دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Stewart Shapiro (editor). Geoffrey Hellman (editor)
سری:
ISBN (شابک) : 0198809646, 9780198809647
ناشر: Oxford University Press
سال نشر: 2021
تعداد صفحات: 593
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب The History of Continua: Philosophical and Mathematical Perspectives به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تاریخ پیوسته: دیدگاه های فلسفی و ریاضی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تفکر ریاضی و فلسفی در مورد تداوم در طول اعصار به طور قابل توجهی تغییر کرده است. ارسطو اصرار داشت که مواد پیوسته از نقاط تشکیل نشده اند و فقط می توان آنها را به طور بالقوه به قطعات تقسیم کرد. چیزی چسبناک در مورد پیوسته وجود دارد. یکپارچه است کل این در تضاد کامل با روایت رایج معاصر است، که پیوستاری از مجموعهای از نقاط نامتناهی تشکیل شده است. این جلد یک مطالعه جمعی از ایده ها و بحث های کلیدی در این تاریخ ارائه می دهد. فصلهای آغازین بر دنیای باستان تمرکز دارند و دورههای پیش از سقراط، افلاطون، ارسطو و اسکندر را پوشش میدهند. پرداختن به دوره قرون وسطی بر یک دست نوشته (نسبتا) اخیراً کشف شده توسط بردواردین و ارتباط آن با دیدگاه های قرون وسطی قبل، در طول و بعد از برادواردین متمرکز است. زمان. در دوره موسوم به اوایل مدرن، ریاضیدانان حساب دیفرانسیل و انتگرال و با آن، ظهور تکنیک های بی نهایت کوچک را توسعه دادند، بنابراین مفهوم تداوم را تغییر دادند. چهره های اصلی مورد بررسی در اینجا عبارتند از: گالیله، کاوالیری، لایب نیتس و کانت. در اوایل جشن نوزدهم بولزانو یکی از اولین ریاضیدانان و فیلسوفان مهمی بود که اصرار داشت که پیوستهها از نقاط تشکیل شدهاند، و او تلاش قهرمانانهای کرد تا با مسائل زیربنایی مربوط به بینهایت مقابله کند. دو شخصیتی که بیشترین مسئولیت را برای ارتدکس معاصر در مورد تداوم دارند، کانتور و ددکیند هستند. هر کدام در یک مقاله مورد بررسی قرار می گیرند و پیش سازها و تأثیرات آنها در ریاضیات و فلسفه بررسی می شود. سپس یک فصل جدید تجزیه و تحلیل شفافی از کار ریاضیدان ارائه می دهد پل دو بوآ-ریموند، برای استدلال سازنده برای روایتی سازنده از تداوم، در تقابل با روایت غالب ددکیند-کانتور. این منجر به در نظر گرفتن مشارکتهای ویل، بروور و پیرس میشود، که زمانی مفهوم تداوم را «کلید اصلی که... قفل رمز و راز را باز میکند» نامیدند. فلسفه\". و می بینیم که بعداً در قرن بیستم وایتهد گزارشی بدون نقطه یا بدقول از تداوم ارائه کرد و نشان داد که چگونه نقاط را به عنوان نوعی \"انتزاع گسترده\" بازیابی کنیم. چهار فصل پایانی هر کدام بر برداشتی کم و بیش معاصر از تداومی که بیرون است هژمونی ددکیند-کانتور: یک رویکرد اعتباری، گزارشهایی که مستمر از نکات، رویکردهای سازنده و گزارشهای غیر ارشمیدسی تشکیل نمیشوند که از بینهایتها استفاده اساسی میکنند.
Mathematical and philosophical thought about continuity has changed considerably over the ages. Aristotle insisted that continuous substances are not composed of points, and that they can only be divided into parts potentially. There is something viscous about the continuous. It is a unified whole. This is in stark contrast with the prevailing contemporary account, which takes a continuum to be composed of an uncountably infinite set of points. This vlume presents a collective study of key ideas and debates within this history. The opening chapters focus on the ancient world, covering the pre-Socratics, Plato, Aristotle, and Alexander. The treatment of the medieval period focuses on a (relatively) recently discovered manuscript, by Bradwardine, and its relation to medieval views before, during, and after Bradwardine's time. In the so-called early modern period, mathematicians developed the calculus and, with that, the rise of infinitesimal techniques, thus transforming the notion of continuity. The main figures treated here include Galileo, Cavalieri, Leibniz, and Kant. In the early party of the nineteenth century, Bolzano was one of the first important mathematicians and philosophers to insist that continua are composed of points, and he made a heroic attempt to come to grips with the underlying issues concerning the infinite. The two figures most responsible for the contemporary orthodoxy regarding continuity are Cantor and Dedekind. Each is treated in an article, investigating their precursors and influences in both mathematics and philosophy. A new chapter then provides a lucid analysis of the work of the mathematician Paul Du Bois-Reymond, to argue for a constructive account of continuity, in opposition to the dominant Dedekind-Cantor account. This leads to consideration of the contributions of Weyl, Brouwer, and Peirce, who once dubbed the notion of continuity "the master-key which . . . unlocks the arcana of philosophy". And we see that later in the twentieth century Whitehead presented a point-free, or gunky, account of continuity, showing how to recover points as a kind of "extensive abstraction". The final four chapters each focus on a more or less contemporary take on continuity that is outside the Dedekind-Cantor hegemony: a predicative approach, accounts that do not take continua to be composed of points, constructive approaches, and non-Archimedean accounts that make essential use of infinitesimals.
Cover The History of Continua: Philosophical and Mathematical Perspectives Copyright Contents List of Figures List of Contributors Introduction 1: Divisibility or Indivisibility: The Notion of Continuity from the Presocratics to Aristotle 1. Introduction 2. Parmenides’ Account of Continuity 2.1 Being Continuous Excludes Any Temporal Differences 2.2 Being Continuous Implies Being Homogeneous, Full of Being, and No More or Less 2.3 Conditions That Would Prevent Continuity 3. Zeno’s Paradoxes: Negative Consequences of Infinite Divisibility 4. A Mathematical Conception of Continuity 5. Aristotle’s Account of Continuity 6. Implications of Aristotle’s Concept of a Continuum 6.1 A New Understanding of Parts 6.2 A New Understanding of Infinity 6.3 A New Twofold Concept of a Limit 7. Conclusion References 2: Contiguity, Continuity, and Continuous Change: Alexander of Aphrodisias on Aristotle 1. Alexander on Aristotle’s Definition of the Contiguous 2. Continuity and Unity 3. Alexander’s Interpretation of the Definition of the Continuous in Physics V.3 4. Potential Divisibility 5. Alexander’s Account of Change at One Go in Its Context 6. Change at One Go and Accidental Divisibility References 3: Infinity and Continuity: Thomas Bradwardine and His Contemporaries 1. Parts I and II of De Continuo 2. Part III: Bradwardine’s Affirmative Conclusions 3. Part IV: Arguments against Immediate Indivisibles 4. Atomism and Its Place in Medieval Philosophy and Theology 5. Gerard of Odo on Infinity and Continuity 6. Gerard of Odo and Walter Burley 7. Infinity and Imagined Cases in Bradwardine’s De Causa Dei 8. Conclusion References 4: Continuous Extension and Indivisibles in Galileo 1. Galileo on Continuous Motion and Acceleration in the Dialogo 2. The Composition of the Continuum? 3. Galileo on the Continuum and Indivisibles in the Discorsi 4. Why Infinitely Many Unquantifiable Parts? 5. Galileo and Huygens: Infinity, Indivisibles, and Geometrical Rigour References Secondary Literature 5: The Indivisibles of the Continuum: Seventeenth-Century Adventures in Infinitesimal Mathematics 1. Cavalieri and the Method of Indivisibles 2. Torricelli and the Extension of Indivisibles 3. Roberval’s Method of Indivisibles 4. John Wallis and the Arithmetic of Infinities 5. Conclusion References 6: The Continuum, the Infinitely Small, and the Law of Continuity in Leibniz 1. Leibniz on the Continuum 1.1 Composition of the Continuum in Pacidius Philalethi, 1676 1.2 The Continuum as Ideal and a New Definition of Continuity for Magnitudes 2. Leibniz on the Infinitely Small 2.1 The Infinitely Small and the Archimedean Principle of Equality in DQA 1676 2.2 The Archimedean Principle of Equality and the Law of Continuity References Secondary Literature 7: Continuity and Intuition in Eighteenth-Century Analysis and in Kant 1. Introduction 2. A Brief History of Seventeenth- and Eighteenth-Century Analysis 3. Kant’s Views and Their Place in This History 4. Toward a Less Whiggish History of Analysis 5. Foundations of Analysis in Kant’s German Predecessors 6. Foundations of Analysis in Kant’s Metaphysical Foundations of Natural Science 6.1 General Remarks 6.2 Kant on the Infinitely Small and Limits 7. Changing Notions of Foundations and the Role of Intuition in Eighteenth-Century Analysis References 8: Bolzano on Continuity 1. Introduction 2. Philosophical Context 2.1 Methodology 2.1.1 Early Views: The Contributions and Related Writings 2.1.2 Later Refinements 2.2 Metaphysics 3. Continuous Extension 3.1 Early Definitions of the Concepts of Line, Surface, and Solid 3.2 Later Definitions of the Concepts of Extended Objects and Continua 3.2.1 Sources 3.2.2 The Concept of Extension in Bolzano’s Later Writings: 1) Versuch einer Erklärung 3.2.3 The Concept of Extension in Bolzano’s Later Writings: 2) Über Haltung, Richtung usw. 3.2.4 The Concept of Extension in Bolzano’s Later Writings: 3) The Paradoxes of the Infinite 3.3 Final Remarks 4. The Numerical Continuum 5. Continuous Functions 6. Conclusion 7. Appendix: A Note on the Bolzano–Weierstrass Theorem References Works by Bolzano: (1) Abbreviations (2) Other Works Works by Other Authors 9: Cantor and Continuity 1. The Real Numbers 1.1 Uniqueness of Trigonometric Series 1.2 Cantor [1872] 1.3 Heine [1872] 1.4 Dedekind [1872] 2. Uncountability and Dimension 2.1 Uncountability 2.2 Dimension 3. Point-Sets and Perfect Sets 3.1 Point-Sets 3.2 Perfect Sets References 10: Dedekind on Continuity 1. Introduction 2. Dedekind’s Definition of Continuity 2.1 Background 2.2 Stetigkeit und irrationale Zahlen (1872) 2.3 Methodological Reflections 2.3.1 On Definitions and Ideals 2.4 The Reception of Dedekind’s Account of Continuity 3. Other Treatments of Continuous Domains 3.1 Dedekind’s Early Interest in Riemann’s Work 3.2 Arithmetical Treatment of Riemann Surfaces 3.2.1 Motivations for Arithmetizing Riemann Surfaces 3.2.2 Analogy with Number Theory 3.2.3 The Theory of Ideals of Functions 3.3 Set-Theoretical Treatments of More General Continuous Domains 4. Conclusion Acknowledgements References 11: What Is a Number?: Continua, Magnitudes, Quantities Part 1 Part 2 Part 3 Part 4 Part 5 Acknowledgements References 12: Continuity in Intuitionism 1. Introduction 2. Preliminaries 2.1 Notions and Notations 2.2 Classes, Sets, Types: A Precautionary Note 2.3 Continua, Magnitude, Quantity, Number 3. Foundations of Intuitionistic Analysis 3.1 Arithmetic Continuity and Brouwer’s Principle for Numbers 3.2 Brouwer’s Continuity Theorem and Unzerlegbarkeit 3.3 Analogues of Continuity and Unzerlegbarkeit in Recursive Mathematics and Realizability 3.4 Uniform Continuity and the Fan Theorem 3.5 Recursive Mathematics, Realizability, and the Fan Theorem 4. Brouwer on Intuition and Choice Sequences—also du Bois-Reymond 4.1 The Intuitive Continuum, Inner Time, and Primordial Intuition 4.2 Brouwer’s Choice Sequences 4.3 Du Bois-Reymond on Choice Sequences 4.4 The Law of the Excluded Third 5. Weyl’s Intuitionism and Arithmetic Continuity 5.1 Weyl’s Treachery 5.2 Weyl on Choice Sequences 5.3 The Law of the Excluded Third, Again 6. In Sum 6.1 Continua 6.2 Continuity Theorems 6.3 Logic Bibliography 13: The Peircean Continuum 1. A Model for Peirce’s Continuum 1.1 Peirce’s Views on Continuity 1.1.1 Inextensibility 1.1.2 Reflexivity 1.1.3 Supermultitudinousness 1.1.4 Modality 1.1.5 Genericity 1.2 The Construction 1.3 Back to Peirce’s Intuitions 1.4 Final Remarks 2. Historical Appendix: Peirce’s Continuum, Unreconstructed Acknowledgements References 14: Points as Higher-Order Constructs: Whitehead’s Method of Extensive Abstraction 1. Introduction 2. Philosophical Motivations 3. The Basic Idea 4. Refinements (I) 5. Refinements (II) 6. The Final Account 7. Concluding Remarks References 15: The Predicative Conception of the Continuum Part I: Origins 1. Russell 1.1 The Antinomies 1.2 The Early Theory of Types: 1903 1.3 Five Desiderata 1.4 The Zigzag Theories: 1903–5 1.5 The Theory of Descriptions: 1905 1.6 The Substitution Theory: 1906–8 1.7 The Ramified Theory of Types: 1908 2. Weyl Part II: Analysis 3. The Starting Point 4. Reflection 5. Definability 6. Merger 7. Strengthening the Case 7.1 Definiteness 7.2 The Need for a New Approach 7.3 Reflective Closure 7.4 Unfolding 7.5 Summary Part III: The Continuum 8. Three Predicative Standpoints 8.1 The Restricted Predicativist 8.2 The Ideal Predicativist 8.3 The Predicativist Sympathist 9. The Extent of Predicative Mathematics 10. The Predicative Conception of the Continuum References 16: Point-Free Continuum Introduction 1. Mereology for an Inclusion-Based Approach to the Continuum 1.1 The Basic Notion of Mereology (Leśniewski 1916) 1.2 Two Pioneering Books (Whitehead 1919 and Whitehead 1920) 1.3 Two Pioneering Readings of Whitehead’s Books (de Laguna 1920–2, Nicod 1924) 1.4 An (Apparent) Candidate for a Mereological Approach to Point-Free Geometry: Point-Free Topology (Wallman 1938) 2. To Go beyond Pure Mereology: The Connection Relation 2.1 Process and Reality: Whitehead 1929 2.2 Grzegorczyk’s System (1960) 2.3 Clarke’s System (1981) 3. Going beyond Mereotopology: Spheres, Half-Planes, Ovals 3.1 Regions and Spheres (Tarski 1927) 3.2 An Approach by Half-Planes (Sniatycki 1968) 3.3 From Ovals to Half-Planes 3.4 Continuum and Tessellation (Hellman and Shapiro, 2012) 4. Metrics and Continuous Logics Approaches 4.1 Lattices and Diameters (Previale 1966) 4.2 Frame with a Diameter (Pultr 1984) 4.3 Distances and Diameters 4.4 Continuous Logic for a Point-Free Continuum 4.5 Graded Mereology 4.6 Naïve Geometry: The Graded Predicates ‘Is Close’ and ‘Is Small’ 5. The Group Isometries for Point-Free Geometry 5.1 The Group of Displacements in the Physical Geometry of H.J. Schmidt 6. Conclusion References 17: Intuitionistic/Constructive Accounts of the Continuum Today 1. Brouwer and the Intuitionistic Continuum 2. The Continuum of Real Numbers in Constructive Mathematics 3. The Order Relation on the Constructive Reals 4. Convergence of Sequences and Completeness of the Constructive Reals 5. Functions on the Constructive Reals 6. Axiomatizing the Constructive Reals 7. Smooth Infinitesimal Analysis 8. Algebraic and Order Structure of ℝin SIA 9. Comparing SIA and CA 10. Cohesiveness of the Continuum in SIA References 18: Contemporary Infinitesimalist Theories of Continua and Their Late Nineteenth- and Early Twentieth-Century Forerunners 1. Introduction 2. The Emergence of Non-Archimedean Systems of Magnitudes 3. The Archimedean Axiom 4. Veronese’s Theory of Continua 5. Hahn’s Non-Archimedean Generalizations of the Archimedean Arithmetic Continuum 6. The Pantachies of du Bois-Reymond and Hausdorff 7. Elementary Continua 8. Nonstandard (Robinsonian) Continua 9. The Absolute Arithmetic Continuum: Conway’s System of Surreal Numbers 10. Hjelmslev’s Nilpotent Infinitesimalist Continuum 11. Infinitesimalist Approaches to Differential Geometry of Smooth Manifolds and Their Underlying Continua 12. Invertible and Nilpotent Infinitesimals: Afterthoughts 13. Concluding Remarks Acknowledgements References Index