دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Sinan Küfeoğlu سری: Sustainable Development Goals Series ISBN (شابک) : 3030750922, 9783030750923 ناشر: Springer سال نشر: 2021 تعداد صفحات: 269 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب The Home of the Future: Digitalization and Resource Management به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خانه آینده: دیجیتالی شدن و مدیریت منابع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مطالعه عمیقی را ارائه میکند تا نشان دهد که زندگی شهری پایدار در آینده امکانپذیر است. برای ساختن آینده ای امن تر و پایدارتر، به عنوان نوع بشر، مایلیم از انرژی های تجدیدپذیر بیشتری استفاده کنیم، بهره وری انرژی را افزایش دهیم، ردپای کربن و آب خود را در تمام بخش های اقتصادی کاهش دهیم. افزایش روزافزون جمعیت و تقاضای فزاینده انسان برای مصرف، سوال دیگری را مطرح میکند که آیا منابع جهان برای نسلهای حال و آینده کافی است؟ دسترسی عادلانه به آب، انرژی و غذا هدف همه است. در راستای اهداف توسعه پایدار سازمان ملل متحد، دانشمندان، محققان، مهندسان و سیاستگذاران در سراسر جهان به سختی برای دستیابی به این اهداف تلاش می کنند.
برای پاسخ به همه این چالش ها، می خواهیم هسته اصلی شهرهای
هوشمند را معرفی کنیم. آینده، بلوک ساختمانی زندگی شهری آینده:
مرکز نوآوری دیجیتال باز (ODIH). ODIH به عنوان "خانه آینده"
عمل خواهد کرد، یک ساختمان کاملا دیجیتالی و هوشمند و خودپایدار
که به تمام انگیزه هایی که در اینجا برجسته می کنیم پاسخ می
دهد. در ODIH، فضای زندگی را معرفی می کنیم که آب، انرژی و غذای
خود را با به حداقل رساندن ردپای کربن و آب به لطف اینترنت
اشیا، هوش مصنوعی و فناوری های بلاک چین تولید می کند. همچنین
به عنوان یک محیط نوآوری باز برای استارتآپها و کارآفرینانی
که مایلند راهحلهای خود را در زیرساخت ODIH ادغام کنند و
آنها را در زمان واقعی آزمایش کنند، عمل خواهد کرد. ما معتقدیم
که این یک بستر آزمون نوآوری باز واقعی برای مدلهای تجاری جدید
خواهد بود.
This book presents an in-depth study to show that a sustainable future urban life is possible. To build a safer and more sustainable future, as humankind, we would like to use more renewable energy, increase energy efficiency, reduce our carbon and water footprints in all economic sectors. The increasing population and humans’ ever-increasing demand for consumption pose another question whether the world’s resources are sufficient for present and future generations. Fair access to water, energy, and food is the objective for all. In line with the United Nations Sustainable Development Goals, scientists, researchers, engineers, and policymakers worldwide are working hard to achieve these objectives.
To answer all these challenges, we would like to introduce
the core of Smart Cities of the future, the building block of
the future’s urban life: Open Digital Innovation Hub (ODIH).
ODIH will serve as the ‘Home of the Future’, a fully
digitalised and smart, self-sustaining building that answers
all the motivation we highlight here. In ODIH, we introduce a
living space that produces its water, energy, and food by
minimising carbon and water footprints thanks to the Internet
of Things, Artificial Intelligence, and Blockchain
technologies. It will also serve as an open innovation
environment for start-ups and entrepreneurs who wish to
integrate their solutions into the infrastructure of ODIH and
test those in real-time. We believe this will be a true open
innovation test-bed for new business models.
Preface Contents 1 Sustainable Living Spaces and Open Digital Innovation Hub Abstract 1.1 Introduction 1.1.1 The Self-sustaining Concept 1.1.2 The Design of ODIH References 2 Water Abstract 2.1 Introduction 2.1.1 Current State of Water 2.1.1.1 The Future of Water in the World 2.1.1.2 The Future of Water in Turkey 2.1.1.3 What is Water-Energy-Food Nexus? 2.1.2 Water Perspective 2.1.3 What is a Sustainable Compound? 2.1.3.1 Needs of a Sustainable Compound 2.1.3.2 Sustainable Compound Versus Traditional House 2.2 Aim of the Study 2.3 Methodology 2.3.1 Providing Freshwater 2.3.1.1 Technologies and Tools in Providing Freshwater 2.3.1.2 Reuse of Greywater 2.3.2 Waste Management 2.3.2.1 Toilet System 2.3.3 HVAC 2.3.4 Location of HVAC, Waste Treatment and Water Circulation Systems in ODIH 2.4 Materials 2.4.1 Reverse Osmosis System 2.4.2 Heat Pump 2.4.3 Water Capturing System 2.4.4 Biogas Reactor 2.4.5 Water Tanks 2.4.6 Toilet System 2.4.7 Reuse of Greywater 2.5 Results 2.6 Discussion and Policy Recommendations 2.7 Conclusion Acknowledgements Appendix Appendix 2.1 Harvestable Rainwater (Area*rainfall*0.72) Appendix 2.2 Harvestable Rainwater After Purification Appendix 2.3 Used Rainwater Appendix 2.4 Surplus Rainwater Appendix 2.5 Used Rainwater After Purification (Used*0.9) Appendix 2.6 Greywater Production (Per day: 355 * 0.75 * 0.8 ≌ 210 L) Appendix 2.7 Greywater Amount After Purification (Greywater Production*0.9) Appendix 2.8 Total Water by Sources Appendix 2.9 Water from Humidity (5 L * 30) Appendix 2.10 Reverse Osmosis Appendix 2.11 Energy Consumptions (Purification: 3 kWh/m3, Reverse Osmosis: 11 kWh/m3, Water from Humidity: 350 kWh/m3, Hydrophore: 2.11 kWh/m3) References 3 Energy Abstract 3.1 Introduction 3.1.1 Water-Energy-Food (WEF) Nexus 3.1.2 Solar Energy 3.1.2.1 Working Principle and Components of a Photovoltaic System 3.1.3 Wind Energy 3.1.3.1 Horizontal-Axis Turbines 3.1.3.2 Vertical-Axis Turbines 3.1.4 Biogas 3.1.4.1 Anaerobic Digestion 3.1.5 Energy Storage Systems 3.1.5.1 Batteries 3.2 Aim of the Study 3.3 Methodology and Materials 3.3.1 PV Panel 3.3.1.1 Solar Inverter 3.3.2 Wind Turbine 3.3.2.1 Wind Inverter 3.3.3 Biogas 3.3.4 Storage 3.3.4.1 Fundamental Terminology 3.3.4.2 Battery Selection 3.3.5 Calculation Methods 3.3.5.1 PV Calculations 3.3.5.3 Battery Calculations 3.4 Results 3.4.1 CO2 Emission Calculations 3.5 Discussion and Policy Recommendation 3.6 Conclusion Appendix 3.1 Yearly Consumption of Equipment and Household Appliances References 4 Food Abstract 4.1 Introduction 4.1.1 Climate-Smart Agriculture (CSA) 4.1.1.1 What Is Smart Agriculture? 4.1.1.2 Why Do We Need Smart Agriculture? 4.1.1.3 The Importance of Managing Landscapes for CSA 4.1.1.4 Water Management 4.1.2 Sustainable Food Production 4.1.3 The Water-Energy-Food (WEF) Nexus 4.1.4 Future Problems 4.1.4.1 Food 4.1.4.2 Agricultural Land 4.1.4.3 Uncontrolled Urbanization 4.2 Aim of the Study 4.3 Methodology 4.3.1 Recommended Ratios of Macronutrients for Energy Intake 4.3.2 Why Potato? 4.3.3 Nutrient Film Technique (NFT) 4.3.4 Required Quantity of Potato for One Average Human in a Year 4.3.5 Calculations of Conventional Agriculture 4.3.5.1 Area Needed to Provide Nutritional Requirements 4.3.5.2 Water Consumption of Conventional Farming 4.3.5.3 Energy Consumption of Conventional Farming 4.3.5.4 Total Energy Consumption of Conventional Farming 4.3.5.5 Calculations for WEF Nexus Phenomenon for Conventional Farming 4.3.6 Soilless Agriculture (NFT) System 4.3.6.1 Area Needed to Provide Nutritional Requirements 4.3.6.2 Water Consumption of NFT System 4.3.6.4 Calculations for WEF Nexus Phenomenon 4.4 Materials 4.5 Results 4.5.1 Healthy Diet 4.5.2 Conventional Agriculture 4.5.3 Soilless Agriculture 4.6 Discussions and Policy Recommendation 4.6.1 Discussion 4.6.2 Policy Recommendations 4.7 Conclusion Appendix 4.1 References 5 The Enabling Technology: Internet of Things (IoT) Abstract 5.1 Introduction 5.1.1 Internet of Things and Efficiency 5.1.2 The Place of Demand Response, Machine Learning and Artificial Intelligence in Internet of Things 5.1.3 Capabilities and Future 5.2 Aim of the Study 5.3 Methodology and Materials 5.3.1 Setting an Intelligent Home System 5.3.2 Working Steps of IoT 5.3.2.2 Connectivity 5.3.2.3 Data Processing 5.3.2.4 User Interface 5.3.3 Cloud-Based IoT System and Its Implementation 5.3.3.1 Storage Issues 5.3.3.2 Data-Processing Issues 5.3.3.3 Communication Issues 5.3.3.4 Application Programming Interface 5.3.4 Water, Energy and Food Security (WEF) Nexus and IoT 5.3.4.1 Energy Management, Consumption and Efficiency 5.3.4.2 IoT and Agriculture 5.3.4.3 IoT for Water Management 5.3.5 Materials 5.3.5.1 Home Communication Network 5.3.5.2 Home Appliances 5.4 Results 5.4.1 A Day with IoT 5.5 Discussion 5.5.1 Device Compatibility & Communication Protocols 5.5.2 Open Source Problem 5.5.3 Cloud Connection or Local Network 5.5.4 Discussion and Policy Recommendations 5.6 Conclusion References 6 Home Management System: Artificial Intelligence Abstract 6.1 Introduction 6.1.1 Machine Learning 6.1.2 Deep Learning 6.1.3 Reinforcement Learning 6.2 Aim of the Study 6.3 Methodology 6.3.1 The Home Management System 6.3.1.1 Energy Management 6.3.1.2 Food & Agriculture 6.3.1.3 Water Consumption and Generation 6.3.1.4 Waste Management 6.3.1.5 Healthcare 6.3.1.6 Customisation/Entertainment 6.3.1.7 Security 6.3.2 Building the Smart Hub 6.3.2.1 Comparison of Three Different Home Automation Systems 6.3.2.2 Home Assistant 6.4 Results 6.4.1 Energy Management 6.4.2 Food and Agriculture 6.4.3 Water Management 6.5 Discussion 6.5.1 Energy Management 6.5.2 Water Management 6.5.3 Healthcare 6.5.4 Waste Management 6.5.5 Customisation and Entertainment 6.5.6 Policy Recommendation 6.6 Conclusion Appendix References 7 Demand Response and Smart Charging Abstract 7.1 Introduction 7.1.1 Basics of EV Charging 7.1.1.1 AC Connectors 7.1.1.2 DC Connectors 7.1.2 High EV Penetration Scenarios and Coordination Methodologies 7.1.2.1 Dump Charging 7.1.2.2 Multiple Tariff Policy 7.1.2.3 Smart (Coordinated) Charging 7.1.2.4 Vehicle to Everything (V2X) 7.1.3 Smart Charging Opportunities 7.1.4 Demand Side Management via Smart Charging 7.1.5 Virtual Power Plants 7.1.6 Second Usage of Electric Vehicle Batteries 7.2 Aim of the Study 7.3 Methodology 7.3.1 Charging Station Selection 7.3.2 Charging Station Connectivity 7.3.3 Smart Charging Coordination via Charging Protocols 7.3.4 Machine Learning Approaches for EV Charging Management 7.4 ODIH Hybrid Energy Management System Algorithm 7.4.1 ODIH Hybrid Energy Management System Description 7.4.1.1 System Components 7.4.2 Data Sources of HEMS Algorithm and Data Sample Methodology 7.4.2.1 Battery State of Charge (SoC) and Depth of Discharge (DoD) 7.4.2.2 Real-Time and Estimated Solar Production 7.4.2.3 Real-Time and Estimated Wind Production 7.4.2.4 House Demand 7.4.2.5 Energy Tariff Signals 7.4.2.6 Weather Data 7.4.3 Operation Modes of ODIH HEMS Algorithm 7.5 Results 7.5.1 Uncertainty and Imbalance in Energy Production and Consumption 7.5.2 Importance of Energy Storage 7.5.3 Opportunities for Load Scheduling and Smart Charging 7.5.4 Advantages of Smart Energy Management Algorithms 7.5.5 Tariffs for Demand Side Management 7.6 Discussion and Policy Recommendation 7.6.1 Empowering e-Mobility 7.6.2 Smart Charging and Prosumers 7.6.3 Developing Smart Tariffs for Prosumers and EV Owners 7.7 Conclusion References 8 Blockchain Applications and Peer-To-Peer Tradings Abstract 8.1 Introduction 8.1.1 Peer-To-Peer Energy Trading 8.1.1.1 The Potential Impact on Energy Sector Transformation 8.1.1.3 How Can We Use P2P Energy Trade in the ODIH? 8.1.2 The New Trends of Future Energy Markets: Digitalisation, Decarbonisation, and Decentralisation 8.1.2.1 Digitalisation 8.1.2.2 Decarbonisation 8.1.2.3 Decentralisation 8.1.3 The Blockchain 8.1.3.1 Why We Are Using Blockchain? How Does It Relate to P2P? 8.1.3.2 Blockchain Applications 8.1.4 Smart Contracts 8.1.4.1 Definition and History of Smart Contracts 8.1.4.2 Benefits of Smart Contracts 8.1.4.3 Types of Smart Contracts 8.1.4.4 Use-Cases of Smart Contracts 8.1.5 United Nations Development Programme Sustainable Development Goals (SDG) 8.1.5.1 SDG 7 (Affordable and Clean Energy) 8.1.5.2 SDG 9 (Industry, Innovation, and Infrastructure) 8.1.5.3 SDG 11 (Sustainable Cities and Communities) 8.1.5.4 SDG 12 (Responsible Consumption and Production) 8.1.5.5 SDG 13 (Climate Action) 8.1.6 Aim of the Study 8.2 Methodology 8.2.1 Software 8.2.1.1 Cost of Producing Electricity 8.2.2 Hardware 8.2.2.1 Elements in the Virtual Layer 8.2.2.2 Elements in the Physical Layer 8.2.3 Regulations 8.2.3.1 Europe’s P2P Trading Policies 8.2.3.2 Turkey’s Energy Policies 8.2.3.3 Regulatory Requirements to Apply P2P Trading and Promoting 8.3 Results 8.3.1 Opportunities for P2P Trading of Renewable Energy 8.4 Discussion 8.4.1 Policy Recommendations 8.4.1.1 Defining and Legalising P2P Energy Trading 8.4.1.2 Supporting Pilot Studies, P2P System Developers 8.4.1.3 Setting an Efficient Smart Contract 8.4.1.4 Determining the Responsibilities of System Participants 8.4.1.5 Enabling Energy Trading without Any Capacities and Defining Market Rules 8.4.1.6 Encouraging Sector Parts to Create P2P Systems and Individuals to Join Networks 8.4.1.7 Providing the Cyber-Security Between Peers and Ensuring Consumer Rights 8.4.1.8 Providing Energy Efficiency Use and Nature Protection 8.5 Conclusion 8.5.1 Future Work 8.5.1.1 Tokenisation 8.5.1.2 Creating Own Blockchain Ledger and Network 8.5.1.3 Blockchain-Based Applications in Smart Cities References