دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Maurizio Spurio
سری: Undergraduate Lecture Notes in Physics
ISBN (شابک) : 3031472888, 9783031472893
ناشر: Springer
سال نشر: 2024
تعداد صفحات: xix, 390
[403]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب The Fundamentals of Newtonian Mechanics: For an Introductory Approach to Modern Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول مکانیک نیوتنی: برای یک رویکرد مقدماتی به فیزیک مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents 1 Physical Quantities and Units of Measurement 1.1 Physics and the Scientific Method 1.2 Measurable Quantities and the International System 1.2.1 Distances 1.2.2 Times 1.2.3 Masses 1.3 Measuring Physical Quantities 1.3.1 Direct and Indirect Measurements 1.3.2 The Distance Ladder 1.3.3 Mass Measurements Out of Range for Scales 1.3.4 From Pico to Tera 1.4 The Concept of Space and Time 1.4.1 The Euclidean Space 1.4.2 Newtonian Space and Time 1.4.3 Four-Dimensional Spacetime (*) 1.4.4 Cosmological Time 1.5 Time Synchronization and Dissemination 1.6 Time Measurements Without Periodic Phenomena (*) 1.6.1 The Law of Radioactive Decay 1.6.2 Radiocarbon Dating 1.7 Dimensional Analysis 1.8 Questions and Exercises 2 Vectors and Operations with Vectors 2.1 Introduction: Scalars, Vectors and Tensors 2.2 Cartesian Coordinate Systems 2.2.1 Right-Handed Coordinate System and Right-Hand Rule 2.3 Representation of Vectors 2.3.1 Vectors in Intrinsic Representation 2.3.2 Vectors in Cartesian Representation 2.3.3 Unit Vectors in Cartesian Representation 2.4 Product of a Scalar and a Vector 2.5 Sum and Difference of Vectors 2.6 Scalar Product 2.6.1 Scalar Product in Intrinsic Representation 2.6.2 Scalar Product in Cartesian Representation 2.7 Vector Product Between Vectors 2.7.1 Vector Product in Intrinsic Representation 2.7.2 Vector Product in Cartesian Representation 2.8 Area and Volume in Vector Spaces (*) 2.9 The Equals Are Not All Equal 2.10 Laws and Principles, Physics and Mathematics 2.11 Questions 3 Kinematics of the Particle 3.1 Introduction and Definitions 3.2 Uniform and Uniformly Accelerated Motion 3.3 Equation of Motion, Velocity and Acceleration 3.3.1 Equation of Motion 3.3.2 Velocity, Definition 3.3.3 Acceleration, Definition 3.4 The Direct Kinematics Problem 3.4.1 Infinitesimal Displacement and Infinitesimal Path 3.4.2 Composition of Motions and Trajectory 3.5 The Inverse Kinematics Problem 3.6 Uniform and Non-uniform Circular Motion 3.6.1 Uniform Circular Motion 3.6.2 The Cartesian Representation 3.6.3 Non-uniform Circular Motion 3.7 Polar Plane Coordinates 3.7.1 Circular Motion with Co-moving Unit Vectors 3.7.2 Definition of Polar and Cylindrical Coordinates 3.8 The Intrinsic Coordinates 3.9 Poisson's Rules for Moving Unit Vectors 3.10 Motion on any Trajectory (*) 3.11 Questions and Exercises 4 Forces and the Dynamics of the Particle 4.1 Introduction 4.2 Measuring Forces 4.2.1 Weight and Anthropomorphic ``effort'' 4.2.2 The Dynamometer 4.2.3 The Weight is a Force 4.3 The Vector Nature of Forces 4.4 Constraint Forces 4.5 Contact Friction Between Solids 4.6 Newton's First Law of Motion 4.7 Newton's Second Law of Motion 4.8 Kinematic Effects of Some Forces 4.8.1 Weight 4.8.2 Fall with the Presence of Viscous Friction 4.9 Harmonic Oscillators 4.9.1 The Simple Pendulum 4.9.2 The Elastic Force and the Harmonic Oscillator 4.10 What Do We Know Today About Forces 4.10.1 Fundamental Interactions 4.10.2 Force Fields 4.10.3 The Arrow of Time 4.11 Questions and Exercises 5 Frames of Reference in Relative Motion 5.1 Galilean Relativity Principle 5.2 Inertial Frames of Reference 5.3 Non-inertial Frames of Reference 5.4 Pseudo-forces in Non-inertial Frames 5.4.1 Dynamics in an Accelerated Vehicle 5.4.2 Dynamics in a Rotating Frame 5.4.3 Earth's Drag Acceleration 5.5 Coriolis Force in Guglielmini's Experiment (*) 5.6 The Coriolis Force on the Motion of Terrestrial Fluids 5.7 Generalized Principles of Relativity 5.8 Questions and Exercises 6 Work and Energy 6.1 Introduction 6.2 Definition of Work 6.2.1 Work in Vectors' Intrinsic Representation 6.2.2 Work in Cartesian Coordinates 6.2.3 Measurement Units of Work 6.3 The Work-Energy Theorem 6.4 Examples of Calculating the Work of a Force 6.4.1 Work of the Weight Force 6.4.2 Work of the Elastic Force 6.4.3 Work of the Dynamic Friction 6.4.4 Anthropomorphic Work (``work'' in Common Parlance) 6.5 Conservative and Non-conservative Forces 6.6 Potential Energy 6.7 Mechanical Energy and Its Conservation 6.7.1 Definition of Mechanical Energy 6.7.2 Mechanical Energy with Non-conservative Forces 6.8 Exact Differentials and Potential Energy 6.8.1 Force is the Negative Gradient of Potential Energy 6.9 Differential Operators: Divergence, Curl and Laplacian (*) 6.9.1 Divergence 6.9.2 Curl 6.9.3 Laplacian 6.9.4 Schwarz's Theorem 6.10 Conservative Forces: Null Curl 6.11 Central Forces are Conservative 6.12 Power 6.13 Towards the Principle of Energy Conservation 6.14 Questions and Exercises 7 Dynamics of Mechanical Systems 7.1 Mass Distribution: Discrete and Continuous Systems 7.1.1 Systems of Material Points 7.1.2 Continuous Systems 7.2 Degrees of Freedom 7.3 Center of Mass 7.3.1 The Center of Mass of a System of Points 7.3.2 The Center of Mass of a Continuous Body 7.4 Torque 7.5 Linear Momentum and Angular Momentum 7.5.1 Linear Momentum of a System 7.5.2 Angular Momentum of a System 7.6 Conservation of Linear Momentum 7.6.1 Euler's First Law 7.7 Conservation of Angular Momentum 7.7.1 Euler's Second Law 7.8 Newton's Third Law of Motion 7.8.1 Comment on Newton's Laws 7.9 Properties of the Center of Mass Frame 7.9.1 Linear Momentum P' in the C.M. Frame 7.9.2 Intrinsic Angular Momentum (Spin) L' in the C.M. Frame 7.9.3 Euler's Second Law in the C.M. Frame 7.9.4 Kinetic Energy T' in the C.M. Frame 7.10 Equilibrium of a Rigid Body 7.11 Questions and Exercises 8 Collisions and Decays 8.1 Introduction 8.2 Impulsive Forces 8.3 Elastic Collision Between Two Bodies 8.3.1 The One-Dimensional Case 8.3.2 Two-Dimensional Case and Constraining Forces 8.3.3 Let Us Reflect on the Nature of the Constraining Forces 8.4 Collisions in the Center-of-Mass Frame 8.4.1 One-Dimensional Case in the Center-of-Mass Frame 8.5 Motion of a Rocket 8.6 Energy-Mass Conservation in Collisions and Decays 8.7 Conservation Laws in Two or Three Body Decays 8.7.1 Alpha Decay (Two-Body Process) (*) 8.7.2 Beta Decay (Three-Body Process) (*) 8.8 Partially Elastic Collisions 8.9 Questions and Exercises 9 Considerations on Vectors 9.1 Isotropy and Homogeneity of the Universe 9.2 Translation of Reference Frames 9.3 Rotation of Reference Frames 9.4 Reflexion of Reference Frames 9.5 Not all Triplets are Vectors 9.6 Polar and Axial Vectors 9.6.1 How Can Axial Vectors be Distinguished 9.6.2 Scalar and Pseudoscalar Quantities 9.6.3 Pseudoscalar Quantities in Nuclear Phenomena 10 Newton's Law of Gravitation 10.1 Introduction 10.2 Pre-Galilean Astronomical Measurements 10.2.1 Earth's Radius 10.2.2 Earth-Moon Distance 10.2.3 Earth-Sun Distance 10.3 The Apple and the Moon 10.4 Law of Universal Gravitation 10.4.1 The Inverse of the Square of the Distance 10.5 Inertial Mass and Gravitational Mass 10.6 Gravitational Potential Energy 10.6.1 Potential Energy of the Weight Force 10.6.2 Classical Limits of Relativity and Quantum Mechanics 10.7 Escape Speed From a Celestial Body of Mass M 10.7.1 Event Horizon 10.8 Measurement of G: The Torsion Balance 10.9 Spherical Coordinates (*) 10.9.1 Line, Surface and Volume Elements 10.9.2 Gravitational Potential Energy: Second Method 10.10 Mass in the Center of the Sphere (*) 10.11 Questions 11 Motions in Gravitational Fields 11.1 Historical Introduction 11.2 Kepler's Empirical Laws 11.3 The Two-Body System 11.4 Angular Momentum, Kepler's 1st and 2nd Laws 11.4.1 Kepler's First Law, Plane Orbits 11.4.2 Kepler's Second Law 11.5 Kepler's Third Law 11.6 Mechanical Energy of the Two-Body System 11.6.1 Qualitative Solutions for the Effective Potential 11.7 Kepler's First Law, Elliptic Orbits (*) 11.7.1 Conic Functions 11.7.2 First Integral 11.7.3 Eccentricity Versus Energy and Angular Momentum 11.7.4 Elliptic Solutions: Semi-axes as a Function of E, L 11.7.5 Degeneracy in Classical and Quantum Physics 11.8 Kepler's Third Law, Revised 11.8.1 The Black Hole in the Center of the Galaxy 11.9 Two Neutron Stars 11.10 Triumphs and Falls of Newtonian Theory 11.11 Gravitational Indications for Dark Matter 11.12 Questions and Exercises 12 Dynamics of Rigid Bodies 12.1 Introduction 12.2 Angular Momentum and Angular Velocity 12.3 Moment of Inertia of Rigid Bodies 12.3.1 Moment of Inertia of a Cylinder and Hollow Cylinder 12.3.2 Moment of Inertia of a Rod 12.3.3 Moment of Inertia of a Rod on a Disk 12.4 Conservation of Angular Momentum and Angular Velocity 12.5 An Application of the II Euler's Law 12.6 Huygens-Steiner Theorem for Moments of Inertia 12.7 Center of Gravity 12.7.1 Physical Pendulum 12.7.2 Torsion Pendulum 12.8 Moment of Inertia Tensor (*) 12.9 Rotational Kinetic Energy 12.9.1 Body Rolling Without Sliding 12.9.2 The Motion of the Wheel 12.10 The Motion of the Spinning Top (*) 12.11 Questions and Summary Exercise 13 Considerations on Energy 13.1 Work Needed to Build a System 13.2 Potential Energy of a Bound Spherical System 13.2.1 Age of the Sun 13.2.2 Energy Conservation in Stellar Gravitational Collapse (*) 13.3 Gravitational Field and Potential 13.4 First Integral from Energy Conservation 13.4.1 Application to a Falling Particle 13.5 Motion in a Potential Energy Field 13.5.1 Stable and Unstable Equilibrium 13.5.2 Permitted and Forbidden Regions 13.6 More on Harmonic Motion (*) 13.6.1 Complex Numbers 13.6.2 Harmonic Oscillator with Complex Numbers 13.6.3 Mechanical Energy of the Harmonic Oscillator 13.7 Damped Harmonic Oscillator (*) 13.7.1 Overdamped Motion 13.7.2 Discussion on Mechanical Energy and Developments 13.8 Developments and Problems of Classical Mechanics 13.8.1 Lagrangian and Hamiltonian Formalisms 13.8.2 Determinism in Newtonian Mechanics 13.9 Epilogue 13.10 Questions and Exercises Appendix Appendix: Numerical Solution of the Exercises Index