دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل و بررسی ویرایش: 3 نویسندگان: Ronald N. Bracewell سری: ISBN (شابک) : 9780071160438, 0071160434 ناشر: McGraw-Hill Science/Engineering/Math سال نشر: 1999 تعداد صفحات: 636 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب The Fourier Transform and Its Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تبدیل فوریه و کاربردهای آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن برای استفاده در دوره های کارشناسی ارشد یا کارشناسی ارشد در تبدیل فوریه طراحی شده است. این متن با بسیاری از کتابهای تبدیل فویر دیگر در تأکید بر کاربردها متفاوت است. بریس ول در سراسر این متن مفاهیم ریاضی را در دنیای فیزیکی به کار میبرد و دانشآموزان را مجهز میکند تا در مورد جهان و فیزیک از نظر تبدیلها فکر کنند. آموزش در این متن کلاسیک عالی است. نویسنده ابزارهایی مانند فرهنگ لغت تصویری تبدیل ها و مراجع کتابشناختی را گنجانده است. علاوه بر این، مشکلات بسیار خوبی در سراسر این کتاب وجود دارد، که بیشتر از تمرین های ریاضی است، که اغلب دانش آموزان را ملزم می کند تا در موقعیت های خاص فکر کنند یا نظرات تحصیل کرده را جویا شوند. برای کمک بیشتر به دانش آموزان، بحث در مورد بسیاری از مشکلات را می توان در انتهای کتاب یافت.
This text is designed for use in a senior undergraduate or graduate level course in Fourier Transforms. This text differs from many other fourier transform books in its emphasis on applications. Bracewell applies mathematical concepts to the physical world throughout this text, equipping students to think about the world and physics in terms of transforms.The pedagogy in this classic text is excellent. The author has included such tools as the pictorial dictionary of transforms and bibliographic references. In addition, there are many excellent problems throughout this book, which are more than mathematical exercises, often requiring students to think in terms of specific situations or asking for educated opinions. To aid students further, discussions of many of the problems can be found at the end of the book.
CONTENTS Preface xvii 1 Introduction 1 2 Groundwork 5 2.1 The Fourier Transform and Fourier\'s Integral Theorem 5 2.2 Conditions for the Existence of Fourier Transforms 8 2.3 Transforms in the Limit 10 2.4 Oddness and Evenness 11 2.5 Significance of Oddness and Evenness 13 2.6 Complex Conjugates 14 2.7 Cosine and Sine Transforms 16 2.8 Interpretation of the Formulas 18 3 Convolution 24 3.1 Examples of Convolution 27 3.2 Serial Products 30 Inversion of serial multiplication / The serial product in matrix notation / Sequences as vectors 3.3 Convolution by Computer 39 3.4 The Autocorrelation Function and Pentagram Notation 40 3.5 The Triple Correlation 45 3.6 The Cross Correlation 46 3.7 The Energy Spectrum 47 4 Notation for Some Useful Functions 55 4.1 Rectangle Function of Unit Height and Base, $\\Pi(x)$ 55 4.2 Triangle Function of Unit Height and Area, $\\Lambda(x)$ 57 4.3 Various Exponentials and Gaussian and Rayleigh Curves 57 4.4 Heaviside\'s Unit Step Function, $H(x)$ 61 4.5 The Sign Function, $\\sgn x$ 65 4.6 The Filtering or Interpolating Function, $\\sinc x$ 65 4.7 Pictorial Representation 68 4.8 Summary of Special Symbols 71 5 The Impulse Symbol 74 5.1 The Sifting Property 78 5.2 The Sampling or Replicating Symbol ${\\i}{\\i}{\\i}(x)$ 81 5.3 The Even and Odd Impulse Pairs ${\\i}{\\i}(x)$ and ${\\i}_{\\i}(x)$ 84 5.4 Derivatives of the Impulse Symbol 85 5.5 Null Functions 87 5.6 Some Functions in Two or More Dimensions 89 5.7 The Concept of Generalized Function 92 Particularly well-behaved functions / Regular sequences / Generalized functions / Algebra of generalized functions / Differentiation of ordinary functions 6 The Basic Theorems 105 6.1 A Few Transforms for Illustration 105 6.2 Similarity Theorem 108 6.3 Addition Theorem 110 6.4 Shift Theorem 111 6.5 Modulation Theorem 113 6.6 Convolution Theorem 115 6.7 Rayleigh\'s Theorem 119 6.8 Power Theorem 120 6.9 Autocorrelation Theorem 122 6.10 Derivative Theorem 124 6.11 Derivative of a Convolution Integral 126 6.12 The Transform of a Generalized Function 127 6.13 Proofs of Theorems 128 Similarity and shift theorems / Derivative theorem / Power theorem 6.14 Summary of Theorems 129 7 Obtaining Transforms 136 7.1 Integration in Closed Form 137 7.2 Numerical Fourier Transformation 140 7.3 The Slow Fourier Transform Program 142 7.4 Generation of Transforms by Theorems 145 7.5 Application of the Derivative Theorem to Segmented Functions 145 7.6 Measurement of Spectra 147 Radio frequency spectral analysis / Optical Fourier transform spectroscopy 8 The Two Domains 151 8.1 Definite Integral 152 8.2 The First Moment 153 8.3 Centroid 155 8.4 Moment of Inertia (Second Moment) 156 8.5 Moments 157 8.6 Mean-Square Abscissa 158 8.7 Radius of Gyration 159 8.8 Variance 159 8.9 Smoothness and Compactness 160 8.10 Smoothness under Convolution 162 8.11 Asymptotic Behavior 163 8.12 Equivalent Width 164 8.14 Autocorrelation Width 170 8.15 Mean Square Widths 171 8.16 Sampling and Replication Commute 172 8.17 Some Inequalities 174 Upper limits to ordinate and slope / Schwarz\'s inequality 8.18 The Uncertainty Relation 177 Proof of uncertainty relation / Example of uncertainty relation 8.19 The Finite Difference 180 8.20 Running Means 184 8.21 Central Limit Theorem 186 8.22 Summary of Correspondences in the Two Domains 191 9 Waveforms, Spectra, Filters, and Linearity 198 9.1 Electrical Waveforms and Spectra 198 9.2 Filters 200 9.3 Generality of Linear Filter Theory 203 9.4 Digital Filtering 204 9.5 Interpretation of Theorems 205 Similarity theorem / Addition theorem / Shift theorem / Modulation theorem / Converse of modulation theorem 9.6 Linearity and Time Invariance 209 9.7 Periodicity 211 10 Sampling and Series 219 10.1 Sampling Theorem 219 10.2 Interpolation 224 10.3 Rectangular Filtering in Frequency Domain 224 10.4 Smoothing by Running Means 226 10.5 Undersampling 229 10.6 Ordinate and Slope Sampling 230 10.7 Interlaced Sampling 232 10.8 Sampling in the Presence of Noise 234 10.9 Fourier Series 235 Gibbs phenomenon / Finite Fourier transforms / Fourier coefficients 10.10 Impulse Trains That Are Periodic 245 10.11 The Shah Symbol Is Its Own Fourier Transform 246 11 The Discrete Fourier Transform and the FFT 258 11.1 The Discrete Transform Formula 258 11.2 Cyclic Convolution 264 11.3 Examples of Discrete Fourier Transforms 265 11.4 Reciprocal Property 266 11.5 Oddness and Evenness 266 11.6 Examples with Special Symmetry 267 11.7 Complex Conjugates 268 11.8 Reversal Property 268 11.9 Addition Theorem 268 11.10 Shift Theorem 268 11.11 Convolution Theorem 269 11.12 Product Theorem 269 11.13 Cross-Correlation 270 11.14 Autocorrelation 270 11.15 Sum of Sequence 270 11.16 First Value 270 11.17 Generalized Parseval-Rayleigh Theorem 271 11.18 Packing Theorem 271 11.19 Similarity Theorem 272 11.20 Examples Using MATLAB 272 11.21 The Fast Fourier Transform 275 11.22 Practical Considerations 278 11.23 Is the Discrete Fourier Transform Correct? 280 11.24 Applications of the FFT 281 11.25 Timing Diagrams 282 11.26 When $N$ Is Not a Power of $2$ 283 11.27 Two-Dimensional Data 284 11.28 Power Spectra 285 12 The Discrete Hartley Transform 293 12.1 A Strictly Reciprocal Real Transform 293 12.2 Notation and Example 294 12.3 The Discrete Hartley Transform 295 12.4 Examples of DHT 297 12.5 Discussion 298 12.6 A Convolution of Algorithm in One and Two Dimensions 298 12.7 Two Dimensions 299 12.8 The Cas-Cas Transform 300 12.9 Theorems 300 12.10 The Discrete Sine and Cosine transforms 301 Boundary value problems / Data compression application 12.11 Computing 305 12.12 Getting a Feel for Numerical Transforms 305 12.13 The Complex Hartley Transform 306 12.14 Physical Aspect of the Hartley Transformation 307 12.15 The Fast Hartley Transform 308 12.16 The Fast Algorithm 309 12.17 Running Time 314 12.18 Timing via the Stripe Diagram 315 12.19 Matrix Formulation 317 12.20 Convolution 320 12.21 Permutation 321 12.22 A Fast Hartley Subroutine 322 13 Relatives of the Fourier Transform 329 13.1 The Two-Dimensional Fourier Transform 329 13.2 Two-Dimensional Convolution 331 13.3 The Hankel Transform 335 13.4 Fourier Kernels 339 13.5 The Three-Dimensional Fourier Transform 340 13.6 The Hankel Transform in $n$ Dimensions 343 13.7 The Mellin Transform 343 13.8 The $z$ Transform 347 13.9 The Abel Transform 351 13.10 The Radon Transform and Tomography 356 The Abel-Fourier-Hankel ring of transforms / Projection-slice theorem / Reconstruction by modified back projection 13.11 The Hilbert Transform 359 The analytic signal/Instantaneous frequency and envelope / Causality 13.12 Computing the Hilbert Transform 364 13.13 The Fractional Fourier Transform 367 Shift theorem / Derivative theorems / Fractional convolution theorem / Examples of transforms 14 The Laplace Transform 380 14.1 Convergence of the Laplace Integral 382 14.2 Theorems for the Laplace Transform 383 14.3 Transient-Response Problems 385 14.4 Laplace Transform Pairs 386 14.5 Natural Behavior 389 14.6 Impulse Response and Transfer Function 390 14.7 Initial-Value Problems 392 14.8 Setting Out Initial-Value Problems 396 14.9 Switching Problems 396 15 Antennas and Optics 406 15.1 One-Dimensional Apertures 407 15.2 Analogy with Waveforms and Spectra 410 15.3 Beam Width and Aperture Width 411 15.4 Beam Swinging 412 15.5 Arrays of Arrays 413 15.6 Interferometers 414 15.7 Spectral Sensitivity Function 415 15.8 Modulation Transfer Function 416 15.9 Physical Aspects of the Angular Spectrum 417 15.10 Two-Dimensional Theory 417 15.11 Optical Diffraction 419 15.12 Fresnel Diffraction 420 15.13 Other Applications of Fourier Analysis 422 16 Applications in Statistics 428 16.1 Distribution of a Sum 429 16.2 Consequences of the Convolution Relation 434 16.3 The Characteristic Function 435 16.4 The Truncated Exponential Distribution 436 16.5 The Poisson Distribution 438 17 Random Waveforms and Noise 446 17.1 Discrete Representation by Random Digits 447 17.2 Filtering a Random Input: Effect on Amplitude Distribution 450 Digression on independence / The convolution relation 17.3 Effect on Autocorrelation 455 17.3 Effect on Spectrum 458 Spectrum of random input / The output spectrum 17.4 Some Noise Records 462 17.5 Envelope of Bandpass Noise 465 17.6 Detection of a Noise Waveform 466 17.7 Measurement of Noise Power 466 18 Heat Conduction and Diffusion 475 18.1 One-Dimensional Diffusion 475 18.2 Gaussian Diffusion from a Point 480 18.3 Diffusion of a Spatial Sinusoid 481 18.4 Sinusoidal Time Variation 485 19 Dynamic Power Spectra 489 19.1 The Concept of Dynamic Spectrum 489 19.2 The Dynamic Spectrograph 491 19.3 Computing the Dynamic Power Spectrum 494 Frequency division / Time division / Presentation 19.4 Equivalence Theorem 497 19.5 Envelope and Phase 498 19.6 Using $\\log f$ instead of $f$ 499 19.7 The Wavelet Transform 500 19.8 Adaptive Cell Placement 502 19.9 Elementary Chirp Signals (Chirplets) 502 19.10 The Wigner Distribution 504 20 Tables of $\\sinc x$, $\\sinc^2 x$, and $\\exp(-\\pi x^2)$ 508 21 Solutions to Selected Problems 513 Chapter 2 Groundwork 513 Chapter 3 Convolution 514 Chapter 4 Notation for Some Useful Functions 516 Chapter 5 The Impulse Symbol 517 Chapter 6 The Basic Theorems 522 Chapter 7 Obtaining Transforms 524 Chapter 8 The Two Domains 526 Chapter 9 Waveforms, Spectra, Filters, and Linearity 530 Chapter 10 Sampling and Series 532 Chapter 11 The Discrete Fourier Transform and the FFf 534 Chapter 12 The Hartley Transform 537 Chapter 13 Relatives of the Fourier Transform 538 Chapter 14 The Laplace Transform 539 Chapter 15 Antennas and Optics 545 Chapter 16 Applications in Statistics 555 Chapter 17 Random Waveforms and Noise 557 Chapter 18 Heat Conduction and Diffusion 565 Chapter 19 Dynamic Spectra and Wavelets 571 22 Pictorial Dictionary of Fourier Transforms 573 Hartley Transforms of Some Functions without Symmetry 592 23 The Life of Joseph Fourier 594 Index 597