دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jie Zheng. Matthew C. Trudeau
سری:
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 330
[331]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 114 Mb
در صورت تبدیل فایل کتاب Textbook of Ion Channels Volume I: Fundamental Mechanisms and Methodologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب درسی کانال های یونی جلد اول: مکانیسم ها و روش های اساسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Section 1 Fundamental Mechanisms Chapter 1 Ion Selectivity and Conductance 1.1 Introduction 1.2 Structural Basis for Selectivity in K+ Channels 1.3 Structural Basis for Selectivity in Na+ Channels 1.4 Mechanistic Models for Selectivity in Cation Channels 1.4.1 The Close-Fit Model for Selectivity 1.4.2 The Field-Strength Model for Selectivity 1.4.3 The Coordination Model for Selectivity 1.4.4 Kinetic Model for Selectivity 1.4.5 The Site Number Model of Selectivity 1.4.6 Other K+ Channel Selectivity Determinants 1.5 Conductance Suggested Readings Chapter 2 Voltage-Dependent Gating of Ion Channels 2.1 Introduction 2.2 Basic Principles of Voltage Sensing 2.2.1 Two-State Model of Voltage Gating 2.2.2 Multistate Models of Voltage Gating 2.2.3 Model-Free Methods for Estimating Free Energy of Channel Gating 2.3 Biophysical Methods to Probe Voltage-Sensing Mechanisms 2.3.1 Gating Charge per Channel 2.3.2 Substituted Cysteine Accessibility Method (SCAM) 2.3.3 Voltage-Clamp Fluorometry (VCF) 2.3.4 Gating Pore Currents 2.3.5 Thermodynamic Mutant Cycle Analysis of Interaction Energies 2.3.6 Structural Approaches 2.3.7 Computational Approaches 2.4 Voltage-Sensor Motions 2.5 Coupling of Voltage-Sensor Motion to Pore Opening 2.6 Concluding Remarks Acknowledgments Suggested Readings Chapter 3 Ligand-Dependent Gating Mechanism 3.1 Introduction 3.2 Energetics of Ligand Gating 3.3 Steady-State Properties of Ligand Gating 3.4 Cooperativity 3.5 Separate Ligand Binding and Opening Transitions 3.6 Partial Agonists 3.7 MWC Model 3.8 Macroscopic Gating Kinetics 3.9 Single-Channel Gating Kinetics 3.10 Phi Analysis Suggested Readings Chapter 4 Mechanosensitive Channels and Their Emerging Gating Mechanisms 4.1 Introduction 4.2 Diversity of MS Channels 4.2.1 The Auditory Mechanotransduction Channel 4.2.2 Phenomenological Patch-Clamp Studies of MS Channels in Non-Sensory Cells 4.2.3 The DEG/ENaC/MEC Family 4.2.4 Bacterial Channels 4.2.5 MS Channels in Plants 4.2.6 Two-Pore Potassium (K2P, TPK) Channels 4.2.7 TRP Channels 4.2.8 Volume-Regulated Anion Channels 4.2.9 Piezo Channels 4.3 The Ways External Forces Are Conveyed to the Channel and the Energetics of Gating 4.4 Transient Responses: Adaptation, Desensitization and Inactivation 4.5 Experimental Parameters of MS Channel Gating 4.5.1 The Auditory Transduction Channel 4.5.2 Bacterial MS Channels as Models for Gating by Membrane Tension 4.5.3 The Large-Conductance Channel MscL 4.5.4 MscS Channel and Its Adaptive Gating Mechanism 4.6 Conclusions and Perspectives Acknowledgments Suggested Readings Chapter 5 Inactivation and Desensitization 5.1 Introduction 5.2 Energetics of Inactivation and Desensitization 5.3 Na+ Channel Inactivation 5.4 K+ Channel N-Type Inactivation 5.5 K+ Channel C-Type Inactivation 5.6 Ionotropic Glutamate Receptor Desensitization 5.7 Type II and III Inactivation/Desensitization in Other Channels Suggested Readings Chapter 6 Ion Channel Inhibitors 6.1 Mechanisms of Inhibition 6.2 Pore Blockers 6.3 Perturbation of Pore Block 6.4 One-Sided Pore Blockers 6.5 Slowly Permeating Blocking Ions 6.6 Gated Inhibitor Access 6.7 Allosteric Inhibition 6.8 Partial Inverse Agonism 6.9 Use-Dependent Pore Block 6.10 Inhibition by Lipid Bilayer Effects 6.11 Concluding Remarks Acknowledgments Suggested Readings Section 2 Methodologies Chapter 7 Expression of Channels in Heterologous Systems and Voltage-Clamp Recordings of Macroscopic Currents 7.1 Introduction 7.2 Heterologous Expression of Channels in Cultured Cells and Oocytes 7.2.1 Xenopus laevis Oocytes 7.2.2 Advantages and Disadvantages of Xenopus Oocytes 7.2.3 Mammalian Cells 7.2.4 Advantages and Disadvantages of Mammalian Cells 7.3 Voltage Clamp 7.3.1 Two-Electrode Voltage Clamp 7.3.2 Cut-Open Oocyte Clamp 7.4 Patch Clamp 7.4.1 The Electronics 7.4.2 Establishing the Gigaseal 7.4.3 Configurations 7.4.4 Compensation and Voltage Errors; Series Resistance 7.5 Analysis of Macroscopic Ionic Currents 7.5.1 Voltage Dependence, Activation, Deactivation 7.6 Estimation of the Number of Channels Using Noise Analysis 7.7 Gating Current Recording Appendix: Effect of p/n Subtraction on the Current Noise Acknowledgments Suggested Readings Chapter 8 Patch Clamping and Single-Channel Analysis 8.1 Introduction 8.2 Conditions for Single-Channel Recording 8.3 Analysis of Single-Channel Signals 8.3.1 Nonstationary Recordings 8.3.2 Stationary Recordings 8.3.3 Filtering the Data 8.3.4 Resolution 8.3.5 Detection of Events 8.3.6 Dwell-Time Histograms and Fitting of Distributions 8.3.7 Burst Analysis 8.4 Inferring a Mechanism 8.5 Conclusions Acknowledgments Suggested Readings Chapter 9 Patch-Clamp Recordings from Native Cells and Isolation of Membrane Currents 9.1 Introduction 9.2 Optimizing Conditions for Patch-Clamp Recordings from Native Cells 9.3 Isolation of Voltage-Gated (Inward and Outward) Currents in Cardiac Myocytes 9.4 Identification of Kinetically Distinct Myocardial Kv Current Components 9.5 Pharmacological Separation of Co-Expressed Kv Current Components 9.6 Molecular Dissection of Native Kv Currents: Kv Pore-Forming (α) Subunits 9.7 Probing the Functional Roles of Kv (and Other) Channels in Native Cells Acknowledgments Suggested Readings Chapter 10 Models of Ion Channel Gating 10.1 Introduction 10.2 The Goals and Benefits of Modeling 10.3 Model Generation 10.3.1 Should I Build a (New) Gating Model? 10.3.2 What Kind of a Model? 10.3.2.1 Phenomenological Models 10.3.2.2 Statistically Parsimonious Gating Schemes 10.3.2.3 Semi-Mechanistic Models 10.4 Examples of Semi-Mechanistic Models and Assumptions 10.4.1 The Hodgkin and Huxley (HH) Model 10.4.2 Modern Models of KV Channel Gating 10.4.3 Allosteric Mechanisms and Models 10.4.3.1 The MWC Model 10.4.3.2 The HA Model of BK Channels 10.4.4 Semi-Mechanistic Models Represent a Balanced Approach 10.5 Simulations 10.6 Parameter Optimization, Validation and Interpretation 10.7 Summaries, Conclusions and Future Developments Acknowledgments Suggested Readings Chapter 11 Investigating Ion Channel Structure and Dynamics Using Fluorescence Spectroscopy 11.1 Introduction 11.2 Modulation of Fluorescence 11.2.1 Förster Resonance Energy Transfer 11.3 Labeling Techniques 11.3.1 Thiol-Reactive Chemistry 11.3.2 Fluorescently Labeled Ligands or Toxins 11.3.3 Genetically Encoded Fluorescent Labels 11.3.3.1 Fluorescent Proteins 11.3.3.2 Ligand-Binding Domains 11.3.3.3 Fluorescent Unnatural Amino Acids 11.4 Obtaining Structural and Dynamic Information from Fluorescence Measurements 11.4.1 Kinetics of Local Structural Rearrangements 11.4.2 Intra- and Intermolecular Distance Measurements 11.4.2.1 Linking Distances to Structures and Models 11.4.2.2 Lanthanide-Based RET and Transition-Metal FRET 11.4.3 Ligand Binding 11.4.4 Single-Channel Fluorescence 11.5 Conclusions Suggested Readings Chapter 12 Ion Channel Structural Biology in the Era of Single-Particle Cryo-EM 12.1 Introduction 12.2 Why Single-Particle Cryo-EM? 12.3 Sample Preparation of Ion Channels for Single-Particle Cryo-EM 12.4 Cryo-EM Experiment: Data Acquisition and Interpretation 12.5 Foundations of Microscopy and Data Processing 12.5.1 Fourier Theory 12.5.2 Central Slice Theorem 12.5.3 Contrast Transfer Function 12.5.4 Box Size 12.5.5 Defocus Range 12.5.6 Refinement 12.5.7 Classification 12.5.8 Masking during Refinement 12.5.9 Resolution Estimation 12.5.9.1 Local Resolution Estimation 12.5.9.2 Directional Resolution Estimation 12.5.10 Masking 12.5.11 Filtering and Sharpening 12.6 What Structural Information Can Cryo-EM Provide? 12.7 Further Technological Advancement and Challenges ahead in Ion Channel Structural Biology Suggested Readings Chapter 13 Protein Crystallography 13.1 Ion Channels Physiology in the Era of Structural Biology 13.2 Why Crystallization? 13.3 Enhancing Crystallization Likelihood 13.4 Protein Crystallization 13.5 The Diffraction Experiment and Phasing Techniques 13.6 Structure Determination and Quality Metrics 13.7 Structure Analysis and Visualization 13.8 The Developing Role of X-Ray Crystallography in the Structural Biology Toolbox Suggested Readings Chapter 14 Rosetta Structural Modeling 14.1 Introduction 14.2 Rosetta Molecular Modeling 14.2.1 Scoring 14.2.1.1 Rosetta Standard Full-Atom Scoring Function 14.2.1.2 Rosetta Membrane Full-Atom Scoring Function 14.2.1.3 Other Scoring Functions 14.2.2 Sampling 14.2.3 Packing 14.2.4 Minimization 14.3 Homology Modeling of Ion Channels 14.4 Symmetry Modeling of Ion Channels 14.5 Modeling of Ion Channels with Experimental Data 14.6 Modeling of Ion Channels Interaction with Modulators 14.6.1 Rosetta Protein–Ligand Docking 14.6.2 Rosetta Protein–Protein Docking 14.7 De Novo Protein Design 14.8 Future Directions Resources for Learning Rosetta Suggested Readings Chapter 15 Molecular Dynamics 15.1 Introduction 15.1.1 Basic Introduction to MD Simulations 15.1.2 Force Fields and the Potential Energy Function 15.1.3 MD Simulations Analysis and the Notion of Free Energy 15.1.4 Enhanced Sampling Simulations Schemes 15.2 Applying External Stimuli in MD Simulations 15.2.1 Transmembrane Potential (∆V ) 15.2.2 Mechanical Force 15.2.3 pH, Temperature and Others 15.3 Sensing 15.3.1 Voltage 15.3.2 Temperature 15.4 Gating and Conformational Changes 15.5 Ion Conduction and Selectivity 15.5.1 Enhanced Sampling Free Energy Calculation Methods 15.5.2 Methods Where Conduction Is Modeled Explicitly 15.6 Small Molecule Modulation 15.7 Lipid Modulation 15.8 Allostery 15.9 In Silico Mutagenesis 15.10 Conclusion Suggested Readings Chapter 16 Genetic Models and Transgenics 16.1 Introduction 16.2 Linking Ion Channels to Phenotypes: Forward Genetics 16.2.1 Model Organisms 16.2.2 Cloning 16.2.3 Phenotypic Screens 16.3 Targeted Alteration of Ion Channel Function: Reverse Genetics 16.3.1 Nontargeted Transgenics 16.3.2 Targeted Homologous Recombination 16.3.3 Gene Editing 16.3.4 Conditional Site-Specific Recombination 16.3.5 Genetically Encoded Tools for Studying Ion Channel Function 16.3.6 Genetic Integrity and Maintenance of Mouse Lines 16.3.7 Phenotypic Characterization 16.4 Ion Channels in Human Physiology and Disease 16.4.1 Linkage and Single-Nucleotide Polymorphisms 16.5 Summary Suggested Readings Chapter 17 EPR and DEER Spectroscopy 17.1 Introduction 17.2 Site-Directed Spin Labeling (SDSL) 17.3 CW EPR Spectroscopy 17.3.1 Mobility 17.3.2 Solvent Accessibility 17.4 DEER Spectroscopy 17.4.1 Principles 17.5 Practical Aspects 17.6 Applications to Ion Channels 17.6.1 Local Dynamics and Solvent Environment 17.6.2 Oligomerization 17.6.3 Structure and Conformational Changes Suggested Readings Index