دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Joachim Stöhr
سری: Springer Tracts in Modern Physics, 288
ISBN (شابک) : 3031207432, 9783031207433
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 932
[933]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب The Nature of X-Rays and Their Interactions with Matter به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ماهیت اشعه ایکس و تعامل آنها با ماده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface References Contents About the Author 1 Introduction and Overview 1.1 About the Present Book 1.1.1 Motivations 1.1.2 Objectives 1.2 The Nature of Light: From Light Rays to QED 1.2.1 Early Concepts of the Nature of Light 1.2.2 The Quantum Era and Wave-Particle Duality 1.2.3 New Insight in the Period 1930–1950 1.2.4 Beyond Quantum Mechanics: Quantum Electrodynamics 1.2.5 Development of the Laser and Quantum Optics Around 1960 1.3 The X-Ray Revolution 1.3.1 The Discovery and Early Utilization of X-Rays 1.3.2 Development of Synchrotron Radiation Sources 1.3.3 The Advent of X-Ray Free Electron Lasers 1.4 The Scientific Power of X-Rays 1.4.1 From Optical to X-Ray Response of Matter 1.4.2 The Importance of X-Ray Resonances 1.4.3 X-Ray Spectro-Microscopy 1.4.4 Summary of Key Capabilities of Synchrotron Radiation 1.5 Science with XFELs 1.5.1 Snapshots of the Atomic Structure of Matter: Probe Before Destruction 1.5.2 Creation and Characterization of Transient States of Matter 1.5.3 Creation and Probing High Energy Density Matter 1.5.4 Non-linear X-Ray Interactions with Matter References Part I Production of X-Rays and Their Description 2 Production of X-Rays: From Virtual to Real Photons 2.1 Introduction 2.2 Relativistic Concepts and Electron Bunch Compression 2.3 The Fields of a Moving Charge: Liénard–Wiechert Equations 2.4 Fields of a Charge in Uniform Motion: Velocity Fields 2.4.1 Spatial Dependence of Velocity Fields of a Single Electron 2.4.2 Temporal Dependence of Velocity Fields of a Single Electron 2.4.3 The Fields of a Relativistic Gaussian Electron Bunch 2.4.4 Generation of Huge Field Pulses: THz Fields and Radiation 2.4.5 Frequency Spectrum of Gaussian Electron Bunches 2.5 Weizsäcker-Williams Method: Virtual Photon Spectrum 2.5.1 Virtual Photon Spectrum of a Gaussian Electron Bunch 2.5.2 Coherent Virtual Spectrum: THz Photons 2.5.3 Incoherent Virtual Spectrum: X-Ray Photons 2.6 Acceleration Fields: Creation of EM Radiation 2.6.1 Distortion of Field Lines: Radiation 2.6.2 The Angular Spectrum of a Single Accelerated Charge 2.6.3 Frequency Spectrum of a Single-Electron Bending Magnet Source 2.6.4 Frequency Spectrum of a Single-Electron Undulator Source 2.6.5 The Angular Distribution of Undulator Radiation 2.7 The Synchrotron Radiation Spectrum of Electron Bunches 2.7.1 The Spectrum of an Electron Bunch and Its Temporal Coherence 2.7.2 The Emitted Radiation Cone and Lateral Coherence 2.7.3 Toward Ultimate Storage Rings 2.7.4 Polarization of Synchrotron Radiation 2.8 X-Ray Free Electron Lasers 2.8.1 The Radiation Emitted by SASE XFELs 2.8.2 Realistic Pulse Structure in SASE XFELs 2.8.3 From SASE to Transform Limited Pulses References 3 From Electromagnetic Waves to Photons 3.1 Introduction and Overview 3.2 Classical Description of Light 3.2.1 Maxwell's Equations and Their Symmetries 3.2.2 The Electromagnetic Wave Equation 3.2.3 Energy, Momentum, Intensity, Flux, and Fluence 3.2.4 Field Strength of X-Ray Beams 3.2.5 Field Normalization Volume 3.2.6 The Description of Polarized EM Waves 3.2.7 The Degree of X-Ray Polarization 3.3 Quantum Theoretical Description of X-Rays 3.3.1 The Quantized Electromagnetic Field: Birth of the Photon 3.3.2 Zero-Point Energy and Virtual Photons 3.3.3 The Renormalized Hamiltonian of the Radiation Field 3.3.4 The Basic Quantum States of Light 3.3.5 Single Mode Number States 3.4 The Properties of Single Mode Quantum States 3.4.1 Definition of Key Properties 3.4.2 Properties of Single Mode Number States 3.4.3 Properties of Single Mode Coherent States 3.4.4 Properties of Single Mode Chaotic States 3.5 Photon Modes, Density of States, and Coherence Volume 3.5.1 Photon Modes 3.5.2 Number of Modes per Unit Energy 3.5.3 Number of Modes per Unit Volume 3.5.4 Coherence Volume per Mode 3.5.5 Summary 3.6 Link of Classical and Quantum Properties of Radiation 3.6.1 Multi-mode Number States 3.6.2 Expectation Value of the Squared Electric Field References 4 Brightness and Coherence 4.1 Introduction 4.2 Brightness and Coherence 4.2.1 Introduction to the Concept of Brightness 4.2.2 Formal Definition of Brightness 4.2.3 Average Brightness 4.2.4 Peak Brightness 4.2.5 Brightness Reduction Through Partial Coherence 4.2.6 Link of Brightness and Coherence 4.2.7 Photon Degeneracy Parameter 4.2.8 Brightness of Storage Rings and XFELs 4.2.9 Summary 4.3 Historical Descriptions of Coherence 4.3.1 Geometrical Coherence Concepts in Time and Space 4.4 Fourier Optics Description of Coherent Sources 4.4.1 Fourier Transformation of Temporal Coherence 4.4.2 Time-Bandwidth Product Definitions 4.4.3 Fourier Transformation of Spatial Coherence 4.5 Statistical and Quantum Description of Partially Coherent Sources 4.5.1 Degree of First Order Coherence 4.5.2 Statistical Forms of Light Behavior 4.5.3 The Concept of Partial Lateral Coherence 4.6 The van Cittert–Zernike Theorem: Propagation of Field Correlations 4.6.1 van Cittert–Zernike Theorem for a Schell Model Source 4.6.2 Coherent Limit of a Circular Flat-Top Source 4.6.3 Chaotic Limit of a Circular Flat-Top Source 4.6.4 Coherent and Chaotic Limits of a Circular Gaussian Source 4.6.5 Summary 4.7 Quantum Derivation of the van Cittert–Zernike Theorem 4.7.1 The Case of Two Source Points 4.7.2 Finite Area Sources 4.8 Comparison of Classical and Quantum Diffraction 4.8.1 Link of Waves and One-Photon Probability Amplitudes 4.8.2 Link of Probability Amplitude and Operator Formalisms 4.9 X-Ray Measurement of First Order Lateral Coherence References 5 The Complete Description of Light: Higher Order Coherence 5.1 Introduction 5.2 The Existence of Photons and Their Interference 5.2.1 The Grangier–Roger–Aspect Experiment 5.2.2 The Hanbury Brown–Twiss Experiment 5.2.3 The Hong–Ou–Mandel Experiment 5.3 Light and Detection Timescales 5.3.1 ``Light'' Timescales 5.3.2 Detector Timescales 5.4 The Description of Second Order Coherence 5.4.1 Introduction 5.4.2 Second Order Spatial Coherence Functions 5.4.3 Link of First and Second Order Coherence 5.5 The Propagation of Second Order Coherence 5.5.1 Propagation of Two Photons from Two Source to Two Detection Points 5.5.2 Fundamental Two-Photon Patterns of Two-Point Sources 5.5.3 The New Paradigm of Quantum Diffraction 5.5.4 Finite Source Areas 5.5.5 Second Order Pattern of a Circular Flat-Top Source 5.5.6 Power Conservation in Two-Photon Diffraction 5.5.7 X-Ray Measurements of Second Order Lateral Coherence 5.6 Detection of First and Second Order Coherence Patterns 5.6.1 The Coherent Quantum States of Light 5.6.2 Implication for the First Order Pattern 5.6.3 Implications for the Second Order Pattern 5.7 Higher Order Coherence Propagation 5.7.1 Higher Order Patterns of a Coherent Source 5.7.2 Higher Order Patterns of a Chaotic Flat-Top Source 5.8 Higher Order Brightness 5.9 From Rays to Waves to Photons to Rays—Going Full Circle References Part II Semi-classical Theory of X-Ray Interactions with Matter 6 Semi-classical Response of Atoms to Electromagnetic Fields 6.1 Introduction 6.2 X-Ray Thomson Scattering by Electrons and Spins 6.2.1 Response of an Electron and Its Spin to the Incident Field 6.2.2 The Scattered Dipole Field 6.2.3 Thomson Scattering Length and Cross Sections 6.2.4 Thomson Scattering By An Atom 6.3 X-Ray Resonant Scattering and Absorption 6.3.1 Dispersion Corrections to the Atomic Scattering Factor 6.3.2 Resonant Scattering by Atomic Core Electrons 6.3.3 Distinction of Thomson, Rayleigh, and Resonant Scattering 6.4 The Classical Link of Resonant Scattering and Absorption 6.4.1 Relative Size of Thomson, Resonant Scattering, and Absorption 6.5 The First Born Approximation 6.5.1 The Breit–Wigner Atomic Cross Section 6.6 The Kramers-Kronig Relations 6.7 The Henke-Gullikson Formalism 6.8 Atomic Shell Sum Rules References 7 Semi-classical Response of Solids to Electromagnetic Fields 7.1 Introduction 7.2 Static Magnetic and Electric Fields Inside Materials 7.3 Frequency Response of Materials: Microwaves to X-Rays 7.3.1 Permittivity: Electric Field Response 7.3.2 Permeability: Magnetic Field Response 7.3.3 From Permittivity and Permeability to Optical Parameters 7.3.4 Penetration Depth of EM Waves: From Microwaves to X-Rays 7.3.5 Optical Parameters: From the THz to the X-Ray Regime 7.4 Dielectric Response Formulation of X-Ray Absorption 7.4.1 Optical Parameter Formulation 7.4.2 Absorption Coefficient Formulation 7.4.3 Beer-Lambert Formulation 7.5 From Dielectric to Atom-Based X-Ray Response 7.5.1 Brief Review of X-Ray Scattering Factors 7.5.2 From Single Atoms to Atomic Sheets 7.5.3 Atomic Scattering Factors: Born Approximation Versus Huygens–Fresnel Principle 7.5.4 Scattering Phase Shifts 7.5.5 Link of X-Ray Scattering Factors and Optical Parameters 7.6 The Optical Theorem 7.7 Coherent Versus Incoherent X-Ray Scattering from Solids 7.7.1 Incoherent Versus Coherent Field Superposition 7.7.2 X-Ray Forward Scattering and Absorption 7.7.3 The Total Transmitted Intensity 7.7.4 Relative Size of the Absorbed and Scattered Intensities 7.8 The Response of a Thick Sample: Dynamical Scattering Theory 7.8.1 Snell's Law and Total X-Ray Reflection 7.8.2 Darwin-Prins Dynamical Scattering Theory 7.8.3 The Transmitted Field and Intensity 7.8.4 The Reflected Field in the Soft X-Ray Region 7.9 Polarization Dependent Absorption: Dichroism 7.9.1 History of Polarization Dependent Effects 7.9.2 Chiral Versus Magnetic Orientation 7.9.3 Fundamental Forms of X-Ray Dichroism 7.10 Natural Dichroism and Orientational Order 7.10.1 Orientation Factors and Saupe Matrix 7.10.2 Determination of Orientation Factors 7.11 Magnetic Dichroism and Faraday Rotation 7.11.1 Polarization Dependent Scattering Length and Optical Parameters 7.11.2 Phenomenological Model 7.11.3 Transmission of Circularly Polarized X-Rays: XMCD 7.11.4 Transmission of Linearly Polarized X-Rays: XMLD 7.11.5 Faraday Rotation References 8 Classical Diffraction and Diffractive Imaging 8.1 Introduction and Chapter Overview 8.2 Real Space X-Ray Imaging 8.2.1 X-Ray Microscopes 8.2.2 Polarization Dependent Microscopy 8.3 Diffractive Imaging 8.3.1 Introduction to Diffractive Imaging 8.3.2 Historical Development of Diffraction Theories 8.3.3 The Huygens–Fresnel Principle 8.3.4 The Rayleigh-Sommerfeld Diffraction Formula 8.4 Approximate Solutions of the Rayleigh-Sommerfeld Formula 8.4.1 Paraxial Approximation 8.4.2 Fresnel Diffraction 8.4.3 Fraunhofer Diffraction 8.4.4 Fourier Theorem 8.5 Diffraction and Wave-Particle Duality 8.5.1 Feynman's Probability Amplitudes 8.5.2 De Broglie–Bohm Pilot Wave Theory 8.6 Consequences of Fraunhofer Diffraction 8.6.1 The Diffraction Limit 8.6.2 The Arago-Fresnel-Poisson Bright Spot 8.6.3 Babinet's Principle 8.7 Formulation of Polarization Dependent Diffractive Imaging 8.7.1 Charge Domains with Orientational Order 8.7.2 Charge Domains of Different Chemical Composition 8.7.3 Diffraction by Ferromagnetic Domains 8.7.4 Separation of Charge and Magnetic Contrast 8.8 Illustration of the Phase Problem in X-Ray Diffractive Imaging 8.9 Fourier Transform Holography: FTH 8.9.1 Illustration of FTH 8.9.2 Improved Reference Beams 8.9.3 Application of FTH: Magnetic Domains 8.10 Non-holographic Solutions to the Phase Problem 8.10.1 Brief History of X-Ray Crystallography 8.10.2 MIR, SAD, and MAD Image Reconstruction 8.10.3 Sampling of the Diffraction Pattern 8.10.4 Ptychography 8.11 Multiple-Wavelength Anomalous Diffraction—MAD 8.11.1 MAD of Macromolecular Crystals 8.11.2 Formulation of MAD in Protein Cystallography 8.11.3 MAD Imaging of Non-crystalline Samples 8.11.4 Implementation of MAD for Non-periodic Samples 8.11.5 Phase Contrast Imaging: Combining FTH and MAD References Part III Quantum Theory of Weak Interactions 9 Quantum Formulation of X-Ray Interactions with Matter 9.1 Introduction and Overview 9.2 The Photon-Matter Interaction Hamiltonian 9.2.1 The Pauli Equation Including the EM Field 9.2.2 Evaluation of the Spin Dependent Part of the Pauli Equation 9.2.3 The Complete Interaction Hamiltonian 9.2.4 Relative Size of the Interactions 9.3 Perturbation Treatment of X-Ray Scattering and Absorption 9.3.1 On the Use of Time-Dependent Perturbation Theory 9.4 Kramers-Heisenberg-Dirac Perturbation Theory 9.4.1 The Kramers-Heisenberg-Dirac Formula 9.5 Overview of First Order Processes 9.5.1 X-Ray Absorption 9.5.2 Resonant X-Ray Absorption 9.5.3 X-Ray Emission 9.5.4 X-Ray Thomson Scattering 9.6 Overview of Second Order Processes 9.6.1 Spontaneous X-Ray Resonant Scattering 9.6.2 Stimulated X-Ray Resonant Scattering 9.6.3 Two-Photon Absorption and Photoemission References 10 Quantum Theory of X-Ray Absorption Spectroscopy 10.1 Overview 10.2 Quantum Formulation of X-Ray Absorption Spectroscopy (XAS) 10.2.1 Photon Flux, Intensity, and Absorption Cross Section 10.3 Non-resonant Absorption: Excitation into Continuum States 10.3.1 Wavefunctions 10.3.2 Continuum Cross Section 10.3.3 Simple Model Calculation 10.3.4 The Core Level Photoemission Spectrum and Its Linewidth 10.4 Resonant X-Ray Absorption 10.4.1 Natural Linewidth of XAS Resonances 10.4.2 The Natural Shape of XAS Resonances 10.4.3 Natural Linewidth of Optical Versus X-Ray Transitions 10.4.4 The Dipole Matrix Element 10.4.5 One-Electron/Hole Model 10.4.6 Polarization Dependence of the Angular Transition Matrix Element 10.4.7 Sum Rules for the Angular Transition Matrix Element 10.5 Resonant XAS in Experiment and Theory 10.5.1 K-Shell Resonance in the Low-Z Atom Ne 10.5.2 K-Shell Resonances in the N2 and O2 Molecules 10.5.3 L-Shell Resonances in 3d Transition Metal Atoms 10.5.4 L-Shell XAS Intensities and Valence Shell Occupation 10.5.5 Resonant Lineshapes in Atoms and Solids 10.5.6 Dipole Matrix Element, Oscillator Strength, and Sum Rules 10.6 Multi-electron Formalism: Multiplet Structure 10.6.1 Evolution of One-Electron to Multiplet Theory References 11 Quantum Theory of X-Ray Dichroism 11.1 Overview 11.2 Introduction to the Quantum Theory of Dichroism 11.3 X-Ray Natural Linear Dichroism—XNLD 11.3.1 The Search Light Effect 11.3.2 XNLD and the Quadrupolar Valence Charge Density 11.3.3 Application of XNLD 11.4 X-Ray Natural Circular Dichroism—XNCD 11.4.1 The Two Types of XNCD 11.5 X-Ray Magnetic Circular Dichroism—XMCD 11.5.1 Key Concepts of Magnetism and Magnetic Alignment 11.5.2 XMCD Sum Rule for the Orbital Moment 11.5.3 Experimental Studies of Orbital Magnetism 11.5.4 XMCD Sum Rule for the Spin Moment 11.6 Test of the Sum Rules: Cu-Phthalocyanine 11.6.1 Electronic Structure of Cu-Pc 11.6.2 Treatment of the Spin-Orbit Interaction 11.6.3 Comparison of Orbital Momenta in Theory and Experiment 11.6.4 Spin Momenta in Theory and Experiment 11.7 Application of XMCD to the Study of Transient Spin Effects 11.7.1 Spin Accumulation in Cu upon Injection from Co 11.7.2 Spin-Orbit Induced Spin Currents in Pt, Injected into Co 11.8 X-Ray Magnetic Linear Dichroism—XMLD 11.8.1 Introduction 11.8.2 Theoretical Formulation in One-Electron Theory 11.8.3 XNLD Versus XMLD in Cu-Phthalocyanine 11.8.4 XMLD in Ferromagnetic Transition Metals 11.8.5 Enhanced XMLD Through Multiplet Effects References 12 Quantum Theory of X-Ray Emission and Thomson Scattering 12.1 Introduction and Overview 12.2 Quantum Formulation of X-Ray Emission Spectroscopy (XES) 12.2.1 XES History and Terminology 12.2.2 The Photon Part of the Transition Matrix Element 12.2.3 XES Decay Time and Linewidth 12.2.4 Decays to Excited Final States 12.2.5 Auger Contribution to the XES Linewidth 12.2.6 Putting It All Together: The X-Ray Emission Rate and Width 12.2.7 Atomic Decay Time: Core Hole-Clock 12.3 Fundamental X-Ray Emission Experiments 12.3.1 K-shell Emission in Ne 12.3.2 K-Shell Emission in N2 12.3.3 L-Shell XES in 3d Metals 12.3.4 L3-Shell XES in Cu Metal 12.4 X-Ray Fluorescence Yield, Linewidths, and Strengths 12.4.1 Radial Dipole Matrix Element 12.5 Quantum Theory of Thomson Scattering 12.5.1 Quantum Theoretical Formulation of Thomson Scattering 12.5.2 Elastic Thomson Scattering: Atomic Form Factor 12.5.3 Inelastic Thomson Scattering: Dynamical Structure Factor 12.5.4 Core Shell Excitations: X-Ray Raman Scattering (XRS) 12.5.5 Example: Typical O K-shell Cross Sections References 13 Quantum Theory of X-Ray Resonant Scattering 13.1 Introduction and Overview 13.2 Formulation of Resonant Scattering: REXS and RIXS 13.2.1 Evaluation of the Double Matrix Element 13.2.2 One-Electron Versus Configuration Picture 13.2.3 Coherent Second Order Versus Consecutive First Order Processes 13.2.4 REXS/RIXS Terminologies 13.3 Quantum Formulation of REXS 13.3.1 The Fundamental REXS Cross Section 13.3.2 REXS with Finite Instrumental Resolution 13.4 Spontaneous and Stimulated REXS Versus XAS 13.4.1 Spontaneous REXS Versus XAS 13.4.2 Stimulated REXS Versus XAS 13.4.3 Link to Semi-classical Results 13.5 Intermediate State Interference Effects in REXS 13.5.1 REXS Interference Contour Map 13.5.2 REXS Scattering Time 13.5.3 REXS Interference in Molecular Spectra: N2 and O2 13.6 Polarization and Spin Dependent Spontaneous REXS 13.6.1 The Polarization Dependent Scattering Length 13.7 Spontaneous Versus Stimulated REXS by an Atomic Sheet 13.7.1 Forward Scattering by an Atomic Sheet 13.8 Resonant Inelastic X-Ray Scattering: RIXS 13.8.1 Two-Step RIXS 13.9 RIXS with Finite Instrumental Resolution 13.9.1 The Case of Small Final State Width 13.9.2 Reduction of RIXS to XES 13.10 Examples of RIXS Capabilities 13.10.1 K-Shell RIXS of N2 and O2 13.10.2 L-edge RIXS of Transition Metal Oxides 13.10.3 L-Edge RIXS of Transition Metals 13.10.4 RIXS of Chemisorbed Molecules: Polarization Dependence 13.10.5 Utilization of the Scattered Polarization 13.11 RIXS and Reduced Linewidth XAS (HERFD) 13.11.1 HERFD XAS at the Pt L3-Edge References Part IV Multi-photon Interaction Processes 14 Resonant Non-linear X-Ray Processes in Atoms 14.1 Introduction 14.2 X-Ray Induced Atomic Core to Valence Transitions 14.2.1 Interaction Energy and Hamiltonian: The Rabi Frequency 14.2.2 The Rabi Frequency in the X-Ray Regime 14.3 The Optical Bloch Equations 14.3.1 Time-Dependent Transitions in a Two-Level System: Density Matrix Formulation 14.3.2 Damping Constants: Longitudinal Versus Transverse Relaxation 14.4 Definition of Transition Rates in the BR Theory 14.4.1 X-Ray Interaction Parameters for Model Calculations 14.4.2 Practical Units and Beam Parameter Conversions 14.5 Analytical Solutions of the Bloch Equations 14.5.1 Arbitrary Bandwidth: Low Incident Intensity 14.5.2 Exact Resonance: Arbitrary Incident Intensity 14.5.3 Excitations by Transform-Limited and SASE Pulses 14.5.4 Solution for the Steady-State or Long Time Limit 14.5.5 Power Broadening of the BR Linewidth 14.6 Link of KHD and Low Intensity BR Rates 14.6.1 The KHD Transition Rates 14.6.2 Link of Bandwidth in KHD and Time in BR Rates 14.6.3 Mode-Based Versus Atom-Based Coherence Volumes 14.6.4 Zero-Point Field in the Bloch-Rabi Formalism 14.7 Link of BR Rates and KHD Rates in the Steady-State 14.7.1 Steady-State Rate Expressions 14.7.2 Illustration of the BR Rates and Their Saturation 14.7.3 Time Dependence of Rates at Resonance 14.8 Optical Theorem: Sum Rule for Absorption and Scattering 14.8.1 XAS and REXS Cross-Section Sum Rule 14.8.2 Atom Transmission Sum Rule 14.8.3 BR Versus KHD Stimulated Enhancement: Saturation 14.9 BR, KHD, and Einstein Treatment of a Two-Level System 14.9.1 Einstein's Model 14.9.2 Reduction of the BR to the Einstein Theory 14.10 Resonance Fluorescence 14.10.1 Introduction 14.10.2 Second Quantization of the p p p pcdotA A A A Interaction Hamiltonian 14.10.3 The Degree of First Order Temporal Coherence 14.10.4 g(1)(t) From Numerical Solutions of Bloch Equations 14.11 The Resonant Fluorescence Spectrum 14.11.1 Form of the Spectrum 14.11.2 Fourier Transform of g(1) (t): The Fluorescence Spectrum 14.11.3 The Low Intensity Spectrum: ΓR < Γ/4 14.11.4 High Intensity Spectrum: ΓR > Γ/4 14.11.5 Calculated Fluorescence Spectra 14.11.6 Coherent and Incoherent Parts of the Equilibrium Spectrum 14.12 Second Order Coherence of the Fluorescent Photons 14.12.1 Weak Incident Beam 14.12.2 Large Dephasing: Einstein Result 14.12.3 Resonant Case of Arbitrary Intensity 14.12.4 Photon Antibunching in Resonance Fluorescence References 15 Non-linear Absorption and Scattering Processes in Solids 15.1 Introduction and Chapter Overview 15.1.1 Brief Introduction 15.1.2 Chapter Overview 15.2 The Fundamental Damage Issue of XFEL Radiation 15.2.1 X-Ray Beam Parameters 15.2.2 Temporal Evolution of Matter after X-Ray Excitation 15.2.3 Energy Transfer to the Electronic System 15.2.4 From Electronic to Lattice Temperature 15.2.5 Ablation Threshold 15.2.6 Summary 15.3 Fluence-Dependent Changes of XAS Spectra 15.3.1 Redistribution of Valence Electrons 15.3.2 X-Ray Transparency: An Introduction 15.4 BR Theory of the Stimulated Response of a Thin Sheet 15.4.1 Non-linear Response of an Atomic Sheet 15.4.2 Effective Excited State Population and Enhancement Factor calGcoh 15.5 Non-linear Transmission Through a Film of Finite Thickness 15.5.1 From Thin Sheet to Finite Thickness Film 15.5.2 Summary: From Single Atom to Film Transmission 15.5.3 Sum Rule for Non-linear Film Transmission 15.6 Polarization and Time-Dependent NL Transmission 15.6.1 The Polarization Dependent Generalized Beer-Lambert Law 15.6.2 Non-linear Polarization Dependent Transmission by the Magnetic 3d Metals 15.6.3 Dependence on X-Ray Pulse Coherence Time 15.6.4 From Collective to Independent Atomic Response 15.7 X-Ray Transparency 15.7.1 Resonant Case: Co Metal 15.7.2 Resonant Versus Non-resonant X-Ray Transparency 15.7.3 Non-resonant Transparency Above the Al L-Edge 15.7.4 Non-linear Transparency Above the Fe K-Edge 15.8 Polarization Dependent NL Transmission at Resonance 15.8.1 The Maximum NL Transmission Effect 15.8.2 Polarization Dependent Transmission 15.9 Competition Between NL Transmission and Diffraction 15.9.1 The NL Airy Pattern of a Film in a Circular Aperture 15.9.2 Change of the Spontaneous to the Stimulated Pattern 15.9.3 X-Ray Soliton Model: Mode-Dependent Stimulation 15.10 Polarization Dependent NL Diffraction 15.10.1 NL Diffraction by Magnetic Domains 15.10.2 Narrow Bandwidth Resonant Case 15.10.3 Broad Bandwidth Case 15.11 Stimulated Resonant Inelastic X-Ray Scattering 15.11.1 Stimulated L3 REXS and RIXS for Co Metal 15.11.2 Observation of Stimulated RIXS in a Solid 15.11.3 The Stimulated REXS/RIXS Model References 16 Quantum Diffraction: Emergence of the Quantum Substructure of Light 16.1 Introduction 16.2 Generation of Different States of Light 16.3 The Formulation of Quantum Diffraction 16.3.1 First Order Diffraction Formulation 16.3.2 Second Order Diffraction Formulation 16.3.3 Order-Dependent Degree of Coherence 16.4 The Quantum States of Light 16.4.1 Two-Mode Collective Quantum States 16.4.2 The Collective Coherent State and Its Substates 16.4.3 The Collective Phase-Diffused Coherent State and Its Substates 16.4.4 The Collective Chaotic State and Its Substates 16.4.5 Plots of the Substate Distributions 16.4.6 Other Fundamental Quantum States 16.4.7 Summary of Key Multi-photon Quantum States 16.5 First Order Double-Slit Diffraction Patterns 16.5.1 Calculation of the First Order Patterns 16.5.2 Coherent State 16.5.3 Plots of the First Order Patterns 16.5.4 Degree of First Order Coherence 16.5.5 Reduction of First-Order Quantum to Wave Formalism 16.6 Second Order Double-Slit Diffraction Patterns 16.6.1 Coherent State 16.6.2 Plots of the Second Order Patterns 16.6.3 Degree of Second Order Coherence 16.6.4 The Evolution from First to Second Order 16.7 Summary References Appendix A.1 The International System of Units (SI) A.2 Resonance Lineshapes A.2.1 Lorentzian Lineshape and Integral A.2.2 Gaussian Lineshape and Integral A.2.3 Voigt Lineshape A.3 Dirac δ-Function A.4 Fourier Transforms and Parseval's Theorem A.4.1 1D Fourier Transform A.4.2 1D Transformation Under Preservation of Dimension A.4.3 Effective 1D Distribution Widths and Transform Limit A.4.4 2D Fourier Transform A.4.5 2D Transformation Under Preservation of Dimension A.4.6 Effective 2D Distribution Areas and Diffraction Limit A.5 Spherical Harmonics and Tensors A.5.1 Relations between First and Second Order Tensors C(1)m and C(2)m A.6 s, p, and d Orbitals A.7 Spin-Orbit Basis Functions and Matrix Elements A.8 Matrix Elements of Spherical Tensors A.8.1 Polarization Dependent p rightarrowd Transition Probabilies A.8.2 Sum Rules For Matrix Elements of C(1)m and C(2)m A.9 Quantum States and Diffraction Patterns A.9.1 Coherent State A.9.2 N-Photon Substate of Coherent State A.9.3 Phase-Diffused Coherent State A.9.4 N-Photon Substate of Phase-Diffused Coherent State A.9.5 Chaotic State A.9.6 N-Photon Substate of Chaotic State A.9.7 N-Photon Entangled (NOON) State A.9.8 N-Photon Number State A.10 Matrix Element of Second Order Coherence Operators A.10.1 Coherent State A.10.2 N-Photon Substate of Coherent State A.10.3 Phase-Diffused Coherent State A.10.4 N-Photon Substate of Phase-Diffused Coherent State A.10.5 Chaotic State A.10.6 N-Photon Substate of Chaotic State A.10.7 N-Photon Entangled (NOON) State A.10.8 N-Photon Number State A.11 Evaluation of the Degree of Second Order Coherence References Index