 10.3.2 Standard-deviation Error Bars 10.4 Inferential statistics 10.4.1 Standard Error Bars 10.4.2 Confidence Intervals 10.4.3 Confidence Intervals For Differences Between Means 10.4.4 Least Significant Differences 10.4.5 Multi-interval Plots 10.4.6 Prediction Intervals 10.5 Relating different types of interval and error bar 10.5.1 Interpreting Confidence Intervals 10.5.2 Point Estimates And Confidence Intervals For Research Synthesis And Meta-analysis 10.6 Summary: Statistics 10.7 Summary: R 10.8 References 11: Analysis of Variance 11.1 ANOVA tables 11.1.1 R packages 11.2 ANOVA tables: Darwin’s maize 11.3 Hypothesis testing: F-values 11.4 Two-way ANOVA 11.5 Summary 11.6 Reference 12: Factorial Designs 12.1 Introduction 12.1.1 R Packages 12.2 Factorial designs 12.3 Comparing three or more groups 12.4 Two-way ANOVA (no interaction) 12.5 Additive treatment effects 12.6 Interactions: Factorial ANOVA 12.6.1 Factorial Anova In R 12.7 Summary: Statistics 12.8 Summary: R 12.9 References Appendix 12a: Code for Fig. 12.3 13: Analysis of Covariance 13.1 ANCOVA 13.1.1 R Packages 13.2 The agricultural pollution data 13.2.1 Warning: R Regenerates! 13.3 ANCOVA with water stress and low-level ozone 13.4 Interactions in ANCOVA 13.5 General linear models 13.6 Summary 13.7 References 14: Linear Model Complexities 14.1 Introduction 14.2 Analysis of variance for balanced designs 14.3 Analysis of variance with unbalanced designs 14.4 ANOVA tables versus coefficients: When F and t can disagree 14.5 Marginality of main effects and interactions 14.6 Summary 14.7 References 15: Generalized Linear Models 15.1 GLMs 15.2 The trouble with transformations 15.3 The Box–Cox power transform 15.4 Generalized Linear Models in R 15.5 Summary: Statistics 15.6 Summary: R 15.7 References 16: GLMs for Count Data 16.1 Introduction 16.2 GLMs for count data 16.3 Quasi-maximum likelihood 16.4 Summary 17: Binomial GLMs 17.1 Binomial counts and proportion data 17.2 The beetle data 17.3 GLM for binomial counts 17.4 Alternative link functions 17.5 Summary: Statistics 17.6 Summary: R 17.7 Reference 18: GLMs for Binary Data 18.1 Binary data 18.1.1 R Packages 18.2 The wells data set for the binary GLM example 18.3 Centering 18.4 Summary 18.5 References 19: Conclusions 19.1 Introduction 19.2 A binomial GLM analysis of the Challenger binary data 19.3 Recommendations 19.4 Where next? 19.5 Further reading 19.6 The R café 19.7 References 20: A Very Short Introduction to R 20.1 Installing R 20.2 Installing RStudio 20.3 R packages 20.4 The R language 20.4.1 Functions 20.4.2 Arguments 20.4.3 Objects 20.4.4 Dataframes 20.4.5 Graphics Index