ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Embryologic Basis of Craniofacial Structure: Developmental Anatomy, Evolutionary Design, and Clinical Applications

دانلود کتاب مبانی جنینی ساختار جمجمه و صورت: آناتومی رشدی، طراحی تکاملی و کاربردهای بالینی

The Embryologic Basis of Craniofacial Structure: Developmental Anatomy, Evolutionary Design, and Clinical Applications

مشخصات کتاب

The Embryologic Basis of Craniofacial Structure: Developmental Anatomy, Evolutionary Design, and Clinical Applications

ویرایش: [1st ed. 2023] 
نویسندگان:   
سری:  
ISBN (شابک) : 3031156358, 9783031156359 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 1771
[1756] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 275 Mb 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب The Embryologic Basis of Craniofacial Structure: Developmental Anatomy, Evolutionary Design, and Clinical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی جنینی ساختار جمجمه و صورت: آناتومی رشدی، طراحی تکاملی و کاربردهای بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی جنینی ساختار جمجمه و صورت: آناتومی رشدی، طراحی تکاملی و کاربردهای بالینی

این کتاب با تمرکز بر آناتومی سر و گردن، از سطح رشد سلولی شروع می‌شود و جزئیات استخوان، ماهیچه، تامین خون و عصب‌گیری در طول مسیر را شرح می‌دهد. منشا هر ساختار بافتی را نشان می‌دهد تا به پیش‌آگهی‌هایی فراتر از تغییر شکل سطحی کمک کند، به عنوان مثال، مسائل معمولی را که در ناحیه جمجمه و صورت دیده می‌شود، ارائه می‌کند. این کتاب که توسط یک جراح پلاستیک جمجمه و صورت کودکان نوشته شده است و برای پزشکان و دستیاران در زمینه های جراحی پلاستیک، گوش، حلق و بینی، جراحی فک و صورت و ارتودنسی در نظر گرفته شده است، این کتاب اولین کتاب در نوع خود است که به شدت بر تکامل ساختار جمجمه و صورت تمرکز می کند. به طور منظم به دو بخش مجزا تقسیم شده است. بخش اول برای خوانندگان در نظر گرفته شده است تا با تکیه بر مفاهیم نظریه نورومریک به درک اساسی از رشد ساختارهای جمجمه-صورتی، از جنین به بعد، دست یابند. فصل‌های بخش اول کتاب رشد یک بیمار معمولی را نشان می‌دهد. بخش دوم مثال‌های بالینی را ارائه می‌دهد که چگونه نظریه نورومریک می‌تواند برای ترمیم یا بازسازی نواحی مختلف سر و گردن استفاده شود. شکاف های جمجمه ای از جمله شکاف لب و کام، هیپوتلوریسم چشم، آنسفالی، کرانیوسینوستوز و موارد دیگر به تفصیل شرح داده شده است. درک شکل‌گیری ساختارهای بافتی درگیر در هر تغییر شکل یا ناهنجاری ژنتیکی، پزشک را قادر می‌سازد تا نتیجه رضایت‌بخش‌تری را هم از نظر ساختاری و هم از نظر زیبایی شناختی برای بیمار فراهم کند. گزینه‌های درمانی جدید و فعلی از طریق تصاویر و عکس‌های اصلی بررسی و پشتیبانی می‌شوند تا به تعیین بهترین درمان برای هر بیمار کمک کنند. اصول جنین شناسی ساختار جمجمه و صورت شکاف بین کتاب های مقدماتی در مورد آناتومی اولیه سر و گردن و درک دقیق مورد نیاز برای جراحی اصلاحی نقایص جمجمه-صورتی را پر می کند.


توضیحاتی درمورد کتاب به خارجی

Focusing on the anatomy of the head and neck, this book begins at the cellular level of development, detailing bone, muscle, blood supply, and innervation along the way. It illustrates the origin of each tissue structure to aid in making prognoses beyond the surface deformation, offering typical issues seen in the craniofacial region, for example. Written by a pediatric Craniofacial plastic surgeon and intended for clinicians and residents in the areas of plastic surgery, ENT, maxillofacial surgery, and orthodontistry, this book is the first of its kind to focus so intently on evolution of the craniofacial structure. It is neatly broken up into two distinct sections. The first section is meant for readers to gain a fundamental understanding of the development of craniofacial structures, from embryo onward, relying on the concepts of the Neuromeric Theory. The chapters in the first section of the book trace the development of the typical patient. The second section offers clinical examples of how the Neuromeric Theory can be used to repair or reconstruct various regions of the head and neck. Craniofacial clefts, including cleft lip and palate, ocular hypotelorism, anencephaly, craniosynostosis and more are detailed. Understanding the formation of the tissue structures involved in any given genetic deformation or anomaly enables the clinician to provide a more satisfying outcome for the patient, both structurally and aesthetically. New and current therapeutic options are explored and supported through original illustrations and photographs to aid in determining the best treatment for each individual patient. Embryological Principles of Craniofacial Structure bridges the gap between introductory books on the basic anatomy of the head and neck and the detailed understanding required for corrective surgery of craniofacial defects.



فهرست مطالب

Foreword
Foreword
	The Open Sesame for Craniofacial Biology
Foreword
Foreword
Foreword
Foreword
	A Unified Theory of Developmental Field Repair
Foreword
Foreword
	Commentary—Jean-Claude Talmant
Foreword
Preface
	What Brings You to Open This Book?
	The Open Sesame of Structure
	Curtains and a Surgical Innovation
	The 4Ds
	Sojourn in Basic Science
	Stem Cell Stimulus
	Qualifications
	Why Should You Read This Book?
Acknowledgments
Contents
About the Contributors
1: Neuromeric Organization of the Head and Neck
	Introduction
	Definitions
	Zoologic Abbreviations
	Developmental Fields: Lessons from the Common Labiomaxillary Cleft
		The 4-D Theory of Cleft Formation
		The Biologic Significance of Relapse
		Beyond Descriptive Embryology: Developmental Fields and the Functional Matrix
		Neurovascular Mapping of Developmental Fields: Nasomaxillary Model
	Neuromeres and Neuromeric Coding
		Neuromeres: The Clinical Significance of the Neuromeric Map
		Craniofacial Neural Crest
		Craniofacial Mesoderm: Extraembryonic Versus Intraembryonic
			The Little Appreciated Hypoblast
		How Segmentation of the Mesoderm Matches that of the Neural Tube
	Molecular Basis of Segmentation
		Introduction to Homeotic Genes
		Clinical Significance
		Craniocaudal Pattern Formation
		Neuromeric Basis of Neural Crest “Migration” and Fate
			Anterior Prosencephalic Neural Fold: Nonneural Ectoderm
			Posterior Prosencephalic Neural Fold: Neural Crest (PNC)
			Mesencephalic Neural Crest (MNC)
			Rhombencephalic Neural Crest (RNC)
		Spatial Reassignment of Nonneural Ectoderm
		Timing of Neural Crest Migration
		Fate of the Neural Crest: The Role of Epithelial “Programming”
		Ectomeres and Endomeres: A Final Note
	Summary
	References
2: Anatomy of Mesenchyme and the Pharyngeal Arches
	Introduction
		Three Caveats
	Anatomy of Craniofacial Mesoderm
		Paraxial Mesoderm: Somitomeres and Somites
			Three Types of Cranium
			Second Iteration of Cranial Mesoderm: The Pharyngeal Arches
		Fate of Pharyngeal Arch PAM (Table 2.2)
			The Mammalian System of Pharyngeal Arches
			Evolutionary Considerations
			Vascularization of the Pharyngeal Arches: Nutritional Basis of Derivatives
			Hypothetical Model of Vascular Development
		Fate of Non-pharyngeal Arch PAM
	Blood Supply to the Face: An Overview
		Summary of Circulations as Determined by Neural Crest
			In Sum
		Aortic Arch Precursors
		Birth and Death of the Stapedial Artery System
		Internal Maxillo-Mandibular Arterial Axis Summarized
	Anatomy of Craniofacial Neural Crest
		Building Blocks of the Face
			Forebrain: Prosencephalic Neural Crest (PNC) > Fronto-Orbito-Nasal Skin
			Midbrain: Mesencephalic Neural Crest (MNC) > Upper Face
			Hindbrain: Rhombencephalic Neural Crest (RNC) > Midface
		Developmental Fields Can Be Lumped into Three Groups: A + B + C
		Migration Patterns of Neural Crest
		Prosencephalic Neural Crest: Anatomic Considerations
			The New Prosomeric Model
			Prosomeric Mesenchyme and Nonneural Epithelium: General Considerations
			Prosomeric Placodes
				Adenohypophyseal Placode
				Nasal Placodes
				Optic Placodes
				Otic Placodes
			Blood Supply for Fronto-Orbital-Nasal Skin
			MNC Schizophrenia
			Forebrain Neural Crest Migration
			Development of Frontonasal Bone and Skin: Prosomeric Zones p4 and p5
			Naso-Oral Lining, Nasal Bones, and Nasal Cartilages: Prosomeric Zones p6–p5
			Formation of Nasal Cartilages: Prosomeric Zones p6–p5
		Mesencephalic Neural Crest Derivatives
			Definition of MNC: Mesomeres m1–m2, Rhombomeres r0–r1
			MNC Bone Fields
		Rhombencephalic Neural Crest Derivatives: r2–r7
			First Pharyngeal Arch: Rhombomere 2
				Migration Pathways
				The Premaxillary-Vomerine Complex
				Organization of r2 RNC
				Retro-Orbital Complex: Alisphenoid (AS) and Lateral Pterygoid (LPt)
				Maxillary Complex: Dental Zones (Mx1, Mx2, Mx3), Inferior Turbinate (It), and Palatine (Pl)
					The Maxilla Is a Five-Sided Box
					The Sixth Side of the Box: Inferior Turbinate
					The Sixth Side of the Box: Frontal Process of Maxilla
					The Sixth Side of the Box: Palatine Bone
				The Zygomatic Complex: Jugal (J) and Postorbital (PO)
			First Pharyngeal Arch: Rhombomere 3
				First r3 Segment: Mn1, Mn2, and Mn3
				Second r3 Segment: Ramus, Condyle, and Coronoid
				Third r3 Segment: Derivatives “Assigned” to the Ear
			Second Pharyngeal Arch: Rhombomeres 4–5
				The Extensive Distribution of Second Arch Mesenchyme
			Third Pharyngeal Arch: Rhombomeres 6–7
			Fourth Pharyngeal Arch: Rhombomeres 8–9
			Derivatives of the Fifth Pharyngeal Arch: Rhombomeres 10–11
	Formation of the Larynx and Trachea
		Spatial Relationships of Pharyngeal Arches
	Formation of the Cranial Base
		Posterior Cranial Base
		Anterior Cranial Base
			Orbitosphenoid Derivatives Neural Crest
			Fronto-Orbital Derivatives
			Palatine Derivatives
			Nasopalatine Derivatives
	Assembly of the Face
		Neuromeric Production of Soft Tissues
			Skin
			Mucosa
			Facial Muscles, Fascia, Fat
		Biologic Basis for Developmental Fields
		Toward a Neuromeric Theory of Facial Cleft Formation
			Zygomatico-Maxillary Complex
			Connecting the ZMC with the Cranium
		Assembly of the Oronasal Soft Tissues
			Formation of the Normal Lip and Prolabium
			The Pathologic Anatomy of Cleft Formation
			Clinical Consequences of the Developmental Field Model Applied to Facial Clefts
		How to Understand the Assembly of the Face: A Method of Study
			Step 1: Summary of Ideas
			Step 2: Key Definitions and Point of Clarification
			Step 3: Staging of Embryos (General Principles)
			Step 4: Carnegie Staging System: With Special Reference to the Head and Neck
		Major Themes of Craniofacial Development
	Summary
	References
3: Embryonic Staging: The Carnegie System
	Historical Background
	How to Use This Chapter
	Stage-By-Stage Description
		Stage 1 (24 h, 0.1–0.15 mm): Fertilization (Fig. 3.13)
		Stage 2 (2–3 Days, 0.1–0.2 mm): Cleavage (Fig. 3.14)
		Stage 3 (4–5 Days, 0.1–0.2 mm): Free-Floating Blastocyst (Fig. 3.15)
		Stage 4 (6 Days): Attachment of Blastocyst (Figs. 3.16, 3.17, and 3.18)
		Stage 5 (7–12 Days, 0.1–0.2 mm): Implantation, Bilaminar Disc, Trophoblast Development, No Villous Development (Figs. 3.18 and 3.19)
		Stage 6 (13–18 Days, 0.2–0.3 mm): Gastrulation Begins (Figs. 3.20 and 3.21)
		Stage 7 (19–22 Days, 0.4 mm): Notochord (Fig. 3.22)
		Stage 8 (23–24 Days, 0.5–3 mm): Neurulation (Fig. 3.23)
		Stage 9 (25–27 Days, 1.5–2.5 mm, 1–3 Somites, First Aortic Arch) (Fig. 3.24)
			Histologic Features
			Vascular System
			Digestive System
			Nervous System: Major Divisions of the Brain
		Stage 10 (28 Days, 2.5–3.5 mm, 4–12 Somites, Second Aortic Arch) (Figs. 3.25, 3.26, and 3.27)
			Histologic Features
			Cardiovascular System
			Digestive/Respiratory Systems
			Nervous System: The Neural Tube and Optic Primordium
		Stage 11 (29 Days, 2.5–4.5 mm 13–20 Somites, Third Aortic Arch) (Figs. 3.28, 3.29, and 3.30)
			Histologic Features
			Cardiovascular System
			Digestive and Respiratory Systems
			Nervous System: Closure of the Rostral Neuropore
		Stage 12 (30–31 Days, 3–5 mm, 21–29 Somites, Fourth Aortic Arch) (Fig. 3.31)
			External Form
			Cardiovascular System
			Digestive/Respiratory Systems
			Nervous System: Closure of Caudal Neuroport, Secondary Neurulation Begins
		Stage 13 (32 Days, 4–6 mm, 30–31 Somites, Fifth Aortic Arch—Abortive) (Fig. 3.32)
			External Form
			Cardiovascular System
			Digestive/Respiratory Systems
			Nervous System: Neural Tube Is Closed, Cerebellus Appears from r1
		Stage 14 (33–35 Days, 5–7 mm, Sixth Aortic Arch for Pulmonary Circulation) (Figs. 3.33 and 3.34)
			External Form
			Vascular System
			Digestive System
			Respiratory System
			Nervous System: Future Cerebral Hemispheres Are Defined
		Stage 15 (36–37 Days, 7–9 mm) (Fig. 3.35)
			External Form
			Cardiovascular System
			Respiratory System
			Nervous System: Diencephalon Develops Longitudinal Zones
		Stage 16 (38–40 Days, 8–11 mm) (Figs. 3.36 and 3.37)
			External Form
			Face
			Nervous System: Neurohypophysis Evaginates
		Stage 17 (41–43 Days, 11–14 mm) (Fig. 3.38)
			External Form
			Face
			Nervous System: Future Olfactory Bulges, Future Amygdaloid Nuclei
		Stage 18 (44–45 Days, 13–17 mm) (Figs. 3.39 and 3.40)
			Nasal Passages/Respiratory
			Mouth
			Nervous System: Future Corpus Striatum, Inferior Cerebellar Peducles, Dentate Nucleus
		Stage 19 (46–48 Days, 16–18 mm) (Figs. 3.41 and 3.42)
			Nervous System: Choroid Plexus of the Fourth Ventricle, Medial Accessory Olivary Nucleus
		Stage 20 (49–50 Days, 22–24 mm) (Figs. 3.43, 3.44, and 3.45)
			Nervous System: Choroid Plexus of Lateral Ventricles, Medial Accessory Olivary Nucleus
		Stage 21 (51–52 Days, 2–24 mm) (Figs. 3.46 and 3.47)
			Nervous System: Cerebral Hemispheres Have Cortical Plate
		Stage 22 (53–55 Days, 23–28 mm) (Fig. 3.48)
			Nervous System: Olfactory Capsule Complete, Internal Capsule Complete
		Stage 23 (56+ Days, 27–31 mm) (Fig. 3.49)
4: Neurovascular Organization and Assembly of the Face
	Introduction
		Useful Terminology: Read These First
			Stapedial Artery
			Neuromere
			Embryonic Brain
		Injection Studies
			Case 1: Normal Fetus
			Case 2: Normal Fetus
			Case 3: Unilateral Cleft Lip and Alveolus (Secondary Hard Palate Intact)
			Case 4: Holoprosencephaly with Unilateral Cleft Lip and Midline Cleft Palate; Right Fields Hypoplastic, Left A Fields Aplastic (Fig. 4.4 Holoprosencephaly)
			Case 5: Cebocephaly (Fig. 4.5 Cebocephaly)
		Timetable of Oronasal Field Development
	Concepts of Developmental Fields
	Anatomy of Facial Fields: A + B + C
		A-Fields: StV1 Fronto-Naso-Orbital Arterial System (FNO)
			Development of the StV1 System
			Organization of the Intracranial StV1 System
		B-Fields: StV2 and StV3 Maxillomandibular Arterial System
			Evolutionary Considerations
			Organization of the Extracranial StV2/StV3 System
		C Fields: ECAV2 and ECAV3 Arterial System
			Determining Cranial Nerve Geometry in the Face
			The Logic of the Facial Vascular System
				Neuraxial Subdivisions of Fields
				Facial Clefts as Field Markers: The Neuromeric Basis of the Tessier Cleft Classification
	Assembly of the Face: Developmental Sequence
		Principles of Placodes
		Early Development of the Forebrain and Stomodeum: Stages 8–11
		Early Development of the Nasal Placode and Nasal Fields: Stages 12–15
			Mapping Out the Mouth
			Expansion of Midbrain Neural Crest: Mesenchyme of the A Fields
		Development of the Primary Nasal Chambers: Stages 16–18
		Formation of the External Nasolabial Relief: Stages 19–23
	The Facial Midline: A Vascular Watershed
		Sequence of A Field Development Determines the Dimensions of the Midline (Figs. 4.11 and 4.12)
		Forebrain Development and Facial Structure: The Brain Predicts the Face
			Importance of Timing
		How the Prosomeres Relate to Craniofacial Structure
			The Forebrain Is Patterned Under New Rules
		A Field Instability: A Clinical Model of Neuromeric Failure
			Clinical Defects
			Experimental Production of Cyclopia and Nasal Capsule Disruption
	Neuroendocrine Anatomy of the Forebrain: Cranial Nerves 0 and 1
		Introduction
		Functional Anatomy of the A Fields
		Anatomy of the Olfactory System
		Anatomy of the Accessory Olfactory System
		Anatomy of Terminal and Vomeronasal Nerves
		Anatomy of GnRH Neurons: From Nasal Placode to Hypothalamus
		How Do Neurons Find Their Way Home? N-CAMs and A-Field Domains
		Kallmann’s Syndrome (KS): Neuropathology of the A Fields
		Origin and Composition of the A Fields
		Significance of Neuroendocrine Tracts Originating in the Nasal Placodes
		The Prosomere Model of Forebrain Development: Its Relevance to the Development of the Midface
	Conclusion: Toward a New Understanding of the Midline
	Epilog: A Prediction
	References
5: The Neuromeric System: Segmentation of the Neural Tube
	Introduction
		Historical Background
		The Number of Neuromeres Is Specific for Each Region of the Neural Tube
			Spinal Cord: 31 Myelomeres
			Hindbrain: 12 Rhombomeres
			Midbrain: 1 or 2 Mesomeres
			Diencephalon/Secondary Prosencephalon: Five Prosomeres (p1–p3, hp1–hp2)
	Descriptive Neuroembryology (O’Rahilly and Müller)
		Stages of Neuroembryonic Development
		Definitions
		Anatomical Model for Neuromere Stages 6 Through 17
			Stage 6 (13–14 Days)
			Stage 7 (15–17 Days)
			Stage 8 (17–19 Days, 18 Somitomeres)
			Stage 9 (19–21 Days, 1–3 Somites)
			Stage 10 (22–23 Days, 4–12 Somites)
			Stage 11 (24–25 Days, 13–20 Somites)
			Stage 12 (26–27 Days, 21–29 Somites)
			Stage 13 (28–31 Days, 30+ Somites)
			Stage 14 (32 Days)
			Stage 15 (33–36 Days)
			Stage 16 (37–40 Days)
			Stage 17 (41–43 Days)
			Stage 18 (44–47 Days)
			Stage 19 (17 mm, 46 Days)
			Stage 20 (20 mm, 49 Days)
			Stage 21 (23 mm, 51 Days)
			Stage 22 (26 mm, 53 Days)
			Stage 23 (29 mm, 56 Days)
		The Columnar Model of the Forebrain: Fundamental Flaws
	Molecular Neuroembryology (Puelles and Rubenstein)
		Development of the Forebrain
		Phylogeny of Forebrain Development
			Comments on the Reptilian and Avian Dorsal Ventricular Ridge (DVR)
		The Prosomeric Model: Iterations
		Anatomic Content of Neuromeres, from Caudal-Rostral and Ventral-Dorsal
			Mesencephalon
			Diencephalon: The Mysterious “Disappearing” Fourth Prosomere
			Secondary Prosencephalon: Hypothalamus
			Telencephalon
		Construction of the Midbrain and Forebrain: Models and Paradigms
		Evolution of the Prosomeric Model (1993–Present)
		The Contemporary Neuromeric Model of the Forebrain (2015): Problems and Solutions
			Problem 1. Determining the Role of the Notochord
				Developmental Relationships Between Notochord and Prechordal Plate
				Where Is the Notochord Located with Respect to Hypothalamus?
				Induction Effects of the Notochord and Prechordal Plate
			Problem 2. Determining Interprosomeric Boundaries of the Telencephalon
			Problem 3. Reorganizing the Basal Hypothalamus
			Problem 4. Mapping the Acroterminal Hypothalamic Domain: What Does the Front of the Brain Look Like?
				Organization of the Hypothalamus
				Midline Structures of the Anterior Hypothalamus
		Mechanisms of Patterning
			DV Patterning (Dorsoventral Gradient, Vertical Axis)
			AP Patterning (Rostrocaudal Gradient, Longitudinal Axis)
		Special Note: Olfactory Bulb, Tract, and Intrinsic Olfactory Thalamus
		Neuromeres and the Phylogeny of Vertebrate Segmentation
		Clinical Significance of the Prosomeric Model
	Appendix 1: Abbreviations Used in the Text
	Appendix 2: Definitions of Neuroembryological Terminology
	Appendix 3: Glossary of Neuroanatomic Terms
	Commentary: Harvey B. Sarnat
	References
		Further Reading
6: Development of the Craniofacial Blood Supply: Intracranial System
	Introduction
		Introduction: How to Use This Chapter
			Overview of the System
			Mechanisms of Blood Vessel Construction
			Craniofacial Arterial Development by Carnegie Stages
			Blood Supply to the Forebrain and Midbrain
			Blood Supply to the Hindbrain
			Blood Supply to the Pharyngeal Arches
			Blood Supply to the Orbit and Frontonasal Face
			Pathologies of the anterior cerebral and intraorbital stapedial systems
	Craniofacial Arterial Development: An Overview
	Mechanisms of Blood Vessel Construction
		Tissue Origins of Embryonic Blood Vessels
			Anatomy of Mesoderm
			Anatomy of Cranial Neural Crest
		Segmentation: The Mathematical Basis of Intersegmental Arteries
			Summary of the Circulations: Two Types of Circulation
				Extraembryonic Circulation
				Intraembryonic Circulation
			Vitelline vs. Umbilical Vessels
		Heart Development: Its Relevance to Craniofacial Circulation
		Formation of Blood Vessels
			Vertebrate Cardiovascular Systems: Common Factors
			Vasculogenesis and Angiogenesis
			Arteries Versus Veins
		Arterial Supply to Tissues
			Nerves and Fascia
			Membranous Bone
			Chondral Bone
			Striated Muscle
			Smooth Muscle
			Brain: How Do Arteries Get into the CNS? (Figs. 6.36, 6.37, and 6.38)
			Connection
			Remodeling
	Part 2. Craniofacial Arterial Development by Stage (Figs. 6.39, 6.40, 6.41, 6.42, 6.43, 6.44, 6.45, and 6.46)
		Carnegie Stage 5 (0.1–0.2 mm, 7–12 Days) (Fig. 6.40)
		Carnegie Stage 6 (0.2–0.3 mm, 13–15 Days) (Fig. 6.41)
		Carnegie Stage 7 (0.4–1.0 mm, 16–17 Days) (Figs. 6.41 and 6.42)
		Carnegie Stage 8 (1–1.5 mm, 18–19 Days) (Figs. 6.42 and 6.43)
		Carnegie Stage 9 (1.5–2.5 mm, 20–21 Days, 1–3 Somites) (Figs. 6.44, 6.45, and 6.46)
		Carnegie Stage 10 (2.0–3.5 mm, 22–23 Days, 4–12 Somites) (Fig. 6.47)
		Carnegie Stage 11 (2.5–4.5 mm, 24–25 Days, 13–20 Somites) (Fig. 6.48)
		Carnegie Stage 12 (3–5 mm, 26–27 Days, 21–29 Somites) (Fig. 6.49)
		Carnegie Stage 13 (4–6 mm, 28–31 Days, 30+ Somites) (Figs. 6.52 and 6.53)
		Carnegie Stage 14 (Figs. 6.54 and 6.55)
		Carnegie Stage 15 (Fig. 6.56)
		Carnegie Stage 16 (Fig. 6.57)
		Carnegie Stage 17 (Fig. 6.58)
		Carnegie Stage 18 (13–17 mm, 44–47 Days) (Fig. 6.59)
		Carnegie Stage 19 (16–18 mm, 48–50 Days) (Figs. 6.60 and 6.61)
		Carnegie Stage 20 (18–22 mm, 51 Days) (Figs. 6.60 and 6.61)
		Carnegie Stage 21 (22–24 mm, 52–53 Days) (Figs. 6.62 and 6.63)
	Part 3. Blood Supply to the Forebrain and Midbrain
		Dorsal Aortae
		Internal Carotid System
			Useful Caveats
			Developmental Timeline of the Intracranial System
				Stages 9–10 (1–2 mm)
				Stage 11 (Figs. 6.68 and 6.69)
				Stage 12/Padget 1 (Figs. 6.68 and 6.69)
				Stages 13–14/Padget 2 (Figs. 6.50 and 6.70)
				Stages 15–16/Padget 3 (Figs. 6.51 and 6.71)
				Stages 17–18/Padget 4 (Figs. 6.72 and 6.73)
				Stages 19–20/Padget 5 (Figs. 6.74 and 6.75)
				Stages 21–22/Padget 6 (Figs. 6.76 and 6.77)
				Stage 23+ (Figs. 6.78, 6.79, 6.80, and 6.81)
		Internal Carotid and Its Branches: Neuromeric Model
			Anatomic Sectors of the Internal Carotid Artery (Figs. 6.82, 6.83, 6.84, 6.85, and 6.86)
				The Petrous Sector
				The Cavernous Sector
					The Eye and Orbit: A Hybrid System (See Figures in Chap. 7)
						Arteries of the Optic Apparatus—Ophthalmic System
						Arteries of the Orbit: Stapedial System
							Lacrimal Artery (Zone 9)
							Frontal Artery (Zones 10–11)
				The Cerebral Sector (Figs. 6.82, 6.83, 6.84, 6.85, 6.86, 6.87, and 6.88)
					Cranial Division (From Proximal to Distal)
					Caudal Division (Figs. 8.37, 8.38, and 11.168)
						Diencephalic
						Mesencephalic
						Posterior Cerebral
						Posterior Communicating
	Part 4. Blood Supply to the Hindbrain (Figs 6.82, 6.83, 6.84, 6.85, 6.86, 6.87, 6.88, 6.89, 6.90, and 6.91)
		Developmental Timeline of Blood Supply to the Hindbrain
		Longitudinal Neural Arteries
			LNA Branches of the Metencephalon (r0–r5): The Basilar Artery
				Superior Cerebellar
				Pontine
				Labyrinthine
				Anterior Inferior Cerebellar
			LNA Branches of the Mylencephalon (r6–r11)
				Posterior Inferior Cerebellar Artery
				Anterior Spinal Artery (Fig. 11.33)
				Posterior Spinal Artery
				Meningeal Branches
		Vertebral Artery
			Sectors of the vertebral artery
			Branches of the Vertebral Artery
				Muscular Branches
				Spinal Branches
				Meningeal Branches
	Commentary: Rolf Ewers
	References
		Further Reading
7: Development of the Craniofacial Blood Supply: Extracranial System
	Blood Supply to the Face
		Timeline of the External Carotid System
		Aortic Arch Arteries: Precursors of Two Systems
		Development of the Facial Fields
			A Caveat
		Organization of the External Carotid System
	Stapedial System: Face
		Developmental Anatomy
			Posterior Branch
			Anterior Branch
				Inferior Ramus
				Superior Ramus
					StV1: A Straight Shot to the Orbit
					StV2: A “Two-Timer”
					StV3: Exile and Return
		Reunification, Disintegration, and Fate of the Stapedial System (See Diagrams)
	Arteries of the Pharyngeal Arches and Jaws
		Fifth Arch and Fourth Arch: Superior Thyroid Artery
		Third Pharyngeal Arch: Ascending Pharyngeal Artery
		Second Pharyngeal Arch: Occipital Artery
		Second Pharyngeal Arch: Posterior Auricular Artery
		Second Pharyngeal Arch: External Facial Artery
			Ascending Palatine Artery
			Tonsillar Artery
			Glandular Artery
			Submental Artery
			Inferior Labial Artery
			Superior Labial Artery
			Lateral Nasal Artery
		Second Pharyngeal Arch: Lingual Artery (Linguofacial)
		Second Pharyngeal Arch: Superficial Temporal Artery
		First Pharyngeal Arch: Internal Facial (Maxillomandibular) Artery
	Mandibular Sector (Proximal One-Third)
	Temporal Sector (Middle One-Third)
	Sphenopalatine Sector (Distal One-Third)
		Neurology of the Pterygopalatine Fossa
			Nerve of Pterygoid Canal
			Pharyngeal
			Sphenopalatine (Nasopalatine)
	Blood Supply to the Orbit
		Timeline of Ophthalmic and Orbital Development
		Eyeball Development: A Global Perspective
		Development of the Ocular Arteries
			The Rise and Fall of Primitive Maxillary Artery
			The Iterations of the Ophthalmic System and the Stapedial System
		Development of the Optic Arteries: Leapfrog
	Stapedial System: Orbit
		Timeline of Stapedial Development
			Development: A Summation
		Soft Tissues of the Orbit
			Notes on the Trigeminal Ganglion
			Extraocular Muscles
			Orbital Muscle Fascia Has a Neural Function
			Lacrimal Gland
				Developmental Timetable
			Neurovascular Organization of the Adnexa
				Skin
				Conjunctiva
	The Eye and Orbit
		Ocular Arteries
		Orbital Arteries
			Lacrimal Artery (Zone 9)
				Neuroanatomy Saves the Day
			Frontal Artery (Zones 10–11)
			Ethmoid Artery
	The Spectrum of Holoprosencephaly
		Craniofacial Manifestation of HPE
		CNS Manifestations of HPE
			Minimal Interhemispheric Form (MIHF)
			Lobar Form
			Semi-Lobar Form
			Alobar Form
		Neuroangiosome Analysis
			Minimal Interhemispheric Form (MIHF)
			Lobar Form
			Semi-Lobar Form
			Lobar Form
		Craniofacial Manifestations of HPE
		Neuroangiosome Analysis
		Developmental Field Sequence of HPE
			CNS Manifestations of HPE
			Craniofacial Manifestation of HPE
		Relationship of HPE to Tessier Craniofacial Clefts
			Four Mesenchymal Units Are the Anatomic Basis of Tessier Cleft Zones 10–13
	Concluding Remarks
	References
		Further Reading
		General
		Holoprosencephaly
8: Developmental Anatomy of the Craniofacial Bones
	Introduction
		How to Make This Chapter Work for You
		Phylogeny of Craniofacial Bones
		Craniofacial Bone fields
		Classification of Craniofacial Bones
			Source of Mesenchyme
			Mechanism of Ossification
			Neuromeric Level
				Rhombomeres r8–r11: The Myelencephalon Is a Transition Zone
				Rhombomeres r4–r7: A Very Orderly Place
				Rhombomeres r2–r3: A Schizophrenic Situation
					Neural Crest Derivatives
					Paraxial Mesoderm Derivatives
				Mesomeres m1–m2 and Rhombomeres r0–r1: Married to the Midline
					Important Points of Simplification Regarding Neural Crest from the “Midbrain”
					The Triple Roles of r1 Paraxial Mesoderm
					PAM from Levels r1 to r3 Plays No Role in Cranial Base Protection
		Epithelial Substrates: Neural Ectoderm and Dura Mater
		Final Comments and Summary
		Mesenchymal Sources of Craniofacial Bones
			Neural Crest Bones
			Paraxial Mesoderm Bones
				Organization of Craniofacial Bones Based on Blood Supply
	Embryology of the Cranial Base: A Quick Review
		Models of the Skull
		Processes of Cranial Base Development
			Making a Secure Platform
			Sensory Capsules
			Sidewalls and Picayune Details
		Development of the Chondrocranium by Carnegie Stages
		Chondrification in the Basal Tetrapod
		Dermatocranium
			Order Out of Chaos
				A Mechanism for Genetic Selection
				The Premaxilla as “the Enforcer”
		Dermal Bones: Basal Tetrapods
		Neurocranium: Summary of the Braincase
	Neurocranium (r0–r3): Neural Crest, Epaxial Stapedial System
		Sphenoid Complex
			Descriptive Anatomy
				Blood Supply and Mesenchyme
					Internal Carotid
					Intracranial Stapedial System: Meningeal Arteries
					Extracranial Stapedial System: Third Part of Internal Maxillo-Mandibular Axis
					External Carotid System: Second Part of Internal Maxillo-Mandibular Axis
					External Carotid System: Pharyngeal Branches of Ascending Pharyngeal
			Development
				Ossification
			Phylogeny
				Components of the Sphenoid Complex
			Alisphenoid the Transformation of Epipterygoid
				Increasing Skull Strength
				Expansion of the Braincase
		Ethmoid Complex
			Descriptive Anatomy
				Blood Supply and Mesenchyme
			Development
			Phylogeny
			Clinical Correlations: Craniofacial Clefts
		Nasal Bone
			Descriptive Anatomy
			Development
			Phylogeny
				A Digression on the Phylogeny of the Choanae
			Clinical Correlations
				Craniofacial Cleft Zones
				Septum, Columella, and Prolabium
		Lacrimal Bone: Eyelids
			Descriptive Anatomy
				Osteology
				The Lacrimal Duct and Sac
				Blood Supply and Mesenchyme
			Development
			Phylogeny
			Clinical Correlations: Lacrimal System and Eyelids
		The Frontal Bone Complex
			Descriptive Anatomy
				Blood Supply and Mesenchyme
			Development
			Phylogeny
			Clinical Correlations: Anencephaly, Tessier Cleft Zones 13, 12, 11, and 10
		Parietal Bone
			Descriptive Anatomy
				Blood Supply and Mesenchyme
					Inner Table
					Outer Table
			Development
			Phylogeny
			Clinical Correlation
		Interparietal Bone Complex
			Descriptive Anatomy
				Blood Supply and Mesenchyme
					The Internal Lamina
					Occipital Artery
			Development
			Phylogeny
				Torus Occipitalis: The Mysterious Membranous Bone
		Squamosal/Quadratojugal Complex (sq-qj)
			Descriptive Anatomy
				Blood Supply and Mesenchyme
			Development
			Phylogeny
		Tympanic Bone (tym)
			Descriptive Anatomy
				Blood Supply and Mesenchyme
			Development
			Phylogeny
	Neurocranium (r4–r7)
		Introductory Remarks
		Petrous Temporal Bone Complex
			Descriptive Anatomy: Petrosal Bone
			Descriptive Anatomy: Mastoid Temporal Bone
				Blood Supply and Mesenchyme
			Phylogeny and Development of the Temporal Bone
		Prootic Bone
			Descriptive Anatomy
			Phylogeny
		Opisthotic Bone
			Descriptive Anatomy
			Phylogeny
			Development (Figs. 8.112, 8.113, 8.114, and 8.115)
	Developmental Timeline of the Ear: Carnegie/O’Rahilly Stages
		The Inner Ear
			Inner Ear: Functional Components (Figs. 8.117 and 8.118)
			Inner Ear: Development
				Membranous Labyrinth
				Cochlear Duct
				Utricle and Saccule
				Semicircular Ducts
				Endolymphatic Duct
				Otic Capsule
				Perilymphatic Space
				Capsular Channels
				The Arteries
				Focus in-Depth: Development of the Petrous Internal Carotid Artery
			The Inner Ear: Molecular Mechanisms
			Neurology of the Inner Ear
				Cranial Nerve VII
					Development
					Anatomic Considerations of Facial Nerve for the Temporal Bone
				Cranial Nerve VIII
					Development
					Anatomic Considerations of Statoacoustic Nerve for the Temporal Bone
				Cranial Nerve IX
					Anatomic Considerations: First, a Grand Generalization
					Anatomic Considerations of Glossopharyngeal Nerve for the Temporal Bone
			Final Points of Clarification
			The Middle Ear
				Middle Ear: Anatomic Components and Development
					The Ossicular Chain
					Blood Supply and Innervation
					Eustachian Tube and Lining
					Tympanomastoid
					Malleus and Incus
					Stapes
				Middle Ear: Phylogeny
					Branchial Arch Cartilages: Building Blocks of Jaws
					History of Stapes: Present at the Beginning
					Incus, Malleolus, and Tympanic: New Kids in Town
					Tympanic Membrane and Tympanic Cavity
					The Eustachian Tube: Passage to the Pharynx
					How Do the Middle Ear Bones Get into the Ear?
					The Middle Ear and the TMJ: Functional Significance
			The External Ear (Figs. 8.132 and 8.133)
				Mesenchyme and Blood Supply
				Developmental Anatomy
					The Osseous Platform (a Quick Review)
					The Pinnae
					Accessory Structures: Auditory Canal, Tympanic Membrane and Tympanic Ring
		Coda
	Part 5: Neurocranium (r8–r11)
		The Occipital Complex
			Introduction: A Thrice-Told Tale
				Anatomic Components
			Descriptive Anatomy, Ossification Centers, and Bone Fields (Figs. 8.137, 8.138, 8.139, 8.140, 8.141, 8.142, 8.143, 8.144, 8.145, 8.146, 8.147, 8.148, and 8.149)
				Planum Occipitale
				Planum Nuchale
			Development of the Occipital Complex
				Traditional Model
				Neuromeric Model
			Phylogeny of the Occipital Complex
	Splanchnocranium (r2–r11)
		The Vomer
			Descriptive Anatomy
				Blood Supply and Mesenchyme
			Development
			Phylogeny
			Clinical Correlations
		The Premaxillary Complex
			Descriptive Anatomy
				Blood Supply and Mesenchyme
			Development
			Phylogeny
				Ancient History: In Media Res
				Ancient History: A La Recherce du Temps Perdu
				The Septomaxillary Bone: Precursor of Frontal Process?
			Clinical Correlations
		Inferior Turbinate (Maxillary Turbinal)
			Descriptive Anatomy
				Blood Supply and Mesenchyme
			Development
			Phylogeny
		The Palatine Bone Complex
			Descriptive Anatomy
				Blood Supply and Mesenchyme
			Development
			Phylogeny
			Clinical Correlations
		The Maxillary Complex
			Descriptive Anatomy: How the Maxilla Gets Its Shape
				Blood Supply and Mesenchyme
					The Maxillary Hard Palate
					The Palatal Process of the Maxilla Is Bilaminar
			Development
			Phylogeny
				Evolutionary Highlights of Maxillary Phylogeny
			Clinical Correlations
		The Zygomatic Complex (Jugal-Postorbital)
			Descriptive Anatomy
				Innervation to the Zygomatic Complex
				Blood Supply and Mesenchyme
			Development
			Phylogeny
		The Mandibular Bone Complex
			Descriptive Anatomy (Figs. 8.210, 8.211, and 8.212)
				Blood Supply and Mesenchyme
				Arterial Axes of the Mandible
			Development
			Phylogeny (Figs. 8.224, 8.225, 8.226, 8.227, 8.228, 8.229, 8.230, 8.231, 8.232, 8.233, 8.234, 8.235, 8.236, 8.237, 8.238, 8.239, 8.240, 8.241, 8.242, 8.243, 8.244, 8.245, 8.246, 8.247, 8.248, and 8.2
				History of Meckel’s Cartilage (MC)
				Milestones in Mandibular Design
				The Standard Condition
					Dentary and Surangular Bones
					Synapsid Innovations
				Temporomandibular Joint: The Ear Bone Switch
			Clinical Correlation
		Final Thoughts
		Hyoid Bone Complex
			Descriptive Anatomy
				Blood Supply and Mesenchyme
			Development
			Phylogeny
				Relationships with Thyroid Cartilage
				Correlations: Why Does Thyroid Migrate Through the Hyoid?
	Commentary: William Bemis
	References
		Further Reading
9: Neuromuscular Development: Motor Columns, Cranial Nerves, and Pharyngeal Arches
	Introduction
		How to Use This Chapter
		A Working Agenda
		How to Survive This Chapter
		Before We Begin: Six Big Picture Ideas for Review
			Big Picture Idea #1
			Big Picture Idea #2
			Big Picture Idea #3
			Big Picture Idea #4
				Aortic Arch Arteries: Precursors of the Stapedial System
			Big Picture Idea #4
				How the Trigeminal Nerve Innervates the Dura and Programs the Stapedial System
				The Stapedial Artery Stem Divides Inside Tympanic Cavity
			Big Picture Idea #5
				Reunification and Disappearance of the Stapedial System (See Figs. 7.34, 7.35, 7.36, and 7.37)
				Fate of the Intracranial Stapedial Derivatives
				Fate of Extracranial Stapedial Derivatives
			Big Picture Idea #6
	Useful Terminology: Read These First
		Embryonic Brain
		A Fields: StV1 Naso-Orbital Arterial System, AKA (sic), StV1 Ophthalmic
		B Fields: StV2 and StV3 Maxillomandibular Arterial System
		C Fields: ECAV2 and ECAV3 Arterial System
	Development of Craniofacial Muscles
	Neuroembryologic Organization of the Brain: A Review
		Forebrain
		Midbrain
		Rostral Hindbrain
		Caudal Hindbrain
	Medial Motor Column (m1–m2, r0–r1, r4–r5) Somitomeres Sm1, Sm2, Sm3, Sm5
		Neuromyology of the Eye and Orbit
			Patterns of Eye Movement
			Control of Eye Position
			Extraocular Muscle Structure and Function
			Sensory Endings in Extraocular Muscles and Tendons
			Actions of Extraocular Muscles
		Eye Development by Stages
			Key Take-Home Message from the Timeline
				Where Do Extraocular Muscles Arise and How Are They Innervated?
				Why Is the Lateral Rectus Displaced Back to the Fifth Somitomere? (Fig. 9.1)
			Development of the Sclera: Neurovascular Basis of Muscle Insertion
				What Is the Anatomic Rationale for the Insertions of the Extraocular Muscles?
		Extraocular Muscles: Origins, Primary, and Secondary Insertions
			Myology of Somitomere 1
			Myology of Somitomere 2
				Oculomotor Nerve
			Myology of Somitomere 3
				Trochlear Nerve
			Myology of Somitomere 5
				Abducens Nerve
		Angiology of the Eye and Orbit
		Developmental Considerations of the Orbit
	Medial Motor Column (r8–r11): Somites S1–S4
		Hypoglossal Nerve (Fig. 9.2 CN XII)
		Myology of Somitomeres 8–11/Somites 1–4
			Evolution of the Tongue
			Extrinsic Muscles of the Tongue (Fig. 9.4)
			Intrinsic Muscles of the Tongue (Fig. 9.5)
			Angiology of the Tongue
			Phylogeny and Development of the Tongue
	Lateral Motor Column, Rostral (r3, r4–r5): Somitomeres Sm4 and Sm6
		The First Pharyngeal Arch
			Trigeminal Nerve
				Sensory Nuclei
				Motor Nucleus
			Trigeminal Nerve, First Division, v1
				Tentorial Branch
				Lacrimal Nerve
				Supraorbital Nerve
				Supratrochlear Nerve
				Nasociliary Nerve
			Trigeminal Nerve, Second Division, v2
				Meningeal Nerve
				Ganglionic Branches
				Zygomatic Nerve
				Maxillary Nerve, Proximal (Dentoalveolar)
					Posterior Superior Alveolar Nerve
					Middle Superior Alveolar Nerve
					Anterior Superior Alveolar Nerve
				Maxillary Nerve, Distal (Facial Soft Tissues)
				Pterygopalatine Ganglion / Sphenopalatine Ganglion
				Descending Palatine Nerve
		Innervation of the Middle Ear
			Trigeminal Nerve, Third Division, v3
				Conceptual Plan
				Prior to Division, Main Trunk of V3 Gives Off Two Named Nerves
				Anterior Division of Mandibular Nerve Is Mixed, but Primarily Motor
				Posterior Division of Mandibular Nerve Is Mixed, but Primarily Sensory
		Myology of Somitomere 4
			Tensors
			Suprahyoid Muscles
			Angiology of Sm4 Muscles
			Developmental Sequence of First Pharyngeal Arch Muscles
				The Second Pharyngeal Arch
			Facial Nerve
				Conceptual Plan of the Seventh Cranial Nerve
				Geniculate Ganglion
				Contributions of Facial Nerve to Nervus Intermedius
				Communications of the Facial Nerve
				Branches of VII from Geniculate Ganglion
				Branches of VII Within Facial Canal, Prior to Stylomastoid Foramen
				Branches of VII After Exit from Stylomastoid Foramen
			Parotid Plexus
		Myology of Somitomere 6
		Second Arch Muscles of Facial Expression (by Motor Nerve)
			Posterior Auricular Branch: Posterior Ear and Posterior Scalp
			Extrinsic Auricular Muscles
			Intrinsic Auricular Muscles
				Observations/Hypotheses
			Temporofrontal Nerve: Anterior Ear, Anterior Scalp, Circumorbital/Palpebral Group
			Zygomatic and Buccal Branches: Nasal Group and Buccolabial Group
				Buccolabial Muscles
			Mandibular Branch: Muscles of the Lower Lip
			Cervical Branch: An Unrestricted Constrictor
			Angiology of Second Pharyngeal Arch Muscles
			Development of Second Pharyngeal Arch Muscles
			Summary: Does the SIF Work?
	Lateral Motor Column, Caudal (r6–r11): Somitomeres Sm7–Sm11
		Nucleus Ambiguus: Master Motor Control for All Branchiomeric Muscles Posterior to the Jaws (Fig. 9.6 Nucleus Ambiguous)
	The Third Pharyngeal Arch
		Glossopharyngeal Nerve IX
			Conceptual Plan of the Ninth Cranial Nerve (Fig. 9.7 CN IX)
			Brainstem Nuclei of IX
			Nuclei of Glossopharyngeal Nerve
			Extramedullary Anatomy
			Communications of Glossopharyngeal Nerve
			Branches of the Glossopharyngeal Nerve
		Myology of Somitomere 7
		Angiology of the Third Pharyngeal Arch
		Development of the Third Pharyngeal Arch
	The Fourth and Fifth Pharyngeal Arches (r8–r11): Somitomeres Sm8–Sm11
		Vagus Nerve
			Nuclei of Vagus Nerve
			Extramedullary Course
			Communications of Vagus
				Ganglionic Connections with Craniofacial Structures
			Branches of the Vagus in the Jugular Fossa
			Branches of Vagus Nerve in the Neck
		Myology of Somitomeres 8 and 9
		The Larynx: A Quick Orientation
			Embryology of the Larynx
			Muscles of the Larynx
			Angiology of the Fourth and Fifth Arches
	The Spinal Accessory Nerve: Is It a Separate Cranial Nerve? (Figs. 9.2, 9.6, and 9.9)
		History of a Controversy
		Angiology
	Fascial Layers of the Pharyngeal Arches
	Conclusion
	References
		Further Reading
		General Developmental Biology and Extraocular Muscles
		Spinal Accessory Nerve
10: The Neck: Development and Evolution
	Introduction
		Drawing the Line: How Do We Define the Neck?
		Organization of Cervical Mesenchyme
		Osteology: Axial Bones
		Somitogenesis
		The “Clock and Wavefront” Model
		Differentiation of Somites
		Resegmentation of Somites
			Sneak Preview: Resegmentation in the Ocicipito-cervical Junction
		Assembly of Vertebra
		Intervertebral Discs: The Legacy of the Notochord
		Ossification of Vertebrae
		Five Reasons Why Should We Care About Ossification Centers
	Phylogeny of the Centrum
		Rearrangement of Component Parts of the Centrum = A New Joint
		Frameshift of the Skull Base and First Three Spinal Vertebrae = A New Joint
		Axial Sclerotomes
		Lateral Sclerotomes
	Development of the Occipital Somites
	Descriptive Anatomy
		Mechanism of Development
		O’Rahilly and Müller to the Rescue
		Evidence of Intervertebral Discs in the Cranial Base
		Phylogeny of the Occipital Bone
	Phylogeny of the Cervical Vertebrae
		The Vertebral Axis in Fishes: Adaption for Swimming
		The Vertebral Axis in Tetrapods: Adaption for Weight-Bearing
		Tetrapod Vertebral Column: Regional Variation and Size
	Phylogeny of the Occipital-cervical/Craniovertebral Articulation
	Osteology: Appendicular Bones
		Organization of Lateral Plate Mesoderm (LPM)
		Phylogeny of Lateral Plate Mesoderm
	Neuromeric Analysis: How to “Code” Lateral Plate Bones
	Hox Gene Mapping of the Neck Bones: New Rules of Engagement
		The Clavicle
		Clinical Correlation: Cleidocranial Dysostosis
		Mapping the Clavicle
		Medial 2/3 of Clavicle: C2–C4
		Lateral 1/3 of Clavicle: C5–C6
	The Scapula
		Superior Border: LPM from c1 to c4
			Acromion: LPM from c5 to c6
		Coracoid Process: LPM from c5 to t1
		Medial Border, Posterior: LPM from c3 to c5
		Medial Border, Anterior: LPM from c5 to c7
		Lateral Border, Posterior: LPM from c5 to c7
		Dorsal Scapula: LPM from c5 to c6
		Ventral Scapula: LPM from c5 to c6
		Scapular Spine: LPM from c3 to c6
	Phylogeny of the Pectoral Girdle
		Origin of Paired Fins: The Fin-Fold Theory and Homeotic Genes
		The Pectoral Girdle in Fishes
		The Pectoral Girdle in Tetrapods
		Innovations in the Tetrapod Limb
		The Sternum: Phylogeny and Development
	Neurology of the Neck
		Introduction
	A Cook’s Tour of the Spinal Cord: Grey Matter
		Ventral Horn
		Lateral Horn
		Dorsal Horn
	A Cook’s Tour of the Spinal Cord: White Matter
		Spinal Cord Tracts Are Somatotopic, That Is, Neuromeric
		The Unique Role of C4 as a Neuromeric “Faultline”
		Spinal Nerves: Anatomic Components
		Clinical Application
	Spinal Nerves: Functional Classification
		Somatic
		Visceral
		Meningeal
	Cervical Nerves and Plexuses
		Different Rami, Different Roles
		Cervical Nerves C4–C8
	Medial Motor Column: C1–C8
		First Cervical Nerve
		Second Cervical Nerve (Greater Occipital Nerve GON)
		Third Cervical Nerve
		Fourth to Eighth Cervical Nerves
		The Cervical Plexus, C1–C4
		Sensory Branches: Superficial Ascending
		Sensory Branches: Superficial Descending
		Sensory Branches, Deep
		Motor Branches to Muscles of the Axial Skeleton
		Motor Branches to the Hypobranchial Muscles
	Central Motor Column: C1–C5
		Spinal Accessory Nerve (C1–C5)
			Nucleus Ambiguus: Neuromeric Organization
		Cranial Nerve XI, Does It Exist?
		Phrenic Nerve (C3–C4–C5)
		Lateral Motor Column: C4–T1
		Why Is a New Motor Column Needed in the Lowevr Neck
		Secrets of Insertion
		Functional Dissection of the Brachial Plexus to the Pectoral Girdle
	Motor Nerves of Brachial Plexus to Pectoral Girdle
		Roots
		Trunks
		Cords
		In Summation
	Phyologeny of Motor Neuron to the Vertebrate Pectoral Girdle: A Preview
	Myology of the Neck
		How Cervical Muscles Originate and Insert
	Cervical Muscle Migration: Axial Muscles Versus Appendicular Muscles
	Principles of Motor Column Analysis
	Phylogeny of the Pectoral Girdle: A Quick Review
	Epaxial Muscles Interconnecting the Skull and Cervical Spine (MMC)
		Suboccipital Muscles
	Epaxial Muscles Interconnecting the Cervical Spine and Thorax (MMC)
		Intrinsics
		Erector Spinae
		Splenii
	Hypaxial Muscles Interconnecting the Skull and Cervical Spine (MMC)
	Hypaxial Muscles Connecting Neck and Trunk (MMC)
	Muscles Connecting Pectoral Girdle with Pharyngeal Arches (MMC)
		Posterior Hypobranchial Muscles
	Muscles Connecting Pectoral Girdle with Vertebral Spine: MMC, LMC, and SAC
	Muscles Connecting Pectoral Girdle with Body Wall (LMC)
	Muscles Connecting Pectoral Girdle to the Upper Extremity (LMC)
	Muscles Connecting the Pectoral Girdle to the Skull (SAC = CMC Lateral)
		Sternocleidomastoid
		Neuromeric Coding of Clavicle and Manubrium
		Motor Control and Insertions of Sternocleidomastoid
		Trapezius
		Trapezius and the Neuromeric Coding of Scapula
		Development of Trapezius
		Congenital Anomalies of Trapezius
	Phylogeny of Sternocleidomastoid and Trapezius: The Cucullaris Muscle
		The Importance of Placoderms
		Primordial Attachments of Cucullaris Muscle
		Gross Anatomy and Developmental Origins of Cucullaris
	Phylogeny of Spinal Accessory Nerve
	Phylogeny of the Strap Muscles and Prepectoral Muscles
	Phylogeny of the Cervical Plexus
	Pectoral Girdle Muscle Displaced into Thorax: (PMC = CMC Medial)
		Diaphragm
		Structure
		Congenital Defects
		Development of the Diaphragm
		Phylogeny of the Diaphragm: An Unrecognized Brachial Plexus Muscle
		Phylogeny of the Diaphragm
	Phylogeny of the Phrenic Nerve and Brachial Plexus
		Implications of the Brachial Plexus Shift for Trapezius
	Myology of the Neck: Final Thoughts
	Angiology of the Neck
		Introduction: Arteries of the Neck Don’t Seem Segmental…But They Are
	Beginning of Embryonic Circulation
	Timetable of Arterial Development by Stages
		Cervical Artery Development in Stages
	Arteries of the Neck
	Subclavian Artery
	Axillary Artery
		Thoracoacromial Artery
		Humeral Circumflex Arteries
	Organ Systems of the Neck
		Esophagus
		Neuromeric Model of the Cervical Esophagus
	Larynx, Trachea, and Thyroid
		Stage 11
		Stage 12
		Stages 13–14
		Stage 15
		Stage 16
		Stages 17–18
		Stages 19–23
	Fetal Period
		Phylogeny of the Larynx and Mechanisms of Ventilation
		Phylogeny of the Lungs
		Neuromeric Rationale of the Respiratory System
		A Sidebar on the Thyroid
		Lessons from Drosophila
	Coda: Thoughts on the Assembly of the Neck
	Key Evolutionary Steps Determining the Size of the Mammalian Neck
	Caudal Shift and Homeotic Duplication of the Brachial Plexus in Mammals
	Mechanism: Is There a Common Event?
	The Evolutionary Impact of an Enhanced Visual System
		The Buena Vista Hypothesis and the Neuromeric Model
	Clinical Impact of Homeotic Transformation
	Conclusion
	References
11: Developmental Anatomy of Craniofacial Skin, Fat, and Fascia
	Introduction
	Non-neural Ectoderm
		Models of Ectodermal Organization
			Common Neural Plate Model: Neural Border Zone
			Binary Competence Model
			Epidermal Placodes: Origins
		Phylogeny of Placodes
		In Summation
	Skin: Epidermis and Appendages
	Sources of Epidermis: Neural Crest Versus Non-neural Ectoderm
		Neural Crest Epidermis
		Ectodermal Epidermis
		What Is the Origin of Ectoderm that Produces Epidermis?
	Development of Epidermis
		Components of Epidermis
	Skin: Dermis
	Neuromeric Identify of Skin: Dermatomal vs. Non-dermatomal
		The Mystery of the Fifth Somite
		Dermatomes: How Zones of Hypaxial Dermis Are Stolen from the Trunk
		The Old Neck Versus the New Neck: Neck 1.0 vs. Neck 1.1
		Facial Dermis Is Non-dermatomal
	Sources of Dermis: Prosencephalic Neural Crest
		Components of Frontonasal Skin (Figs. 11.9 and 11.10)
			Frontonasal Skin Comes from Two Sources: Telencephalon and Diencephalon
			Neurovascular Support for Frontonasal Skin Comes from r1 Neural Crest
		Neuromeric Map of Frontonasal Skin
			The Nose (Figs. 11.10 and 11.11)
			The Forehead
	Sources of Dermis: Mesencephalic Neural Crest
		The Mesencephalon and Isthmus
			The Isthmus and Hindbrain Clarified
		Cutaneous Representation of Midbrain Neural Crest
			Mesenchymal Representations of m1, m2, and r1
	Sources of Dermis: Rhombencephalic Neural Crest
	Adipose Tissue
	White Fat vs. Brown Fat: Energy and Endocrinology vs. Thermoregulation
		Histologic Considerations (Figs. 11.16, 11.17, 11.18, 11.19, 11.20, 11.21, 11.22, 11.23, 11.24, 11.25, 11.26, 11.27, 11.28, 11.29)
		Gross Anatomy
		Developmental Considerations (Figs. 11.25, 11.26, 11.27, 11.28 and 11.29)
	Evolution and Lineage of Adipose Tissue (Figs. 11.30 and 11.31)
	Pericytes
		Definition (Fig. 11.32)
		Structure
		Embryology of the Pericyte (Fig. 11.33)
		Vascular Niche (Fig. 11.34)
		Function
			Differentiation (Fig. 11.35)
			Angiogenesis and Anti-Apopotosis
			Blood Flow
			Selective Permeability: Blood–Brain Barrier
		Pathologies of Pericytes (Figs. 11.36 and 11.37)
			Interactions between Endothelial Cells and Pericytes
			Neurodegeneration and Scarring
	Pericytes and Mesenchymal Stromal Cells
	Adipose Tissue-Derived Reconstructive Materials
	Adipose Tissue Complex (ATC) (Fig. 11.38)
	Stromal Vascular Fraction: AD-cSVF as Therapy
		Concepts and Components
	SVF: Mechanisms of Action
	Wound Healing in the Presence of MSCs: Returning Tissues to the Fetal State
		What Causes the Change in the Wound Healing Paradigm?
		The Clinical Effect of MSC Transplantation: Recapitulation of the Early Fetal State
	Clinical Applications of SVF: Restoration of Homeostasis (Adult > Fetal)
	In Summation
	Fascia and Blood Supply of the Head
	Blood Supply Runs in Four Planes
	Why Do we Need the Stapedial System in the First Place?
		The Invention of Jaws
		The Invention of Facial Mimetic Muscles
	Superficial Investing Fascia (SIF): Muscles of Facial Expression and the Scalp
	Deep Investing Fascia: Muscles of Mastication, Oral Mucosa
	Fascia and Blood Supply of the Neck
		Blood Supply to Neck Skin
	Zones of Craniofacial Skin
	Classification of Head and Neck Skin and an Evolutionary Aside
	Fasciae of the Neck
		Superficial Investing Fascia (SIF) (Figs. 11.60, 11.61, 11.62 and 11.63)
		Deep Investing Fascia (DIF) (Figs. 11.64, 11.65 and 11.66)
		Prevertebral Fascia (Figs. 11.67, 11.68, 11.69 and 11.70)
		Buccopharyngeal Fascia (BPF) (Fig. 11.71)
		Pretracheal Fascia (PTF) (Figs. 11.72, 11.73, 11.74, 11.75, 11.76, 11.77, 11.78, 11.79, 11.80, 11.81, 11.82, 11.83, 11.84, 11.85, 11.86, 11.87, 11.88, 11.89, 11.90, 11.91 and 11.92)
	Evolution of Skin and Appendages
		Fishes
	Tetrapods
		Differences between Fish Skin and Tetrapod Skin
		Amphibians
		Reptiles
		Birds
		Mammals (Figs. 11.99, 11.100 and 11.101)
	Innovations in Skin Evolution: Strategies for Replacing the Epidermis
		Continuous Renewal
		The Invention of Hair
	Mammalian Skin Appendages: Hair Development Provides Evidence for the Embryonic Ectomesenchymal Precursor Cells in the Evolution of Mammalian Skin
	Coda: Evolutionary Aspects of Skin Appendages
	Speculation: Hair Distribution and Baldness
	Final Thoughts
	References
		Suggested Readings
12: The Meninges
	Layers of Meningeal Strata
		Embryogenesis of Meningeal Circulation
		Only the Cerebrum Has Dura
		Phylogeny of the Meninges
	Formation of Meninges by Developmental Stages
	Migration Patterns of Neural Crest
		Spinal Cord Neural Crest
		Cranial Neural Crest
		Cranial Neural Crest Migration, Local
		Cranial Neural Crest Migration, Peripheral
		Forebrain Dermis Interacts with Previously Deposited MNC Structures
	Blood Supply of the Meninges
		Blood Supply of Pia and Arachnoid
			Internal Carotid, Anterior Division
			Internal Carotid, Posterior Division
			Longitudinal Neural Artery
		Blood Supply of the Dura and Periosteum
		General Comments
		The Internal Carotid System, Cavernous Segment
			Arteries of the Tentorium
			Arteries of the Clivus
			Embryonic precursors
		The Stapedial System: A Derivative the External Carotid System
			Trigeminal Anatomy, Reviewed
			Stapedial Stem Divides Within the Tympanic Cavity
			Fate of the Intracranial Stapedial System
			Fate of the Extracranial Stapedial System
			Stapedial Branches to the Dura
			Intracranial Internal Carotid Provides Minor Branches to the Dura
		External Carotid System
			Occipital Artery
			Ascending Pharyngeal Artery
		Dorsal Aortae Segmental Arteries/the Vertebral System
			1st Cervical Segmental Artery:
		Longitudinal Neural/Basilar System
			Anterior Inferior Cerebellar Artery
		Analysis of Arterial Supply
	Innervation of the Meninges/Periosteum
		Supratentorial Innervation
		Infratentorial Innervation
			Why This Innervation Pattern Makes Sense
			Does C1 Participate or Not?
			An Astounding Misconception
	Mesenchyme of the Meninges
		Pia Arachnoid Mesenchyme
		Dural Mesenchyme
		Mesenchyme of the Posterior Cranial Fossa: Periosteum
	Themes of Meningeal Development
		Stages 7–10: Mesenchyme Surrounds the Neural Tube
		Stages 11–13: Peri-CNS Mesenchyme Organizes: Pia Mater
		Stages 14–17: Primary Meninx in a New Location: Tentorium Cerebelli
		Stages 17–18 Secondary Meninx: Leptomeninges and Dura
		Stage 19–23 Dural Venous Sinuses Appear
	Skin Coverage of the Brain
		Frontonasal Skin and Scalp (FNO)
		Non-Frontonasal Skin
		Comments About Scalp Hair
		Bilaminar Programming of Membranous Calvarial Bone
	Fascial Planes of the Brain and Calvarium
		Layer 1: Endomeninx
		Layer 2: Ectomeninx
		Layer 3: Deep Investing Fascia
		Layer 4: Superficial Investing Fascia
	Physiologic Role of the Meninges
		Development and Vasculature
	Clinico-Anatomic Correlation: Headache, the Perigrinations of V1 Neural Crest, and the Development of Tentorium and Falx
		Clinico-Anatomic Correlation: Is Tentorium Bilaminar? Is the Occipital Lobe the Posterior Pole of the Brain?
		Final Thoughts
	References
		Suggested Readings
13: The Orbit
	Introduction
		How to Use This Chapter
	Developmental Fields and the Neuromeric Map
		Orbital Mesenchyme: Neural Crest
			Forebrain: Prosencephalic Neural Crest (PNC) > Fronto-orbito-nasal Skin
			Midbrain: Mesencephalic Neural Crest (MNC) > Dura, Orbit, and Upper Face
			Hindbrain: Rhombencephalic Neural Crest (RNC) > Midface
		Orbital Neural Crest: How Does It Get There?
			Neural Crest Zones of the Sclera
		Orbital Mesenchyme: Mesoderm (Second String to Neural Crest)
			Prechordal Mesoderm Versus Somitomeres: Where Do the EOMs Come From?
			Prechordal Plate Mesoderm Develops from r0–r1
			Prechordal Plate Reorganizes into Three Somitomeres
			Paraxial Mesoderm Supplies the Brain and Orbit
			Insertion Sequence of Extraocular Muscles: The Spiral of Tillaux
			The Mechanism of Primary Insertions
			The Mechanism of Secondary Insertions
		Orbital Mesoderm: How Does It Get There?
			Phylogeny of Extraocular Muscles
			Smooth Muscles from Neural Crest (Surprise, Surprise…)
	Construction of the Orbit: Component Parts
		A-B-C’s of the Orbit
		Mesenchymal Derivatives Summarized
		Quick Summary of Cranial Neural Crest Derivatives in the Skull
		Orbital Fat: Observations
	Construction of the Orbit: Timetable of Developmental Events
		Summary of Events (see Chap. 4)
		Carnegie Stages of Eye and Orbit Development
	Phylogeny of the Orbit
		The Early Periorbital Structure
		Making the Postorbital Wall
		Primate Innovations
		The Tetrapod Eye: Innovations
	The Orbit and Primate Evolution
		Stereoscopic Vision in a Nutshell
			Binocular Vision
			Stereopsis
			Discovery of Stereoscopic Depth Perception
			Mechanisms of Stereoscopic Vision
			Review of Visual Pathways
			Visual Afferent Pathways
			Visual Efferent Pathways [36, 37] (Fig. 13.67)
			The Orbital Axis, Visual Fields, and the Optic Chiasm
			In Summation
		Orbital Anatomy and Theories of Primate Evolution
			Arboreal Hypothesis: A Fall Can Be Fatal (Figs. 13.71 and 13.72)
			Visual Predation Hypothesis: You Can’t Eat What You Can’t See
			Nocturnal Restriction Hypothesis: Neural Adaptation to Night
			Eye–Forelimb Hypothesis: Fine-Tuning Fine Motor Control
		Developmental Fields and the Primate Orbit
			Temporal Lobe Growth and the Alisphenoid: A Speculation
			Does Color Have a Role in Catarrhine Evolution?
	Blood Supply of the Orbit
		The Orbit Can Be Understood as a Museum of Paleontology
		The Stapedial Artery System is the Rosetta Stone of Facial Clefts
		Aortic Arch Arteries
		How the Trigeminal Nerve Innervates the Dura and Programs the Stapedial System
		The Stapedial Stem Divides Inside Tympanic Cavity
		Fate of the Intracranial Embryonic Stapedial
			Upper Division Stapedial: Forward to the Orbit and Dura (r1–r2)
			Lower Division Stapedial: Forward to the Jaws and Upward to the Dura (r3)
		Reunification and Disappearance of the Stapedial System (See Figs. 13.82, 13.83, 13.84, and 13.85)
		Fate of the Stapedial System
			StV1 Arteries
			StV2 Arteries: The Posterolateral Orbit
			StV3 Arteries: Bone Fields of the Mandible and Middle Ear
		The Evolutionary Rationale of the Stapedial System
		The Lacrimal Gland: Key to Understanding the Lateral Orbit
			Neurovascular Anatomy
			The Lacrimal Functional Unit: Applied Neurology
			Morphogenesis of the Eyelids and Lacrimal Gland by Carnegie Stage
	Selected Clinical Pathologies of the Orbit
		Periorbital Dermoids Arise on Either Side of Ancient Bone Fields
			Mechanism of Dermoid Formation
		Encephalocoeles: Field Failure and Escape Routes
			Unusual Calvarial and Intracranial Encephalocoeles
			Basal Encephalocoeles
			Encephalocoeles and the Orbit
		Craniosynostosis: Orbital Deformation
			The Pathogenesis of Calvarial Craniosynostosis
			In Summation
		Trigonocephaly: An Embryologic Misnomer
		Frontoparietal Synostosis (FSS)
		Frontosphenoidal Synostosis (FSS)
			Anatomy of the Alisphenoid Field: Tessier Zone 9 (Read This with a Skull in Your Hand)
			Pathologies of the Alisphenoid
				Hypoplasia/Aplasia/Dysplasia
				Frontosphenoid Synostosis
			Embryologic Explanation of the Coronal Ring: FSS, FPS, or FSS + FPs
		Uncommon Synostoses
			Unilateral Squamosal Synostosis
			Unilateral Lambdoid Synostosis
	Fasciosynostoses
		Craniofaciosynostoses: Apert, Crouzon, and Pfeiffer Syndromes
			Crouzon Syndrome
			Apert Syndrome
			Pfeiffer Syndrome
		Neuromeric Field Analysis of Faciosynostoses: A Spectrum
		Neuromeric Differential Diagnosis of Faciosynostoses
	Craniofacial Clefts and the Orbit
		Neuromeric Model of the Tessier System
		Anatomic Description of Cleft Zones
		Zone 12
		Zone 11
		Zone 10
		Zone 9
		Zone 8
		Zone 7
		Zone 6
		Zone 5
		Zone 4
		Zone 3
		Zone 2
		Zone 1
	Laterofacial Microsomias and the Orbit
		Lamination of the Pharyngeal Arches
		Craniofacial Microsomia (Otomandibular Syndrome): r2–r5
		Goldenhar Syndrome (Oculoauriculodysplasia): r1–r5
		Treacher-Collins Franceschetti Syndrome
		Nager Syndrome
		Parry–Romberg Syndrome
		CODA
	Commentary: David Matthews
	References
		Suggested Reading
14: Pathologic Anatomy of the Hard Palate
	Part 1. Building Blocks of the Palate: The Lego® Model
		The Manufacture of Pharyngeal Arch Mesenchyme
			Mesoderm Originates by Two Distinct Mechanisms
			Neural Crest Arises from Three Distinct Sites of the CNS
			Forebrain Neural Crest
			Midbrain Neural Crest
			Hindbrain Neural Crest
		Pharyngeal Arch Formation: The Basics
			Cranial to the First Arch Are Two Types of Mesenchymal Tissue with Unique Composition and Innervation
			Organization of Mesoderm: Getting Ready to Construct the Face
			Muscle Derivatives of Somitomeres and Somites
		Blood Supply to the Pharyngeal Arches
			An Acknowledgement
			Construction of the External Carotid System
			The Pharyngeal Arch Phase
		Blood Supply to Nonpharyngeal Arch Tissues of the Face
	Part 2. Developmental Fields of the Palate
		Bone Fields
		Muscle Fields
		Neuromeric Diagnosis of Field Defects
			Defects of Bone Fields
			Defects of Muscle Fields
		Neuromeric Summary of Cleft Palate Fields
	Part 3. How Fields Fail: Angiosome Disruption
		Palate Closure Is Bidirectional: Why?
	Part 4. Neurology of the Palate
		Motor Columns of the Brainstem (Basal Plate)
		Sensory Columns of the Brainstem (Alar Plate)
		Clarifications Regarding Motor Control of the Soft Palate
			A Word About Muscles: Epaxial Versus Hypaxial
		Nerve Supply to the Soft Palate and Pharynx
	Part 5. Bones of the Palate
		Vomer
			Vomer Growth Pattern and the Medial Nasopalatine Pedicle
			Clinical Correlation: How a Vomer Field Defect Causes Isolated Midline CP
			Clinical Correlation: Septovomerine Articulation in Septoplasty
			Clinical Correlation: Congenital Absence of Vomer
			Components of the Maxillary Complex
			SURPRISE: The Hard Palate Does Not Belong to Maxilla
			Development of P1–P2 Hard Palate: MxP
			Clinical Correlation: P1–P2 (MxP) Defects Versus P3 Defects—Which Comes First?
			Clinical Correlation: Dental Eruption Sequence
		Palatine Bone, Proper: P3 (Figs. 14.14 and 14.15)
			Perpendicular (Orbital) Plate
			Horizontal Plate
			Development of the Palatine Bone
			Clinical Correlations
	Part 6. Evolution of the Palate (Figs. 14.38, 14.39, 14.40, 14.41, 14.42, 14.43, 14.44, 14.45, 14.46, 14.47, 14.48, 14.49 and 14.50)
		Fast Forward: From Placoderms to Mammals
		Bones of the Oral Cavity: A Portrait in Broad Brushstrokes
		Hard Palate Evolution Reveals the Master Plan of Maxilla and Mandible
	Part 7. Pathologic Anatomy of the Hard Palate
		Timeline of Palate Development and Closure
		Critical Contact Distance (CCD) Model
	Part 7. Cleft Zones
		Simplistic Preview
		Tessier Cleft Zone 14: A Misleading Concept
	Neuroembryologic Simplification of Zones 1–13 and Zones 2–12
		Tessier Cleft Zone 13
			In Sum: Cleft Palate States Involving Zone 13 and Zone 1
		Tessier Cleft Zone 1
			The Alveolar Cleft in Zone 1: Origins of Lateral Incisor Variation
			Dental Phylogeny
		Tessier Zone 12
		Tessier Cleft Zone 2
		Tessier Cleft Zone 11
		Tessier Cleft Zone 3
		Mandibular Deficiency States That Cause Cleft Palate
		Soft Palate Defects: Isolated Versus Combined
		Neuromeric Failure
			Primary Palate Development: Critical Contact Model
			Secondary Palate Development: Critical Contact Model
	Part 8. Neuromeric Classification of Cleft Palate
		Defects in r1
			Ethmoid Perpendicular Plate
			Septum
		Defects in r2 (See Figs. 14.82, 14.83, 14.84 and 14.85 for Examples of r2 Defects)
			Vomer
			Premaxilla
			Posterior Palatine Bone (Pl3)
			Anterior Palatine Bone (Pl1–Pl2)
		Defects in r3
			Mandible, Ramus Zone
			r3 Fascia of Tensor Veli Palatini
		r8–r11
	Final Thoughts
	Commentary: Ricardo Bennun
		Alveolar Extension Palatoplasty: Technical Notes
			Introduction
			Surgical Procedure
			Technical Recommendations
			Results
			Complications
			Conclusions
			Note on the Clinical Series
	References
		Further Reading
15: Alveolar Extension Palatoplasty: The Role of Developmental Field Reassignment in the Prevention of Sequential Vascular Isolation and Growth Arrest
	Introductory Remarks
	The Origin of Alveolar Extension Palatoplasty (Figs. 15.1, 15.2, 15.3, 15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 15.10 and 15.11)
	Alveolar Extension Palatoplasty: Technique
		Water-Tight Closure of the Alveolar Cleft: The Five-Sided Solution
		Total Maxillary Block: The “Brazilian Backdoor” (Figs. 15.12, 15.13, 15.14, 15.15 and 15.16)
		AEP Dissection
			Initial Management of the Soft Palate
			Elevation of Palatoplasty Flaps (Figs. 15.17, 15.18, 15.19, 15.20, 15.21, 15.22, 15.23, 15.24, 15.25 and 15.26)
			Mobilization of the AEP Flap
			Final Management of the Soft Palate
	Arterial Anatomy of the Alveolus: Sequential Vascular Isolation (Figs. 15.27, 15.28, 15.29, 15.30, 15.31, 15.32, 15.33, 15.34, 15.35, 15.36 and 15.37)
		Developmental Anatomy of Alveolus and Maxilla: A Bilaminar Sandwich
			Palatoquadrate Cartilage: the Lateral Program
			Palatoquadrate Cartilage: The Medal Program
		How the Angiosomes Gain Access to the Alveolar Bone and Teeth
			Access from the Maxillary Complex
			Access from the Palatine Complex (Fig. 15.28)
			Access from Facial Artery Angiosome: Collaterals
			Access from Medial Wall Angiosomes
		Angiosomes and the LeFort I Osteotomy: Survival After Transection of the Maxilla
	Consequences of Cleft Surgery
		The Consequences of Conventional Cheiloplasty
		The Consequences of Conventional Palatoplasty
	Physiology of Periosteal Elevation and Transfer (Figs. 15.31 and 15.32)
		Uses of Periosteum
			Skoog’s “Boneless Bone Graft”
		Histologic Effects of Periosteal Elevation (Figs. 15.33, 15.34, 15.35, 15.36 and 15.37)
	Pathophysiology of Insult
		Consequences for Cleft Lip Repair: Facial Soft Tissues
		Consequences of Cleft Lip Repair: Hard Palate
		Consequences of Cleft Palate Repair
			The Three Common Sequelae
		Consequences of Combined CL/P Repairs: Le Fort I Maxillary Advancement
	Vascular Isolation: Consequences for Dentofacial Development
		Unoperated CLP Patients and Isolated CL Patients
		Growth Inhibition of the Alveolus and Maxilla
			Role of the Buccal Sulcus Incision
			University of Iowa Animal Studies
				Lip Pressure Hypothesis
			Extent of Supraperiosteal Undermining
				Effect of Combined Surgeries: UCL, CP, and UCLP
				Lessons from Iowa: What Happens to Periosteum After Supraperiosteal Dissection?
		Sequential Vascular Isolation of the Maxilla: The LeFort I Downfracture
			Blood Flow Changes After Buccal Sulcus Incision
			Vascular Isolation of the Maxillary Mucoperiosteum: Siebert
				Separating Vascular Insults in Time: Cheiloplasty Versus Delayed Palatoplasty
		Clinical Studies of the Vascular Isolation Model
			Dental Development in the Alveolus
			Early Versus Delayed Hard Palate Closure
			Physical Manipulations of the Soft Palate
				Veloplasty at Primary Lip Repair: Approximating the Cleft
				Buccinator Interposition Palatoplasty: Reconstruction of a Deficiency State
	DFR in Cleft Palate Surgery
		Correction of the Dysfunctional Matrix (Figs. 15.37, 15.38, 15.39, 15.40, 15.41 and 15.42)
		CL/P Surgical Sequence
	Alveolar Extension Palatoplasty: Functional Aspects (Figs. 15.36, 15.37, 15.38, 15.39, 15.40 and 15.41)
		Dead Space
			Clinical Performance
		Anterior Fistula
			Clinical Performance
		Retrusive Maxilla
			Clinical Performance
	Conclusions
	Commentary: Ricardo Bennun
		Alveolar Extension Palatoplasty: Technical Notes
			Introduction
			Surgical Procedure
			Technical Recommendations
			Results
			Complications
			Conclusions
			Note on the Clinical Series
		Alveolar Extension Palatoplasty: Atlas of Cases
			Case 1 Bilateral
			Case 1 Bilateral
			Case 2 Bilateral
			Case 3 Bilateral
			Case 3 Bilateral
			Case 3 Bilateral
			Case 4 Bilateral
			Case 4 Bilateral
			Case 4 Bilateral
			Case 4 Bilateral
			Case 5 Bilateral
			Case 5 Bilateral
			Case 5 Bilateral
			Case 6 Bilateral
			Case 6 Bilateral
			Case 6 Bilateral
			Case 7 Bilateral
			Case 7 Bilateral
			Case 7 Bilateral
			Case 7 Bilateral
			Case 8 Bilateral
			Case 8 Bilateral
			Case 8 Bilateral
			Case 8 Bilateral
			Case 1 Unilateral
			Case 1 Unilateral
			Case 1 Unilateral
			Case 2 Unilateral
			Case 2 Unilateral
			Case 1 Unilateral
			Case 3 Unilateral
			Case 3 Unilateral
			Case 3 Unilateral
			Case 4 Unilateral
			Case 4 Unilateral
			Case 4 Unilateral
			Case 5 Unilateral
			Case 5 Unilateral
			Case 5 Unilateral
			Case 6 Unilateral
			Case 6 Unilateral
			Case 6 Unilateral
			Case 7 Unilateral
			Case 7 Unilateral
			Case 7 Unilateral
			Case 8 Unilateral
			Case 8 Unilateral
			Case 9 Unilateral
			Case 9 Unilateral
			Case 9 Unilateral
			Case 9 Unilateral
			Case 10 Unilateral
			Case 10 Unilateral
			Case 10 Unilateral
			Case 10 Unilateral
			Case 10 Unilateral
			Case 11 Unilateral
			Case 11 Unilateral
			Case 11 Unilateral
			Case 11 Unilateral
			Case 12 Unilateral
			Case 12 Unilateral
			Case 12 Unilateral
			Case 13 Unilateral
			Case 13 Unilateral
			Case 13 Unilateral
			Case 13 Unilateral
			Case 13 Unilateral
			Case 14 Unilateral
			Case 14 Unilateral
			Case 14 Unilateral
		Alveolar Extension Palatoplasty: Conclusions
	References
		Further Reading
16: Pathologic Anatomy of the Soft Palate
	Note to the Reader
	Introduction
		The Seven Principles of Soft Palate Clefts
	Soft Tissues of the Palate: The Lever Arm
	Histology of the Soft Palate
		Mucosa and Submucosa
	Mesenchymal Structures of the Palate
		Palatine Aponeurosis
			Clinical Significance of the Palatine Aponeurosis
		Muscles and Fasciae of the Soft Palate
			First Pharyngeal Arch: Mastication and Ear Drainage
				Tensor Veli Palatini (Figs. 16.10, 16.11 and 16.12)
				Tensor Tympani
			Second Pharyngeal Arch: Embryologic Linkage Between the Second and Third Arches
				Levator Veli Palatini: Two Different Components? (Fig. 16.13)
			Third Pharyngeal Arch: The Workhorse of the Soft Palate
				Levator Veli Palatini (Fig. 16.13)
				Palatoglossus (Fig. 16.15)
				Palatopharyngeus (Fig. 16.15)
				Uvulus (Figs. 16.16, 16.17 and 16.18)
				Superior Constrictor
				Middle Constrictor
			Fourth Pharyngeal Arch: Separation of the Gut from the Airway
				Inferior Constrictor
	Blood Supply of the Soft Palate
		Lesser Palatine Artery
		Ascending Palatine Branch of Facial Artery (Figs. 16.22 and 16.23)
		Ascending Pharyngeal Artery (Figs. 16.24 and 16.25)
	Neurology of Soft Palate
		A Note to the Reader
		Many Anatomic Changes Take Place at Level r8: The Medulla is a Very Busy Place
		Origin and Insertion of Muscles: The Functional Anatomy of Strap Muscles
		Cranial Nerves and Their Targets (Figs. 16.31 and 16.32)
		Nucleus Ambiguus Demystified: Putting an End to Ambiguity
		Conclusions of This Section (Yes, You Survived)
	Development of the Soft Palate
		Bone Growth Drives Soft Tissue Positioning
		3-D Relationships of Palatal Muscles
		How Do Mesenchymal Deficiencies of Bone Fields Occur?
	Phylogeny of Soft Palate Muscles
		Mapping the Pharyngo-Palatal and Craniopectoral Muscles
			Pharyngo–Palatal Complex
			Craniopectoral Complex (Figs. 16.36, 16.37 and 16.38)
		Cranial Muscles Homologies: Squalus ≥ Necturus ≥ Mammal
		Evolution of the Branchial and Hypobranchial Muscles
		Evolution of the Soft Palate
	Pathologies of Soft Palate Cleft
		Abnormal Platform/Normal Muscles
			Lesser Palatine Neuroangiosome
			Mechanism of the Soft Tissue Cleft
			Greater Palatine Neuroangiosome
		Abnormal Bony Platform/Abnormal Muscles
		Normal Bony Platform/Abnormal Muscles
	Summary of Pathology by Neuroangiosome
		GPA Affected/LPA Unaffected
		LPA Affected/GPA Unaffected
		LPA Affected/GPA Affected
	Correction of Soft Palate Cleft: Developmental Field Algorithm
		Is VPI Predetermined?
		Surgical Management: A Developmental Field-Based Algorithm
		Restoration of Soft Palate Length: Buccinator Palatoplasty
			Applications and a Preview
	Conclusions
	Commentary: Robert Mann
	References
17: Buccinator Interposition Palatoplasty: The Role of Developmental Field Reassignment in the Management of Velopharyngeal Insufficiency
	The Origin of Buccinator Palatoplasty
	Surgical Anatomy and Function
		Arterial Supply (Figs. 17.5, 17.6, 17.7, 17.8 and 17.9)
			Facial Artery
			Internal Maxillary Artery
		Venous Drainage
		Innervation
			Facial Nerve: Motor (Figs. 17.10, 17.11, 17.12 and 17.13)
			Buccal Nerve: Sensory and Motor
		Musculofascial Planes
		Identifiable Structures on Intraoral Dissection
	Phylogeny of the Buccinator and Its Development in Man
		Hypotheses
		Phylogeny
			Anatomic Manifestations of the Singularity of Buccinator
		What is the Origin of Buccinator Muscle Myoblasts?
			The Constrictor System: Does the Buccinator Fit the Pattern?
		Development of Buccinator
		Functional Aspects of the Buccinator
			Mastication
			Parotid Secretion
			Vth Nerve Paralysis
		The Buccal Fat Pad (Figs. 17.21, 17.22, 17.23 and 17.24)
			Function and Structure
			The Embryology of the Buccal Fat Pad
			Clinical Applications of the Buccal Fat Pad
	Dissection Technique: Buccinator Flaps (Figs. 17.25, 17.26, 17.27, 17.28, 17.29, 17.30, 17.31, 17.32, 17.33, 17.34, 17.35, 17.36, 17.37, 17.38, 17.39, 17.40, 17.41, 17.42, 17.43, 17.44, 17.45, 17.46, 17.47
		Local Anesthesia
			Extraoral Approach: Anterior Buccinator (Superior or Inferior) (Fig. 17.4)
			Intraoral Approach: Anterior Buccinator (Superiorly or Inferiorly Based) (Figs. 17.25, 17.26, 17.27, 17.28, 17.29, 17.30, 17.31, 17.32, 17.33, 17.34, 17.35, 17.36, 17.37, 17.38, 17.39, 17.40 and 17.41)
			Intraoral Approach: Posterior Buccinator
	Clinical Applications of Buccinator Myomucosal Flaps, Anterior and Posterior
		Terminology (Figs. 17.42, 17.43, 17.44, 17.45, 17.46, 17.47, 17.48, 17.49, 17.50, 17.51, 17.52, 17.53, 17.54, 17.55, 17.56 and 17.57)
		Anterior Buccinator Flap
		Posterior Buccinator Flap
		Buccinator Flaps for Cleft Palate Surgery
			Hard Palate Procedures
			Soft Palate Procedures
		Buccinator Interposition Palatoplasty for VPI
		Buccinator Interposition Palatoplasty in Primary Cleft Palate Repair
		Comparison of Buccinator Interposition Protocols: DFR Versus DOZ
			Study Characteristics
			Outcomes
			Biologic Parameters
			DFR and DOZ: How Do They Stack Up?
	Protocol for Buccinator Interposition Palatoplasty
		Personal Perspective
		Soft Palate and Hard Palate Have Differing Biologic Imperatives
		DFR Soft Palate Repair: Buccinator Interposition Palatoplasty
		DFR Hard Palate Repair: Alveolar Extension Palatoplasty
	Conclusion
	References
		Further Reading
18: Pathologic Anatomy of Nasolabial Clefts: Spectrum of the Microform Deformity and the Neuromeric Basis of Cleft Surgery
	Introduction
		The Microform Deformity and Its Variants: The Rosetta Stone of Cleft Pathology
	Anatomic Features of the Microform Cleft (Figs. 18.2, 18.3, 18.4, 18.5, 18.6, 18.7, 18.8 and 18.9)
		Consequences of Muscle Imbalance in the Cleft State
			Origin and Migration of Facial Muscles
			Insertions of Facial Muscles: Two Mechanisms
		Muscle Anatomy in Labionasal Clefts: The Muscle Ring Theory of Delaire
		Nasalis is the Forme Fruste Muscle Involved in Nasolabial Clefts
		Pathophysiology of Nasalis in the Cleft Condition
			Righting the Wrong
		Neurovascular Map of the Prolabium: The Philtral Prolabium Versus the Non-philtral Prolabium
		Injection Studies
			Methodology
		Clinical Applications of Blood Supply: Dissection of the Prolabium
			Where Does the Non-philtral Prolabium Come From?
			Conclusions
			How to Define the Philtral Prolabium (Fig. 18.44)
	Developmental Sequence of Microform Cleft
		The Outdated (But Useful) Concept of Facial “Processes”
			Embryonic Contents of Facial Processes After Placode Invagination
		Frontonasal Process, Prolabium and Premaxilla
		Neuromeric Model of Fronto-Naso-Orbital Development
			Carnegie Stages to the Time of Lip Formation
		Developmental Fields of the Vomer and Premaxilla
	Lip–Nose Fusion Sequence
		Scientific Importance of the Minimal Cleft Sequence
	Functional Matrix: Dysfunction in the Lateral Nasal Process
		Anatomical Evidence (Figs. 18.50, 18.51, 18.52, 18.53, 18.54, 18.55, 18.56, 18.57 and 18.58)
			Where is the Fusion Site?
			Mesenchymal Mass
			Metabolic Insufficiency
			Vascular Insufficiency
			Simonart’s Band
	Pathophysiology of Cleft Lip/Palate Muscle
		Muscle Anatomy and Function
		Anatomic and Histologic Studies of Cleft Lip Muscle
		Histochemistry of Muscle in Cleft Lip and Cleft Palate
			Terminology: CL, CP and CL/P
		Cleft Lip Muscle (Sm6): Orbicularis
		Cleft Palate Muscle (Sm7): Levator Veli Palatini, Palatopharyngeus, Uvulus
		Summary of Histochemical Data
		Conclusion
	Clinical Studies of Microform Cleft
		Historical Perspectives
		Dentoalveolar Deficits
		Orbicularis Abnormalities
		Onizuka Classification
			Class I and Class II: Cleft Nose + Normal Lip
			Class III: Cleft Nose + Incomplete Cleft Lip
			Class IV: Cleft Nose + Complete Cleft Lip
		Mulliken Classification
		Surgical Management of the Incomplete Cleft
		The Prolabium
		Philtral Column
		Muscle Repair
		Mulliken Repair Sequence
	Developmental Field Reassignment and Incomplete Cleft
		Historical Perspective
		Assessment of the Microform Cleft
		Problem-Directed Surgical Technique (Figs. 18.65, 18.66, 18.67, 18.68, 18.69, 18.70, 18.71, 18.72 and 18.73)
			Incision and Subperiosteal Release
			Elevation of the Nasal Floor and Volume Restoration
			Reinsertion of Nasalis Muscle
			Nasal Tip Asymmetry
			Vestibular Lining: Deficient or Displaced?
			Nostril Sill
			Vermilion Border
			Philtral Column
		Final Thoughts: How Mechanism Affects the Clinical Applications Developmental Field Reassignment Surgery
	Pathogenesis of Clefts: The Neuromeric Model
		The Formula of Cleft
		Presentations of Cleft Lip and Palate
		Neuromeric Model: Volume Deficit Affects Bone and Morphogen Deficit Affects Soft Tissues
			Homeotic Genes: The Universal System of Axis Determination
			Pharyngeal Arches are Constructed from Paired Rhombomeres
			Neuroangiosome are Programmed by Genetic Zones in the Arches
			Neuroangiosomes Have Paired Growth Cones
			Neuroangiosome Failure Causes Local Field Defects
			Being a “Mesenchymal Midget” has Consequences
	Pathogenesis of Cleft: Molecular Mechanism
		A Deficit in [BMP4] is the Common Denominator of Soft Tissue Pathology at the Cleft Margin
		BMP4: A Brief Introduction
		The Three Phases of Skeletal Muscle Development
		Genetic Regulation of Myogenesis: A Play in 6 Acts
		Stem Cell Regulation: General Characteristics
		Muscle Stem Cells: Main Population Versus Side Population
		Cleft Lip Muscle: Why Is It the Way It Is?
	Conclusion
		Addendum: Alveolar Cleft Closure (with DFR Modification)
	Commentary: Karoon Agrawal
		The Embryologic Basis of Craniofacial Structure: Developmental Anatomy, Evolutionary Design, and Clinical Applications
	References
		Further Reading
19: DFR Cheilorhinoplasty: The Role of Developmental Field Reassignment in the Management of Facial Asymmetry and the Airway in the Complete Cleft Deformity
	Introductory Remarks
	Developmental Field Reassignment Evolution of a Concept
		The Process Concept
		The Functional Matrix Concept: Enter Neuroembryology
		Developmental Field Reassignment: The Impact of Bruce Carlson and Dorcas Padget
	Toward an Embryologic Strategy for the Surgical Management of Clefts
		Medial Wall Dissection
			Lateral Wall Dissection
			Dental Arch Management
			Microform Cleft
			The Airway in Facial Clefts
	Developmental Anatomy of the Midline Lip–Nose Complex
		Nasal Skin
		Columella
		Prolabium
		Lateral Lip Elements
		Premaxilla and Vomer
	Embryologic Cleft Surgery: Core
		Principles of Medial Dissection: Prolabium, Nasal Tip, and Medial Nasal Wall (Figs. 19.16, 19.17, 19.20, 19.30, 19.31, 19.32, 19.33, 19.34, 19.35, 19.36, 19.37, 19.38, 19.39 and 19.40)
		Medial Dissection: Modifications
		Medial Dissection: Embryologic Lessons, Access to the Nose
			Freeing the Medial Crus: Lateral Columellar Incision
			Freeing the Medial Crus: the Infra-Footplate Incision
		Principles of Lateral Dissection: Lip–Nose Muscles, Nasal Dorsum, and Lateral Nasal Wall (Figs. 19.41, 19.42, 19.43, 19.44, 19.45, 19.46, 19.47, 19.48, 19.49, 19.50, 19.51, 19.52, 19.53, 19.54, 19.55, 19.56, 19.57, 1
			Wide Subperiosteal Release
			Separating the Orbicularis Layers in the Lateral Lip Element
			Management of the Lateral Nasal Wall: Trial and Error
			Reassignment of the Nasalis Muscle and Vestibular Lining
		Lateral Wall Dissection: Embryologic Implications
		Microform Cleft: Premaxillary Deficiency and Poiseuille’s law ????P = 8uLQ/????r4
		Dental Arch Management
		Response of the Dental Arch in Clefts to Surgery
			Retroposition
			Collapse: A Reversible Phenomenon
			Contributions of Jean Delaire
	Functional Lip and Palate Repair: The Five As
		Airway
		Articulation
		Anterior Fistula Avoidance
		Arch
	Developmental Field Reassignment
		Talmant–Lumineau Protocol
			Comments
		DFR-Modified Talmant–Lumineau Protocol
			Comments
		Embryologic Basis of Occlusion and the Lateral Facial Cleft
	Technical Details of Developmental Field Reassignment Surgery
		Embryologic Definition of the Philtral Prolabium
		Medial Dissection: the Non-Philtrum Flap, Septum, the Medial Nasal Fossa, and Nasal Tip
		Lateral Dissection: Muscle Separation, Nasalis Transposition, and the Lateral Nasal Fossa
		Closure and Nasal Splinting
		ADDENDUM: Sotereanos Muco-Gingivoperiosteoplasty (see Fig. 19.4)
	Commentary: Jean-Claude Talmant
		Should One Prioritize the Judicious Choice of Technique or to the Magic of Its Execution?
		What is the Nature of the Cleft?
		Influence of a Missing Embryonic Territory on Facial Muscular Organization
		Self-organization of Muscles in Space and Time
			Influence of the Missing Element on Fetal Ventilation
		The Concept of Facial Envelope
		Respect the Coherence of the Theory of Open Systems
		Precocious Closure of the Lateral Incisor Space: Its Consequences
			The Latham and Millard Protocol
			Nasoalveolar Molding by Grayson and Cutting (NAM)
			The Case of the Vomer Flap
		Preoperative Passive Orthopedics
		The Vomerian Flap: Its Flaws
			The Logic: Open the Space of the Lateral Incisor
	References
		Further Reading
20: Biologics in Craniofacial Reconstruction: Morphogens and Stem Cells
	Mesenchymal Signaling Cells: An Important Concept
	Subperiosteal Physiology: Stem Cell Reassignment
		Biologics: Where Do We Start?
		Periosteum as a Biosynthetic Envelope: Subperiosteal Versus Supraperiosteal Dissection
		Gingivoperiosteoplasty
		Muscle Considerations
		Buccal Sulcus Incision: A Non-embryologic Strategy
		The Legacy of the Sliding Sulcus Procedure for DFR Primary Cleft Repair
		Principles of DFR Cleft Repair
		Conclusions
	In Situ Osteogenesis: Regeneration of Membranous Bone Using rhBMP-2 Graft
		Introduction
			The Birth of the Field Concept
			Osteoconduction vs. Osteoinduction (ISO)
		Materials and Methods
		Results
		Discussion
			Chemistry and Mechanism of Action of rfhBMP-2
		The ISO Regeneration Chamber
			Embryogenesis of Bone: Which Type to Make?
			Histology of the ISO Regenerate: Distraction Osteogenesis Explained?
			The Clinical Potential of ISO in Craniofacial Surgery
		Summary
	Distraction-Assisted In Situ Osteogenesis
		Introduction
			ISO and DISO: Two New Concepts
		Materials and Methods
			Clinical Case
		Preoperative Preparation
		Operative Sequence
			9 Months: Alveolar Extension Palatoplasty
			25 Months: Osteotomy of the Proximal Mandibular Segment and Placement of Distractor
			26 Months: Modification of the Distractor
			27 Months: rhBMP-2/ACS Implant
			29 Months: Temporalis Transfer
			32 Months: DFR Cheilo-Rhinoplasty [85]
			36 Months: Osteotomy and Distraction of the BMP-2 Regenerate, Lateral Cleft Repair
			40 Months: Removal of Distractor
		Results
		Discussion
			Maxillofacial Applications of rhBMP-2: Preclinical and Clinical Studies
			Clinical Significance of the #7 Cleft: Developmental Fields Exist
			Reconstruction of the Developmental Field Map: The Role of DISO
		Summary
			What Did We Learn?
			Conclusions from Experience with DISO
			Post-script: Autologous MSCs, the Next Dimension for DO
	Alveolar Cleft Reconstruction
	Secondary Protocol
		Introduction
		Recombinant Human Bone Morphogenetic Protein-2
		Materials and Methods
			Patients
			Surgical Protocol
				Group 1: Moderate Alveolar Clefts
			Group 2: Large Alveolar Clefts
			Group 3: Severe Deficiency
		Results
		Discussion
		Conclusion
		Future Directions
	Primary Protocol
		Introduction
		Cleft Pathogenesis
		Periosteum as a Bone-Forming Tissue
		Materials and Methods
			Surgical Technique
		Results
			Radiologic Outcomes
			Clinical Outcomes
		Discussion
	Non-cleft Craniofacial Reconstructive Applications
		Hemimandibular Reconstruction: Sequential ISO and DISO
		Clinical Report
		Surgical Treatment
		Discussion
			Pathology
			Management
			What Does the Implant Do?
			What If the Periosteum Is Gone?
			Dose–Response of rhBMP-2
			A Look to the Future: ISO, DISO, and Stem Cell Transplantation
		Conclusion
			Pierre Robin Sequence: Rapid Expansion DISO as Treatment for the Infant Airway
		Clinical Cases
		Results
		Discussion
			Scar Formation Over rhBMP-2 Implantation Sites
		Conclusion
	Calvarial Reconstruction
		Cranioplasty
		Calvarial “Switch” Procedure
		BMP “Switch Procedure”
		Augmentation Osteoplasty
	Reconstruction of Stem Cell Responder Population Defects
		Stromal Vascular Fraction: A New Kid on the Block
	Non-reconstructable Critical Limb Ischemia Treated with SVF Cells: A 4-Year Study: SVF Makes VEGF Under Hypoxic Conditions and Independent of a Morphogen
		Introduction
		Materials and Methods
			Medical Ethics
			Surgical Procedure and SVF Processing
			Outcomes Assessment
			Statistics
		Results
			Patient Characteristics
			Statistical Considerations
		Results
			Patient Characteristics
			Follow-Up
		Discussion
			What About “Dose”?
		Conclusion: Is Angiogenic Under Ischemic Condition Without a Morphogen
	Composite In Situ Osteogenesis: ASCs Should Show Morphogen-Driven Differentiation to the Osteogenic Line
	Commentary: S. M. Balaji
	References
		Further Reading
Index




نظرات کاربران