ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب TensorFlow 1.x Deep Learning Cookbook

دانلود کتاب TensorFlow 1.x کتاب آشپزی درخشان

TensorFlow 1.x Deep Learning Cookbook

مشخصات کتاب

TensorFlow 1.x Deep Learning Cookbook

ویرایش:  
نویسندگان:   
سری:  
 
ناشر: Packt 
سال نشر: 2017 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 41 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب TensorFlow 1.x Deep Learning Cookbook به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب TensorFlow 1.x کتاب آشپزی درخشان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب TensorFlow 1.x کتاب آشپزی درخشان

در این کتاب، نحوه استفاده کارآمد از TensorFlow، چارچوب متن باز گوگل برای یادگیری عمیق را خواهید آموخت. شما شبکه‌های یادگیری عمیق متفاوتی مانند شبکه‌های عصبی کانولوشن (CNN)، شبکه‌های عصبی تکراری (RNN)، شبکه‌های یادگیری عمیق Q (DQN) و شبکه‌های متخاصم مولد (GAN) را با دستور العمل‌های مستقل ساده پیاده‌سازی خواهید کرد.


توضیحاتی درمورد کتاب به خارجی

In this book, you will learn how to efficiently use TensorFlow, Google's open source framework for deep learning. You will implement different deep learning networks such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Q-learning Networks (DQNs), and Generative Adversarial Networks (GANs) with easy to follow independent recipes.





نظرات کاربران