دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Manuel Talon Dr. (editor), Marco Caruso (editor), Fred G. Gmitter jr. (editor) سری: ISBN (شابک) : 0128121637, 9780128121634 ناشر: Woodhead Publishing سال نشر: 2020 تعداد صفحات: 541 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب The Genus Citrus به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جنس مرکبات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جنس مرکبات حجم عظیمی از دانش جدید را ارائه می دهد که در سال های اخیر تقریباً در مورد تمام موضوعات مربوط به مرکبات ایجاد شده است. این کتاب با مروری بر اصول اساسی و درک بیولوژی و رفتار مرکبات، دیدگاهی جامع، از تکامل، تا اهمیت فعلی بازار را ارائه میکند. گزارش در مورد بینش های پشتیبانی شده توسط روشن شدن توالی ژنوم مرکبات، نظریه های پیشگامانه را ارائه می دهد و شکاف های دانش را پر می کند. از آنجایی که مرکبات یکی از دشوارترین گیاهان برای بهبود از طریق اصلاح سنتی است، محققان، مؤسسات و صنایع مرکبات باید به سرعت یاد بگیرند که با این پیشرفتها، دانش و فناوریهای جدید سازگار شوند.
علیرغم چالشهای کار با مرکبات، پیشرفت فوق العاده ای، عمدتاً از طریق پیشرفت در زیست شناسی مولکولی و ژنومیک حاصل شده است. این کتاب برای همه دست اندرکاران تحقیق و پیشبرد، تولید، فرآوری و تحویل مرکبات ارزشمند است.
The Genus Citrus presents the enormous amount of new knowledge that has been generated in recent years on practically all topics relating to citrus. Beginning with an overview of the fundamental principles and understanding of citrus biology and behavior, the book provides a comprehensive view, from evolution, to current market importance. Reporting on insights supported by the elucidation of the citrus genome sequence, it presents groundbreaking theories and fills in knowledge gaps. Because citrus is among the most difficult plants to improve through traditional breeding, citrus researchers, institutions and industries have to quickly learn to adapt to these new developments, knowledge and technologies.
Despite the challenges of working with citrus, tremendous progress has been made, mostly through advances in molecular biology and genomics. This book is valuable for all those involved with researching and advancing, producing, processing and delivering citrus products.
Front Cover The Genus Citrus Copyright Contents Contributors Chapter 1: The citrus genome 1.1 Concept of genome 1.2 Citrus genomes 1.3 Genomes: Pure, admixed, and domesticated 1.3.1 Inference of pure and admixed genome regions 1.3.2 Identification of the ancient progenitor citrus species 1.3.3 A whole-genome perspective of citrus hybrids and admixtures 1.3.4 Comparative analyses of citrus genomes: The example of evolution and domestication of mandarins References Further reading Chapter 2: The origin of citrus 2.1 The mythological origin of citrus 2.2 The origin of citrus 2.2.1 The concept of citrus 2.2.2 Phylogeny of citrus pure species 2.2.3 Genealogy of cultivated citrus 2.2.4 Paleontology of citrus 2.2.5 Chronology of citrus speciation 2.2.6 Biogeography of citrus 2.2.7 The center of origin of citrus 2.3 Citrus radiation and evolution 2.3.1 Citrus radiation 2.3.2 Late Miocene: Global cooling and the Southeast Asian radiation 2.3.3 Dispersal routes of ancestral citrus 2.3.4 Early Pliocene: Wallacea orogeny and the dispersal of Australian limes 2.3.5 Early Pleistocene: Glacial maxima and the diversification of mandarins 2.4 A new evolutionary framework for the genus Citrus Acknowledgments References Chapter 3: Domestication and history 3.1 The taxonomy, cultivars, and genetic origin of citrus 3.1.1 The taxonomy and the true citrus group 3.1.2 The genetic origin of some hybrid citrus 3.2 The cultivation history and distribution of citrus 3.2.1 Ancient Chinese citrus 3.2.1.1 The citrus taxonomy and varieties in ancient China 3.2.1.2 The distribution of citrus in ancient China 3.2.1.3 The spiritual symbol, medicinal value, and management of citrus in ancient China 3.2.1.4 Wild citrus in China 3.2.2 Ancient citrus in Japan 3.2.2.1 Citrus tachibana (Tachibana) 3.2.2.2 Citrus depressa (Shiikuwasha) 3.2.3 Ancient citrus in India 3.2.3.1 History, distribution, and origin of ancient citrus in India 3.2.3.2 Citrus indica 3.2.3.3 Citrus macroptera 3.2.3.4 Citrus latipes 3.2.3.5 Citrus assamensis 3.2.3.6 Citrus megaloxycarpa Lushaigton (Sour Pummelo) 3.2.3.7 Citrus limettioides 3.2.3.8 Citrus limetta 3.2.3.9 Ancient member of Citrus sinensis 3.2.4 The origin, spread, and introduction of citrus 3.2.5 The genetic diversity of Citrus 3.2.5.1 The genetic diversity of semiwild, cultivated, and garden-yard citrus 3.2.5.2 The genetic diversity of wild and semiwild citrus References Chapter 4: Citrus taxonomy 4.1 The genus Citrus definition 4.1.1 The botanical treatment of the genus Citrus 4.1.2 Phenotypical traits of the true Citrus 4.1.2.1 Morphological characteristics of the genus Citrus (sensu Swingle) 4.1.2.2 Traits of the related species of the true citrus 4.1.3 Reproductive biology, cytogenetics and molecular data, and the definition of the genus Citrus 4.1.3.1 The genus Citrus and the biological concept of species; genus or species 4.1.3.2 Sexual compatibility and phylogenetic relationships with related genera of the true citrus; toward a new defin ... 4.2 The genus Citrus classifications; an historical, biological, genetic, and phylogenomic perspective 4.2.1 The history of citrus botanical classifications 4.2.1.1 The early classifications 4.2.1.2 The 20th-century classifications 4.2.2 1967–2017, from traditional taxonomy to phylogenomy: 50 years to clarify the genetic organization of the genus ... 4.2.3 The ancestral and admixture taxa 4.2.3.1 Pure Citrus species 4.2.3.2 Admixture types Bispecific admixture Complex tri and tetraspecific admixtures 4.3 Phenotypic diversity structure strongly reflects evolutionary history 4.3.1 Reticulate evolution, apomixis, and the correlation between the structures of genetic and phenotypic diversities ... 4.3.2 Traits of the four Asian ancestral taxa of the edible Citrus ( Fig. 4.8) 4.3.2.1 C. maxima (Burm.) Merri 4.3.2.2 C. medica L. 4.3.2.3 C. micrantha Wester 4.3.2.4 C. reticulata Blanco 4.3.3 Traits of some modern citrus taxa resulting from admixture 4.4 Conclusion References Chapter 5: Commercial scion varieties 5.1 Pummelos/shaddocks ( Citrus maxima) 5.1.1 Principal commercial pummelo varieties 5.1.1.1 White-fleshed pummelo varieties 5.1.2 Pigmented pummelo varieties 5.1.2.1 Lightly pigmented pummelo varieties 5.1.2.2 Highly pigmented pummelo varieties 5.1.3 Pummelo hybrids 5.2 Grapefruit ( Citrus paradisi) 5.2.1 Principal commercial varieties 5.2.1.1 White-fleshed grapefruit varieties Marsh (syn. Marsh seedless) 5.2.1.2 Pigmented grapefruit varieties Pink-fleshed grapefruit varieties Red-fleshed grapefruit varieties 5.2.1.3 Grapefruit-like hybrids 5.3 Lemons ( Citrus limon) 5.3.1 Principal commercial varieties 5.4 Limes ( Citrus aurantiifolia a and Citrus latifolia) 5.5 Oranges ( Citrus sinensis) 5.5.1 Sugar or acidless orange varieties 5.5.2 Blood or pigmented orange varieties 5.5.3 Navel oranges 5.5.4 Common orange varieties 5.6 Mandarins ( Citrus reticulata) 5.6.1 Principal commercial mandarin varieties 5.6.2 Other mandarin hybrids of current or potential commercial importance References Further reading Chapter 6: Citrus rootstocks 6.1 Introduction 6.2 Reasons for a rootstock 6.3 Important rootstock attributes 6.4 Rootstock use by region 6.5 The major rootstocks 6.6 Rootstock trends and future prospects Acknowledgments References Further reading Chapter 7: Traditional breeding 7.1 Introduction 7.2 Scion breeding 7.2.1 Somatic mutations and chimeras 7.2.2 Nucellar selections 7.2.3 Hybridization 7.2.3.1 Diploid breeding 7.2.3.2 Interspecific crosses with wild relatives to introgress resistance genes or other useful traits 7.2.3.3 Triploid breeding 7.2.4 Mutation breeding 7.3 Rootstock breeding 7.3.1 Objectives 7.3.2 Conventional methods to generate new rootstocks 7.3.3 Propagation 7.3.4 Phenotyping methods for diseases and abiotic stress resistance before field trials 7.3.5 Rootstock trials 7.4 Perspectives References Chapter 8: Genomic breeding 8.1 Introduction 8.2 DNA markers 8.2.1 Types of DNA markers 8.2.2 SSR and indel markers 8.2.3 SNP markers 8.2.4 RFLP and CAPS markers 8.2.5 NGS-based high-throughput genotyping 8.3 Linkage mapping analysis toward MAS 8.3.1 Linkage-map construction using transferrable DNA markers 8.3.2 DNA-marker development for monogenic traits 8.3.3 Polyembryony 8.3.4 Fruit traits 8.3.5 Aroma 8.3.6 Disease, stress resistance, and other traits 8.4 MAS for complex traits 8.4.1 QTL analysis of complex traits 8.4.2 Linkage disequilibrium (LD) analysis 8.4.3 Association mapping (AM) analysis 8.4.4 Genomic selection (GS) 8.5 Future trends References Chapter 9: Citrus biotechnology 9.1 Introduction 9.2 Micropropagation 9.3 Organogenesis and rooting 9.4 Gametic embryogenesis 9.5 Somaclonal variation 9.6 Allotetraploids via somatic hybridization 9.7 Somatic cybridization 9.8 Molecular marker development for Alternaria brown spot disease 9.9 Reducing juvenility via viral vectors 9.10 Genetic transformation of citrus 9.11 Direct DNA incorporation into citrus 9.11.1 Protoplast transformation 9.11.2 Particle bombardment/biolistics 9.11.3 Agrobacterium -mediated transformation of citrus 9.12 CRISPR gene editing 9.13 Concluding remarks References Chapter 10: Vegetative growth 10.1 Seed germination 10.1.1 Imbibition of water 10.1.2 Breathing 10.1.3 Protein synthesis 10.1.4 Mobilization of the reserves contained in cotyledons 10.1.4.1 Reserve compounds 10.1.4.2 Ultrastructural location of reserves 10.1.4.3 Transformation of reserve compounds 10.1.4.3.1 Metabolization of cotyledon lipids during germination 10.1.4.3.2 Mobilization of cotyledon proteins during germination 10.1.4.3.3 Changes in the hydrocarbon fractions of cotyledons during germination 10.1.4.4 Ultrastructural changes in the cotyledons during germination 10.1.5 Seedling development 10.1.6 Polyembryony 10.1.7 Juvenile characters 10.2 Dormancy and vegetative activity 10.3 Development of the canopy 10.3.1 Stem growth 10.3.2 Secondary stem growth 10.3.3 Sprouting development 10.3.4 Factors affecting vegetative development 10.4 Leaf development 10.4.1 Leaf abscission 10.4.1.1 Abscission zones 10.4.1.2 The abscission process 10.4.1.3 Anatomical and ultrastructural changes in the abscission layer 10.5 Formation of the root system 10.5.1 Development of the primary root 10.5.1.1 The calyptra or root cap 10.5.1.2 The apical meristem of the root 10.5.1.3 Elongation zone 10.5.1.4 Maturation zone 10.5.2 Lateral root development 10.5.3 Secondary root growth 10.5.4 Root distribution 10.5.5 Factors affecting root development 10.6 Trees of reduced size 10.7 Control of vegetative development through the use of growth retardants References Chapter 11: Flowering and fruit set 11.1 The process of flowering 11.2 Type of inflorescences 11.3 Control of flowering 11.3.1 Environmental control 11.3.1.1 Temperature 11.3.1.2 Water stress 11.3.2 Other factors affecting flowering 11.3.2.1 Citrus cultivar 11.3.2.2 State and age of plants 11.3.2.3 Carbohydrate content 11.3.2.4 Nutritional status 11.3.2.5 Source of nitrogen 11.3.2.6 The influence of fruit on flowering 11.3.3 Control of flowering 11.3.3.1 The application of gibberellic acid 11.3.3.2 Water deficit 11.3.3.3 Girdling or ringing branches 11.4 Pollination and fertilization 11.5 Fruit set 11.6 Parthenocarpy 11.7 Endogenous regulation of fruit set 11.7.1 Influence of hormone levels 11.7.1.1 Gibberellins 11.7.1.2 Auxins 11.7.1.3 Abscisic acid 11.7.1.4 Cytokinins 11.7.2 Competition for photoassimilates 11.7.3 Interactions between hormones and photoassimilates 11.8 Factors affecting fruit set 11.8.1 Temperature 11.8.2 Irrigation 11.8.3 Nitrogen fertilization 11.8.4 Mineral deficiencies 11.8.5 Flowering intensity 11.8.6 Position of the flower in the tree 11.9 Improvement of fruit set: Cultural practices 11.9.1 The application of GA 3 11.9.2 Girdling or ringing 11.9.3 Treatment with GA 3 combined with girdling 11.9.4 Other practices that favor fruit set 11.9.4.1 Flowering control 11.9.4.2 Irrigation and fertilization 11.9.4.3 Pruning 11.9.4.4 Arching of branches 11.10 Fruit development 11.11 Factors affecting fruit development 11.11.1 Endogenous factors 11.11.1.1 Genetic potential of the fruit 11.11.1.2 Hormone levels 11.11.2 Tree age 11.11.3 Fruit position on the tree 11.11.4 Foliar area 11.11.5 Seed number 11.11.6 Flowering intensity 11.11.7 Competition among developing fruits 11.11.8 Environmental factors 11.11.8.1 Temperature 11.11.8.2 Relative humidity 11.11.9 Cultural practices 11.11.9.1 Irrigation 11.11.9.2 Fertilization 11.11.9.3 Treatments for setting 11.12 Techniques to improve fruit size 11.12.1 Pruning 11.12.2 Manual thinning 11.12.2.1 Manual thinning at random 11.12.2.2 Selective manual thinning 11.12.3 Chemical thinning 11.12.3.1 Inhibition of flowering 11.12.3.2 Fruitlet abscission 11.12.3.3 Application of synthetic auxins 11.12.4 Girdling or ringing 11.13 Seed development References Further reading Chapter 12: Fruit growth and development 12.1 The long, complex, and intriguing journey from set fruitlets to ripe fruit 12.2 The fruit of citrus is a modified berry called hesperidium 12.2.1 The fruit rind or peel provides an interface of the fruit with the external environment 12.2.2 The fleshy pulp is composed of segments, which contain the juice vesicles 12.2.3 Vascular system of the citrus fruit 12.3 Citrus fruit dimensions are genetically determined but are influenced by environmental and cultural practices 12.4 Metabolism and accumulation of carbohydrate and organic acids, determinants of fruit flavor quality 12.4.1 The physiology and practical aspects of carbohydrate and organic acid accumulation 12.4.2 The genetic basis of BRIX and TA 12.4.3 The biochemistry of carbohydrate and organic acid accumulation 12.4.3.1 Sugar transport, metabolism, and accumulation 12.4.3.2 Synthesis, accumulation, and catabolism of citric acid 12.4.3.3 Citrate and proton homeostasis in the vacuole, and their transport 12.4.4 Contribution of Omics techniques to the understanding of sugar and acid metabolism and accumulation 12.5 Color change during fruit development and ripening 12.5.1 Biochemical, molecular, and structural changes related to chlorophylls and carotenoids 12.5.2 Environmental, nutritional, and hormonal cues affecting chlorophylls and carotenoids 12.5.3 General aspects of blood oranges during fruit development and ripening 12.5.3.1 Environmental factors controlling anthocyanin accumulation in fruit 12.5.3.2 Potential targets to control purple pigmentation of blood oranges 12.6 Preharvest drop impacts on and determines, respectively, citrus fruit production and harvesting time 12.7 Transcriptome evolution during ripening: A next-generation view 12.8 Future perspective: Basic knowledge and advanced techniques should result in improved products Author contribution References Chapter 13: Citrus in changing environments 13.1 Limitations to geographical expansion of citrus 13.2 Predicted climate in citrus growing regions 13.2.1 Mediterranean climates 13.2.2 Humid subtropics 13.2.3 Semiarid regions 13.2.4 Overall climate trends in citrus-producing regions 13.3 Citrus responses to climate-influenced environmental factors 13.4 Soil moisture 13.4.1 Optimal water requirements in citrus 13.4.2 Flooding 13.4.3 Management of soil flooding in citrus orchards 13.4.4 Water deficit—Effects on crop productivity 13.4.5 Irrigation to mitigate water deficit 13.5 Soil salinity 13.5.1 Salinity effect on vegetative and reproductive growth 13.5.2 Salinity effects on mineral nutrition 13.5.3 Salinity effects on citrus physiology 13.5.4 Mitigation of salinity effects 13.6 Air moisture 13.7 Temperature 13.7.1 Heat 13.7.2 Mechanisms involved in heat tolerance 13.7.3 Management of high temperature and breeding heat-tolerant varieties 13.7.4 Chilling and freezing 13.7.5 Management of freezing temperature in citrus orchards 13.7.6 Mechanisms involved in chilling and freezing tolerance 13.7.7 Breeding cold-tolerant varieties 13.8 Increased carbon dioxide 13.8.1 Effects of CO 2 on overall growth and photosynthesis 13.8.2 Effects on partitioning and growth habit 13.8.3 Interactions with other abiotic stresses 13.8.4 Maximizing benefits of increased [CO 2 ] 13.9 Conclusions Acknowledgments References Further reading Chapter 14: Salinity and water deficit 14.1 Introduction 14.2 Salinity 14.2.1 Salinity components 14.2.1.1 Osmotic component 14.2.1.2 Ion-toxicity component 14.2.2 Salinity avoidance mechanisms 14.2.2.1 Differences between genotypes and breeding programs 14.2.2.2 Sodium exclusion 14.2.2.3 Chloride nutrition 14.2.2.3.1 Cl − homeostasis in citrus 14.2.2.4 Molecular mechanisms regulating xylem Cl − translocation 14.2.2.5 Morphophysiological factors and ploidy level 14.2.3 Citrus responses to salinity 14.2.3.1 Global gene expression 14.2.3.2 Hormone regulation 14.3 Water deficit 14.3.1 Resistance mechanisms and differences among genotypes 14.3.1.1 Ploidy level 14.3.2 Citrus responses to water deficit 14.3.2.1 Perception and hormonal regulation 14.3.2.2 Global responses 14.4 Resistance and tolerance mechanisms common to water deficit and salinity 14.4.1 Osmotic adjustment and synthesis of compatible osmolytes 14.4.2 Antioxidant defense 14.4.3 Synthesis of protective proteins 14.5 Agronomic and biotechnological approaches to improve crop stress resistance 14.5.1 Agronomic and palliative practices 14.5.1.1 Agronomic palliatives 14.5.1.2 Mycorrhizas 14.5.1.3 Priming 14.5.2 Molecular approaches 14.6 Concluding remarks References Chapter 15: Soil and nutrition interactions 15.1 Introduction 15.2 Soils of major citrus-producing regions in the world 15.2.1 Soils of tropical and subtropical regions 15.2.2 Soils of the Mediterranean and similar regions 15.3 The role of mineral nutrients in citrus production 15.3.1 Nitrogen 15.3.2 Phosphorus 15.3.3 Potassium 15.3.4 Calcium, magnesium, and sulfur 15.3.5 Micronutrients 15.4 Monitoring soil fertility and plant nutritional status 15.4.1 Soil analysis 15.4.2 Plant analysis 15.5 Nutrient management strategies 15.5.1 Acidity and alkalinity 15.5.2 Fertilization with solubles and solids 15.5.3 Fertigation 15.5.4 Foliar fertilization 15.5.5 Organic fertilization 15.5.6 Fertilization and stress alleviation 15.6 Concluding remarks References Further reading Chapter 16: Citrus pests in a global world 16.1 Introduction 16.2 Citrus pest management in Asia 16.3 Citrus pest management in the Mediterranean basin 16.4 Citrus pest management in North America 16.4.1 Florida 16.4.2 California and Texas 16.5 Citrus pest management in South America 16.6 Citrus pest management in Africa 16.6.1 Production pests 16.6.2 Cosmetic pests 16.6.3 Phytosanitary pests 16.7 Epilogue References Chapter 17: Diseases caused by fungi and oomycetes 17.1 Greasy spot disease of citrus caused by Zasmidium citri-griseum 17.1.1 Introduction 17.1.2 Disease symptoms 17.1.3 Infection process 17.1.4 Pathogenicity and virulence 17.1.5 Disease management 17.2 Root rot, foot rot, brown rot of fruits, canopy blight, and damping-off diseases of citrus caused by Phytophthor ... 17.2.1 Introduction 17.2.2 Disease symptoms 17.2.3 Infection process 17.2.4 Pathogenicity and virulence 17.2.5 Disease management 17.3 Melanose disease of citrus caused by Diaporthe citri 17.3.1 Introduction 17.3.2 Disease symptoms 17.3.3 Infection process 17.3.4 Pathogenicity and virulence 17.3.5 Disease management 17.4 Citrus black spot disease caused by Phyllosticta citricarpa 17.4.1 Introduction 17.4.2 Disease symptoms 17.4.3 Infection process 17.4.4 Pathogenicity and virulence 17.4.5 Disease management 17.5 Brown spot, leaf spot and black rot diseases of citrus caused by Alternaria 17.5.1 Introduction 17.5.2 Disease symptoms 17.5.3 Infection process 17.5.4 Pathogenicity and virulence 17.5.5 Disease management 17.6 Postbloom fruit drop disease caused by Colletotrichum 17.6.1 Introduction 17.6.2 Disease symptoms 17.6.3 Infection process 17.6.4 Pathogenicity and virulence 17.6.5 Disease management 17.7 Citrus scab diseases caused by Elsinoë 17.7.1 Introduction 17.7.2 Disease symptoms 17.7.3 Infection process 17.7.4 Pathogenicity and virulence 17.7.5 Disease management 17.8 Mal secco disease caused by Plenodomus tracheiphilus 17.8.1 Introduction 17.8.2 Disease symptoms 17.8.3 Infection process 17.8.4 Pathogenicity and virulence 17.8.5 Disease management References Chapter 18: Bacterial pathogens of citrus: Citrus canker, citrus variegated chlorosis and Huanglongbing 18.1 Introduction 18.2 Citrus canker 18.2.1 History and background 18.2.2 Symptoms and epidemiology of ACC 18.2.3 ACC control through eradication 18.2.4 Endemic control/mitigation of ACC 18.2.5 Implications of citrus canker quarantines and trade 18.3 Citrus variegated chlorosis 18.3.1 History and background 18.3.2 Disease management, control, and mitigation 18.3.3 Recent discoveries and advances 18.4 Huanglongbing 18.4.1 History and background 18.4.2 Symptoms 18.4.3 Etiology and diagnosis 18.4.4 Pathogen biology: Phloem restriction in citrus, systemic infection in psyllid, and lack of axenic culture 18.4.5 Genomics and taxonomy 18.4.6 Epidemiology: Latency and incubation 18.4.7 Control/management References Further reading Chapter 19: Citrus viruses and viroids 19.1 Introduction 19.2 Citrus tristeza virus ( Closterovirus, Closteroviridae) 19.3 Satsuma dwarf virus ( Sadwavirus, Secoviridae) 19.4 Citrus leprosis viruses 19.5 Citrus psorosis virus ( Ophiovirus, Aspiviridae) 19.6 Citrus tatter leaf virus ( Apple stem grooving virus) ( Capillovirus, Betaflexiviridae) 19.7 Citrus variegation virus/Citrus leaf rugose virus ( Ilarvirus, Bromoviridae) 19.8 Citrus leaf blotch virus ( Citrivirus, Betaflexiviridae) 19.9 Citrus vein enation virus ( Enamovirus, Luteoviridae) 19.10 Citrus yellow mosaic virus ( Badnavirus, Caulimoviridae) 19.11 Indian citrus ringspot virus ( Mandarivirus, Alphaflexivirdae) 19.12 Citrus yellow vein clearing virus ( Mandarivirus, Alphaflexivirdae) 19.13 Citrus chlorotic dwarf-associated virus ( Geminiviridae) 19.14 Citrus concave gum-associated virus and Citrus virus A (tentative Coguvirus, Bunyavirales) 19.15 Diseases of unknown etiology 19.16 Citrus sudden death -associated virus ( Marafivirus, Tymoviridae) 19.17 Miscellaneous viruses 19.18 Citrus exocortis viroid ( Pospiviroid, Pospiviroidae) 19.19 Hop stunt viroid ( Hostuviroid, Pospiviroidae) 19.20 Citrus bent leaf viroid ( Apscaviroid, Pospiviroidae) 19.21 Citrus dwarfing viroid ( Apscaviroid, Pospiviroidae) 19.22 Citrus viroid V ( Apscaviroid, Pospiviroidae) 19.23 Citrus viroid VI ( Apscaviroid, Pospiviroidae) 19.24 Citrus viroid VII (tentative Apscaviroid, Pospiviroidae) 19.25 Citrus bark cracking viroid ( Cocadviroid, Pospiviroidae) 19.26 Diagnosis 19.27 Control 19.28 Conclusion Acknowledgment References Chapter 20: Horticultural practices 20.1 Grove planning and tree spacing 20.1.1 Site selection 20.1.2 Variety and rootstock selection 20.1.3 Tree spacing 20.2 Irrigation and water management planning 20.2.1 Water management 20.3 Canopy management and tree size control 20.3.1 Mechanical pruning cuts 20.3.1.1 Hedging 20.3.1.2 Topping 20.3.1.3 Skirting 20.3.2 Manual pruning 20.3.2.1 Young tree formation 20.3.2.2 Young tree training 20.3.2.3 Clearing internal canopy 20.3.2.4 Rejuvenating pruning 20.3.3 Effects of pruning on tree physiology 20.3.4 Other considerations 20.4 Crop load management References Chapter 21: Postharvest technology of citrus fruits 21.1 Introduction 21.2 Postharvest Physiology 21.2.1 Responses of citrus fruits to postharvest stress conditions 21.2.2 Postharvest physiological disorders 21.2.2.1 Chilling injury 21.2.2.2 Nonchilling disorders 21.2.2.3 Oleocellosis 21.2.2.4 Stylar-end breakdown (SEB) blossom-end clearing (BEC) 21.2.2.5 Zebra skin 21.2.2.6 Peel pitting or staining in oranges, mandarins, and grapefruits 21.2.2.7 Stem-end rind breakdown (SERB) 21.2.2.8 Peteca of lemons 21.3 Postharvest pathology 21.3.1 Main postharvest diseases 21.3.2 Preharvest and postharvest factors affecting disease incidence 21.3.3 Disease management strategies 21.3.3.1 Control with chemical fungicides 21.3.3.2 Nonpolluting integrated disease management 21.4 Postharvest handling and storage 21.4.1 Harvesting and orchard practices 21.4.2 Packinghouse practices 21.4.2.1 Ethylene degreening 21.4.2.2 Fruit cleaning and sanitation 21.4.2.3 Sorting of citrus fruit according to quality classes 21.4.2.4 Wax application 21.4.2.5 Carton box design and ventilation 21.4.2.6 Moisture loss management 21.4.3 Transport and international shipment procedures 21.4.3.1 Temperature management prior to and during shipments 21.4.3.2 Possible negative impact during cold storage: Pre- and postexport 21.4.3.3 Treatments to induce cold resistance to prolonged cold storage 21.4.4 Postharvest quarantine treatments for citrus exports References Chapter 22: Chemistry of citrus flavor 22.1 Introduction 22.2 Lemon 22.2.1 Seasonal changes 22.2.2 Lemon oil extraction 22.2.3 Aroma volatiles 22.2.4 Aldehydes 22.2.5 Esters 22.2.6 Terpenoid hydrocarbon 22.2.7 Alcohols, ketones, and oxygen heterocycles 22.2.8 Lemon oil sulfur compounds 22.3 Orange and mandarin 22.3.1 Aldehydes 22.3.2 Esters 22.3.3 Terpenoid hydrocarbons 22.3.4 Alcohols, ketones, acids, and oxygen heterocycles 22.3.5 Sulfur- and nitrogen-containing compounds 22.3.6 Differences between orange and mandarin 22.4 Grapefruit 22.5 Conclusion References Further reading Chapter 23: Global economics and marketing of citrus products 23.1 Introduction 23.2 Sweet oranges 23.2.1 Sweet orange industry organization in Brazil 23.2.2 Sweet orange industry organization in Florida 23.2.3 Trade of fresh sweet oranges 23.3 Grapefruit and pummelos 23.4 Mandarins/tangerines 23.4.1 Production and consumption by country 23.4.2 Exports and imports by country 23.4.3 Mandarins/tangerines used for processing by country 23.5 Lemons and limes 23.6 Price Determination for citrus 23.7 Trade agreements and citrus 23.8 Marketing and promotion of citrus 23.9 By-products from citrus processing References Further reading Chapter 24: Citrus and health 24.1 Introduction 24.2 Carotenoid in citrus fruits 24.2.1 Carotenoid accumulation in citrus fruits 24.2.2 The metabolism of β -cryptoxanthin in citrus fruits 24.2.3 The role of β -cryptoxanthin in human health 24.2.3.1 Serum β -cryptoxanthin levels 24.2.3.2 Characteristics of β -cryptoxanthin as identified in epidemiological studies 24.3 Flavonoid in citrus fruits 24.3.1 Flavonoid composition in citrus fruits 24.3.2 Heath benefits of citrus flavonoids 24.3.2.1 Citrus flavanone hesperidin and its biological properties 24.3.2.2 Citrus flavanone naringin and its biological properties 24.3.2.3 Citrus polymethoxylated flavones and their biological properties 24.3.3 The biosynthesis of flavonoids in citrus fruits 24.4 Ascorbic acid in citrus fruits 24.4.1 The roles of ascorbic acid in human health 24.4.2 The accumulation of AsA in citrus fruits 24.4.3 The metabolism of AsA in citrus fruits 24.4.4 The regulation of AsA in citrus fruits 24.5 Conclusion References Index Back Cover