ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Energy of Data and Distance Correlation

دانلود کتاب انرژی داده ها و همبستگی فاصله

The Energy of Data and Distance Correlation

مشخصات کتاب

The Energy of Data and Distance Correlation

ویرایش:  
نویسندگان: ,   
سری: Chapman & Hall/CRC Monographs on Statistics and Applied Probability 
ISBN (شابک) : 1482242745, 9781482242744 
ناشر: CRC Press/Chapman & Hall 
سال نشر: 2023 
تعداد صفحات: 466
[467] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 Mb 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب The Energy of Data and Distance Correlation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب انرژی داده ها و همبستگی فاصله نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب انرژی داده ها و همبستگی فاصله



توضیحاتی درمورد کتاب به خارجی

Energy distance is a statistical distance between the distributions of random vectors, which characterizes equality of distributions. The name energy derives from Newton's gravitational potential energy, and there is an elegant relation to the notion of potential energy between statistical observations. Energy statistics are functions of distances between statistical observations in metric spaces. The authors hope this book will spark the interest of most statisticians who so far have not explored E-statistics and would like to apply these new methods using R. The Energy of Data and Distance Correlation is intended for teachers and students looking for dedicated material on energy statistics, but can serve as a supplement to a wide range of courses and areas, such as Monte Carlo methods, U-statistics or V-statistics, measures of multivariate dependence, goodness-of-fit tests, nonparametric methods and distance based methods.

•E-statistics provides powerful methods to deal with problems in multivariate inference and analysis.

•Methods are implemented in R, and readers can immediately apply them using the freely available energy package for R.

•The proposed book will provide an overview of the existing state-of-the-art in development of energy statistics and an overview of applications.

•Background and literature review is valuable for anyone considering further research or application in energy statistics.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Contents
Preface
Authors
Notation
I. The Energy of Data
	1. Introduction
		1.1. Distances of Data
		1.2. Energy of Data: Distance Science of Data
	2. Preliminaries
		2.1. Notation
		2.2. V-statistics and U-statistics
			2.2.1. Examples
			2.2.2. Representation as a V-statistic
			2.2.3. Asymptotic Distribution
			2.2.4. E-statistics as V-statistics vs U-statistics
		2.3. A Key Lemma
		2.4. Invariance
		2.5. Exercises
	3. Energy Distance
		3.1. Introduction: The Energy of Data
		3.2. The Population Value of Statistical Energy
		3.3. A Simple Proof of the Inequality
		3.4. Energy Distance and Cramér's Distance
		3.5. Multivariate Case
		3.6. Why is Energy Distance Special?
		3.7. Infinite Divisibility and Energy Distance
		3.8. Freeing Energy via Uniting Sets in Partitions
		3.9. Applications of Energy Statistics
		3.10. Exercises
	4. Introduction to Energy Inference
		4.1. Introduction
		4.2. Testing for Equal Distributions
		4.3. Permutation Distribution and Test
		4.4. Goodness-of-Fit
		4.5. Energy Test of Univariate Normality
		4.6. Multivariate Normality and other Energy Tests
		4.7. Exercises
	5. Goodness-of-Fit
		5.1. Energy Goodness-of-Fit Tests
		5.2. Continuous Uniform Distribution
		5.3. Exponential and Two-Parameter Exponential
		5.4. Energy Test of Normality
		5.5. Bernoulli Distribution
		5.6. Geometric Distribution
		5.7. Beta Distribution
		5.8. Poisson Distribution
			5.8.1. The Poisson E-test
			5.8.2. Probabilities in Terms of Mean Distances
			5.8.3. The Poisson M-test
			5.8.4. Implementation of Poisson Tests
		5.9. Energy Test for Location-Scale Families
		5.10. Asymmetric Laplace Distribution
			5.10.1. Expected Distances
			5.10.2. Test Statistic and Empirical Results
		5.11. The Standard Half-Normal Distribution
		5.12. The Inverse Gaussian Distribution
		5.13. Testing Spherical Symmetry; Stolarsky Invariance
		5.14. Proofs
		5.15. Exercises
	6. Testing Multivariate Normality
		6.1. Energy Test of Multivariate Normality
			6.1.1. Simple Hypothesis: Known Parameters
			6.1.2. Composite Hypothesis: Estimated Parameters
			6.1.3. On the Asymptotic Behavior of the Test
			6.1.4. Simulations
		6.2. Energy Projection-Pursuit Test of Fit
			6.2.1. Methodology
			6.2.2. Projection Pursuit Results
		6.3. Proofs
			6.3.1. Hypergeometric Series Formula
			6.3.2. Original Formula
		6.4. Exercises
	7. Eigenvalues for One-Sample E-Statistics
		7.1. Introduction
		7.2. Kinetic Energy: The Schrödinger Equation
		7.3. CF Version of the Hilbert-Schmidt Equation
		7.4. Implementation
		7.5. Computation of Eigenvalues
		7.6. Computational and Empirical Results
			7.6.1. Results for Univariate Normality
			7.6.2. Testing Multivariate Normality
			7.6.3. Computational Efficiency
		7.7. Proofs
		7.8. Exercises
	8. Generalized Goodness-of-Fit
		8.1. Introduction
		8.2. Pareto Distributions
			8.2.1. Energy Tests for Pareto Distribution
			8.2.2. Test of Transformed Pareto Sample
			8.2.3. Statistics for the Exponential Model
			8.2.4. Pareto Statistics
			8.2.5. Minimum Distance Estimation
		8.3. Cauchy Distribution
		8.4. Stable Family of Distributions
		8.5. Symmetric Stable Family
		8.6. Exercises
	9. Multi-sample Energy Statistics
		9.1. Energy Distance of a Set of Random Variables
		9.2. Multi-sample Energy Statistics
		9.3. Distance Components: A Nonparametric Extension of ANOVA
			9.3.1. The DISCO Decomposition
			9.3.2. Application: Decomposition of Residuals
		9.4. Hierarchical Clustering
		9.5. Case Study: Hierarchical Clustering
		9.6. K-groups Clustering
			9.6.1. K-groups Objective Function
			9.6.2. K-groups Clustering Algorithm
			9.6.3. K-means as a Special Case of K-groups
		9.7. Case Study: Hierarchical and K-groups Cluster Analysis
		9.8. Further Reading
			9.8.1. Bayesian Applications
		9.9. Proofs
			9.9.1. Proof of Theorem 9.1
			9.9.2. Proof of Proposition 9.1
		9.10. Exercises
	10. Energy in Metric Spaces and Other Distances
		10.1. Metric Spaces
			10.1.1. Review of Metric Spaces
			10.1.2. Examples of Metrics
		10.2. Energy Distance in a Metric Space
		10.3. Banach Spaces
		10.4. Earth Mover's Distance
			10.4.1. Wasserstein Distance
			10.4.2. Energy vs. Earth Mover's Distance
		10.5. Minimum Energy Distance (MED) Estimators
		10.6. Energy in Hyperbolic Spaces and in Spheres
		10.7. The Space of Positive Definite Symmetric Matrices
		10.8. Energy and Machine Learning
		10.9. Minkowski Kernel and Gaussian Kernel
		10.10. On Some Non-Energy Distances
		10.11. Topological Data Analysis
		10.12. Exercises
II. Distance Correlation and Dependence
	11. On Correlation and Other Measures of Association
		11.1. The First Measure of Dependence: Correlation
		11.2. Distance Correlation
		11.3. Other Dependence Measures
		11.4. Representations by Uncorrelated Random Variables
	12. Distance Correlation
		12.1. Introduction
		12.2. Characteristic Function Based Covariance
		12.3. Dependence Coefficients
			12.3.1. Definitions
		12.4. Sample Distance Covariance and Correlation
			12.4.1. Derivation of V2n
			12.4.2. Equivalent Definitions for V2n
			12.4.3. Theorem on dCov Statistic Formula
		12.5. Properties
		12.6. Distance Correlation for Gaussian Variables
		12.7. Proofs
			12.7.1. Finiteness of ||fX,Y (t,s) – fX(t)fY (s)||2
			12.7.2. Proof of Theorem 12.1
			12.7.3. Proof of Theorem 12.2
			12.7.4. Proof of Theorem 12.4
		12.8. Exercises
	13. Testing Independence
		13.1. The Sampling Distribution of nV2n
			13.1.1. Expected Value and Bias of Distance Covariance
			13.1.2. Convergence
			13.1.3. Asymptotic Properties of nV2n
		13.2. Testing Independence
			13.2.1. Implementation as a Permutation Test
			13.2.2. Rank Test
			13.2.3. Categorical Data
			13.2.4. Examples
			13.2.5. Power Comparisons
		13.3. Mutual Independence
		13.4. Proofs
			13.4.1. Proof of Proposition 13.1
			13.4.2. Proof of Theorem 13.1
			13.4.3. Proof of Corollary 13.3
			13.4.4. Proof of Theorem 13.2
		13.5. Exercises
	14. Applications and Extensions
		14.1. Applications
			14.1.1. Nonlinear and Non-monotone Dependence
			14.1.2. Identify and Test for Nonlinearity
			14.1.3. Exploratory Data Analysis
			14.1.4. Identify Influential Observations
		14.2. Some Extensions
			14.2.1. Affine and Monotone Invariant Versions
			14.2.2. Generalization: Powers of Distances
			14.2.3. Distance Correlation for Dissimilarities
			14.2.4. An Unbiased Distance Covariance Statistic
		14.3. Distance Correlation in Metric Spaces
			14.3.1. Hilbert Spaces and General Metric Spaces
			14.3.2. Testing Independence in Separable Metric Spaces
			14.3.3. Measuring Associations in Banach Spaces
		14.4. Distance Correlation with General Kernels
		14.5. Further Reading
			14.5.1. Variable Selection, DCA and ICA
			14.5.2. Nonparametric MANOVA Based on dCor
			14.5.3. Tests of Independence with Ranks
			14.5.4. Projection Correlation
			14.5.5. Detection of Periodicity via Distance Correlation
			14.5.6. dCov Goodness-of-fit Test of Dirichlet Distribution
		14.6. Exercises
	15. Brownian Distance Covariance
		15.1. Introduction
		15.2. Weighted L2 Norm
		15.3. Brownian Covariance
			15.3.1. Definition of Brownian Covariance
			15.3.2. Existence of Brownian Covariance Coefficient
			15.3.3. The Surprising Coincidence: BCov(X,Y) = dCov(X,Y)
		15.4. Fractional Powers of Distances
		15.5. Proofs of Statements
			15.5.1. Proof of Theorem 15.1
		15.6. Exercises
	16. U-statistics and Unbiased dCov2
		16.1. An Unbiased Estimator of Squared dCov
		16.2. The Hilbert Space of U-centered Distance Matrices
		16.3. U-statistics and V-statistics
			16.3.1. Definitions
			16.3.2. Examples
		16.4. Jackknife Invariance and U-statistics
		16.5. The Inner Product Estimator is a U-statistic
		16.6. Asymptotic Theory
		16.7. Relation between dCov U-statistic and V-statistic
			16.7.1. Deriving the Kernel of dCov V-statistic
			16.7.2. Combining Kernel Functions for Vn
		16.8. Implementation in R
		16.9. Proofs
		16.10. Exercises
	17. Partial Distance Correlation
		17.1. Introduction
		17.2. Hilbert Space of U-centered Distance Matrices
			17.2.1. U-centered Distance Matrices
			17.2.2. Properties of Centered Distance Matrices
			17.2.3. Additive Constant Invariance
		17.3. Partial Distance Covariance and Correlation
		17.4. Representation in Euclidean Space
		17.5. Methods for Dissimilarities
		17.6. Population Coefficients
			17.6.1. Distance Correlation in Hilbert Spaces
			17.6.2. Population pdCov and pdCor Coefficients
			17.6.3. On Conditional Independence
		17.7. Empirical Results and Applications
		17.8. Proofs
		17.9. Exercises
	18. The Numerical Value of dCor
		18.1. Cor and dCor: How Much Can They Differ?
		18.2. Relation Between Pearson and Distance Correlation
		18.3. Conjecture
	19. The dCor t-test of Independence in High Dimension
		19.1. Introduction
			19.1.1. Population dCov and dCor Coefficients
			19.1.2. Sample dCov and dCor
		19.2. On the Bias of the Statistics
		19.3. Modified Distance Covariance Statistics
		19.4. The t-test for Independence in High Dimension
		19.5. Theory and Properties
		19.6. Application to Time Series
		19.7. Dependence Metrics in High Dimension
		19.8. Proofs
			19.8.1. On the Bias of Distance Covariance
			19.8.2. Proofs of Lemmas
			19.8.3. Proof of Propositions
			19.8.4. Proof of Theorem
		19.9. Exercises
	20. Computational Algorithms
		20.1. Linearize Energy Distance of Univariate Samples
			20.1.1. L-statistics Identities
			20.1.2. One-sample Energy Statistics
			20.1.3. Energy Test for Equality of Two or More Distributions
		20.2. Distance Covariance and Correlation
		20.3. Bivariate Distance Covariance
			20.3.1. An O(n log n) Algorithm for Bivariate Data
			20.3.2. Bias-Corrected Distance Correlation
		20.4. Alternate Bias-Corrected Formula
		20.5. Randomized Computational Methods
			20.5.1. Random Projections
			20.5.2. Algorithm for Squared dCov
			20.5.3. Estimating Distance Correlation
		20.6. Appendix: Binary Search Algorithm
			20.6.1. Computation of the Partial Sums
			20.6.2. The Binary Tree
			20.6.3. Informal Description of the Algorithm
			20.6.4. Algorithm
	21. Time Series and Distance Correlation
		21.1. Yule's “nonsense correlation” is Contagious
		21.2. Auto dCor and Testing for iid
		21.3. Cross and Auto-dCor for Stationary Time Series
		21.4. Martingale Difference dCor
		21.5. Distance Covariance for Discretized Stochastic Processes
		21.6. Energy Distance with Dependent Data: Time Shift Invariance
	22. Axioms of Dependence Measures
		22.1. Rényi's Axioms and Maximal Correlation
		22.2. Axioms for Dependence Measures
		22.3. Important Dependence Measures
		22.4. Invariances of Dependence Measures
		22.5. The Erlangen Program of Statistics
		22.6. Multivariate Dependence Measures
		22.7. Maximal Distance Correlation
		22.8. Proofs
		22.9. Exercises
	23. Earth Mover's Correlation
		23.1. Earth Mover's Covariance
		23.2. Earth Mover's Correlation
		23.3. Population eCor for Mutual Dependence
		23.4. Metric Spaces
		23.5. Empirical Earth Mover's Correlation
		23.6. Dependence, Similarity, and Angles
A. Historical Background
B. Prehistory
	B.1. Introductory Remark
	B.2. Thales and the Ten Commandments
Bibliography
Index




نظرات کاربران