ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

دانلود کتاب کتاب آشپزی یادگیری تقویتی TensorFlow 2: بیش از 50 دستور العمل برای کمک به شما در ساخت، آموزش و استقرار عوامل یادگیری برای برنامه های کاربردی در دنیای واقعی

TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

مشخصات کتاب

TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 183898254X, 9781838982546 
ناشر: Packt Publishing 
سال نشر: 2021 
تعداد صفحات: 472 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 Mb 

قیمت کتاب (تومان) : 46,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب آشپزی یادگیری تقویتی TensorFlow 2: بیش از 50 دستور العمل برای کمک به شما در ساخت، آموزش و استقرار عوامل یادگیری برای برنامه های کاربردی در دنیای واقعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب آشپزی یادگیری تقویتی TensorFlow 2: بیش از 50 دستور العمل برای کمک به شما در ساخت، آموزش و استقرار عوامل یادگیری برای برنامه های کاربردی در دنیای واقعی




توضیحاتی درمورد کتاب به خارجی

Discover recipes for developing AI applications to solve a variety of real-world business problems using reinforcement learning Key Features Develop and deploy deep reinforcement learning-based solutions to production pipelines, products, and services Explore popular reinforcement learning algorithms such as Q-learning, SARSA, and the actor-critic method Customize and build RL-based applications for performing real-world tasks Book Description With deep reinforcement learning, you can build intelligent agents, products, and services that can go beyond computer vision or perception to perform actions. TensorFlow 2.x is the latest major release of the most popular deep learning framework used to develop and train deep neural networks (DNNs). This book contains easy-to-follow recipes for leveraging TensorFlow 2.x to develop artificial intelligence applications. Starting with an introduction to the fundamentals of deep reinforcement learning and TensorFlow 2.x, the book covers OpenAI Gym, model-based RL, model-free RL, and how to develop basic agents. You\'ll discover how to implement advanced deep reinforcement learning algorithms such as actor-critic, deep deterministic policy gradients, deep-Q networks, proximal policy optimization, and deep recurrent Q-networks for training your RL agents. As you advance, you\'ll explore the applications of reinforcement learning by building cryptocurrency trading agents, stock/share trading agents, and intelligent agents for automating task completion. Finally, you\'ll find out how to deploy deep reinforcement learning agents to the cloud and build cross-platform apps using TensorFlow 2.x. By the end of this TensorFlow book, you\'ll have gained a solid understanding of deep reinforcement learning algorithms and their implementations from scratch. What You Will Learn Build deep reinforcement learning agents from scratch using the all-new TensorFlow 2.x and Keras API Implement state-of-the-art deep reinforcement learning algorithms using minimal code Build, train, and package deep RL agents for cryptocurrency and stock trading Deploy RL agents to the cloud and edge to test them by creating desktop, web, and mobile apps and cloud services Speed up agent development using distributed DNN model training Explore distributed deep RL architectures and discover opportunities in AIaaS (AI as a Service) Who this book is for The book is for machine learning application developers, AI and applied AI researchers, data scientists, deep learning practitioners, and students with a basic understanding of reinforcement learning concepts who want to build, train, and deploy their own reinforcement learning systems from scratch using TensorFlow 2.x.



فهرست مطالب

Cover
Title Page
Copyright and Credits
About Packt
Contributors
Table of Contents
Preface
Chapter 01: Developing Building Blocks for Deep Reinforcement Learning Using Tensorflow 2.x
	Technical requirements
	Building an environment and reward mechanism for training RL agents
		Getting ready
		How to do it…
		How it works…
	Implementing neural network-based RL policies for discrete action spaces and decision-making problems
		Getting ready
		How to do it…
		How it works…
	Implementing neural network-based RL policies for continuous action spaces and continuous-control problems
		Getting ready
		How to do it…
		How it works…
	Working with OpenAI Gym for RL training environments
		Getting ready
		How to do it…
		How it works…
		See also
	Building a neural agent
		Getting ready
		How to do it…
		How it works…
	Building a neural evolutionary agent
		Getting ready
		How to do it…
		How it works…
		See also
Chapter 02: Implementing Value-Based, Policy-Based, and Actor-Critic Deep RL Algorithms
	Technical requirements
	Building stochastic environments for training RL agents
		Getting ready
		How to do it…
		How it works…
	Building value-based reinforcement learning agent algorithms
		Getting ready
		How to do it…
		How it works…
	Implementing temporal difference learning
		Getting ready
		How to do it…
		How it works…
	Building Monte Carlo prediction and control algorithms for RL
		Getting ready
		How to do it…
		How it works…
	Implementing the SARSA algorithm and an RL agent
		Getting ready
		How to do it…
		How it works…
	Building a Q-learning agent
		Getting ready
		How to do it…
		How it works…
	Implementing policy gradients
		Getting ready
		How to do it…
		How it works…
	Implementing actor-critic RL algorithms
		Getting ready
		How to do it…
		How it works…
Chapter 03: Implementing Advanced RL Algorithms
	Technical requirements
	Implementing the Deep Q-Learning algorithm, DQN, and Double-DQN agent
		Getting ready
		How to do it…
		How it works…
	Implementing the Dueling DQN agent
		Getting ready
		How to do it…
		How it works…
	Implementing the Dueling Double DQN algorithm and DDDQN agent
		Getting ready
		How to do it…
		How it works…
	Implementing the Deep Recurrent Q-Learning algorithm and DRQN agent
		Getting ready
		How to do it…
		How it works…
	Implementing the Asynchronous Advantage Actor-Critic algorithm and A3C agent
		Getting ready
		How to do it…
		How it works…
	Implementing the Proximal Policy Optimization algorithm and PPO agent
		Getting ready
		How to do it…
		How it works…
	Implementing the Deep Deterministic Policy Gradient algorithm and DDPG agent
		Getting ready
		How to do it…
		How it works…
Chapter 04: Reinforcement Learning in the Real World – Building Cryptocurrency Trading Agents
	Technical requirements
	Building a Bitcoin trading RL platform using real market data
		Getting ready
		How to do it…
		How it works…
	Building an Ethereum trading RL platform using price charts
		Getting ready
		How to do it…
		How it works…
	Building an advanced cryptocurrency trading platform for RL agents
		Getting ready
		How to do it…
		How it works…
	Training a cryptocurrency trading bot using RL
		Getting ready
		How to do it…
		How it works…
Chapter 05: Reinforcement Learning in the Real World – Building Stock/Share Trading Agents
	Technical requirements
	Building a stock market trading RL platform using real stock exchange data
		Getting ready
		How to do it…
		How it works…
	Building a stock market trading RL platform using price charts
		Getting ready
		How to do it…
		How it works…
	Building an advanced stock trading RL platform to train agents to mimic professional traders
		Getting ready
		How to do it…
		How it works…
Chapter 06: Reinforcement Learning in the Real World – Building Intelligent Agents to Complete Your To-Dos
	Technical requirements
	Building learning environments for real-world RL
		Getting ready
		How to do it…
		How it works…
	Building an RL Agent to complete tasks on the web – Call to Action
		Getting ready
		How to do it…
		How it works…
	Building a visual auto-login bot
		Getting ready
		How to do it…
		How it works…
	Training an RL Agent to automate flight booking for your travel
		Getting ready
		How to do it…
		How it works…
	Training an RL Agent to manage your emails
		Getting ready
		How to do it…
		How it works…
	Training an RL Agent to automate your social media account management
		Getting ready
		How to do it…
		How it works…
Chapter 07: Deploying Deep RL Agents to the Cloud
	Technical requirements
	Implementing the RL agent’s runtime components
		Getting ready
		How to do it…
		How it works…
	Building RL environment simulators as a service
		Getting ready
		How to do it…
		How it works…
	Training RL agents using a remote simulator service
		Getting ready
		How to do it…
		How it works…
	Testing/evaluating RL agents
		Getting ready
		How to do it…
		How it works…
	Packaging RL agents for deployment – a trading bot
		Getting ready
		How to do it…
		How it works…
	Deploying RL agents to the cloud – a trading Bot-as-a-Service
		Getting ready
		How to do it…
		How it works…
Chapter 08: Distributed Training for Accelerated Development of Deep RL Agents
	Technical requirements
	Distributed deep learning models using TensorFlow 2.x – Multi-GPU training
		Getting ready
		How to do it...
		How it works...
	Scaling up and out – Multi-machine, multi-GPU training
		Getting ready
		How to do it...
		How it works...
	Training Deep RL agents at scale – Multi-GPU PPO agent
		Getting ready
		How to do it...
		How it works...
	Building blocks for distributed Deep Reinforcement Learning for accelerated training
		Getting ready
		How to do it...
		How it works...
	Large-scale Deep RL agent training using Ray, Tune, and RLLib
		Getting ready
		How to do it...
		How it works...
Chapter 09: Deploying Deep RL Agents on Multiple Platforms
	Technical requirements
	Packaging Deep RL agents for mobile and IoT devices using TensorFlow Lite
		Getting ready
		How to do it...
		How it works...
	Deploying RL agents on mobile devices
		Getting ready
		How to do it...
		How it works...
	Packaging Deep RL agents for the web and Node.js using TensorFlow.js
		Getting ready
		How to do it...
		How it works...
	Deploying a Deep RL agent as a service
		Getting ready
		How to do it...
		How it works...
	Packaging Deep RL agents for cross-platform deployment
		Getting ready
		How to do it...
		How it works...
Other Books You May Enjoy
Index




نظرات کاربران