ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Temporary Works: Principles of design and construction, Second edition

دانلود کتاب آثار موقت: اصول طراحی و ساخت، چاپ دوم

Temporary Works: Principles of design and construction, Second edition

مشخصات کتاب

Temporary Works: Principles of design and construction, Second edition

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 0727763385, 9780727763389 
ناشر: ICE Publishing 
سال نشر: 2019 
تعداد صفحات: 535 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 87 مگابایت 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Temporary Works: Principles of design and construction, Second edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آثار موقت: اصول طراحی و ساخت، چاپ دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب آثار موقت: اصول طراحی و ساخت، چاپ دوم

کارهای موقت: اصول طراحی و ساخت راهنمایی معتبر و جامع در مورد کارهای موقت برای مهندسان شاغل ارائه می دهد. با مشارکت بیست و چهار کارشناس صنعت، این تنها کتاب مرجعی است که تمام زیر تخصص های کارهای موقت را در یک جلد پوشش می دهد. طبق آخرین مقررات بریتانیا و استفاده از کدهای اروپایی در بریتانیا، فصل‌ها چگونگی و چرایی روش‌های فعلی را در طیف گسترده‌ای از موضوعات بررسی می‌کنند. این کتاب با تکیه بر سال ها تجربه جمعی از کارهای موقت در عمل منبعی برای راه حل های فوری و عملی برای مشکلات رایج است و همچنین شامل فهرست گسترده ای از مراجع برای هر موضوع است. این نسخه جدید موضوعات ذاتی کارهای موقت را در 27 فصل اصلی به روز می کند و همچنین شامل هفت فصل جدید در زمینه پشتیبان گیری، ساخت زیرزمین، سوزن زدن، آزمایش لوله، پایداری میلگرد، تحویل پروژه دیجیتال، و کارهای موقت در تخریب است. Temporary Works، نسخه دوم همراهی ارزشمند برای طراحان کارهای موقت و دائمی، مهندسان، تکنسین ها، هماهنگ کننده ها و ناظران کارهای موقت، مدرسین و همچنین پیمانکارانی است که به دنبال به حداقل رساندن هزینه ها، به حداکثر رساندن کارایی و اطمینان از ایمنی افرادی است که در محل کار می کنند.


توضیحاتی درمورد کتاب به خارجی

Temporary Works: Principles of design and construction provides authoritative and comprehensive guidance on temporary works for practising engineers. With contributions from twenty four industry experts, this is the only reference book to cover all sub-specialities of temporary works within a single volume. Informed by the latest UK Regulations and use of European codes in the UK, chapters consider the how and why of current methods across a wide range of topics. Drawing on years of collective experience of temporary works in practice the book is a source of immediate, practical solutions to common problems and also includes an extensive list of references for each subject. This new edition brings up to date the topics inherent in temporary works in the original 27 chapters and also includes seven new chapters on Backpropping, Basement Construction, Needling, Pipe testing, Rebar stability, Digital Project Delivery, and Temporary Works in Demolition. Temporary Works, Second edition is an invaluable companion for temporary and permanent works designers, engineers, technicians, temporary works co-coordinators and supervisors, lecturers and also contractors looking to minimise costs, maximise efficiency and ensure the safety of those working on site.



فهرست مطالب

Temporary Works
	Contents
	Foreword
	List of contributors
	Introduction
Corrigendum
Chapter 1
Safety, statutory and contractual obligations
	1.1. Introduction
	1.2. Background
	1.3. Management of temporary works
	1.4. Construction (Design and Management) Regulations 2015
		1.4.1 Designers and principal designers
		1.4.2 Contractors and principal contractors
	1.5. The Work at Height Regulations 2005
	1.6. The Health and Safety (Offences) Act 2008
	1.7. Contractual obligations
		1.7.1 General
		1.7.2 Functions and relationships between parties
		1.7.3 Responsibilities for the temporary works
	1.8. Robustness
	1.9. Public safety
	1.10. Summary of main points
	References
		Bragg SL (1974)
		Bragg SL (1975)
		BSI (British Standards Institution) (2003)
		BSI (2008)
		BSI (2011)
		BSI (2019)
		CITB (Construction Industry Training Board) (2015)
		Concrete Society (1971)
		CSG (Concrete Structures Group) (2010)
		EC (European Council) (1992)
		EC (European Council) (2001)
		Highways Agency (2006)
		HSE (Health and Safety Executive) (2001)
		HSE (2007)
		HSE (2015)
		ICE (Institution of Civil Engineers) (1986-1999)
		ICE (2011)
		ICE (2017)
		NASC (National Access & Scaffolding Confederation)&cb0; (2013)
		National Building Specification (annually)
		SCOSS (Standing Committee on Structural Safety) (2002)
		SCOSS (Standing Committee on Structural Safety) (2010)
		UK Government (1974)
		UK Government (1996)
		UK Government (2005)
		UK Government (2007)
		UK Government (2008)
		UK Government (2015)
		UKWIR (2011)
	Further reading
		Burrow M, Clark L, Pallett P, Ward R and Thomas D (2005)
		ICE (Institution of Civil Engineers) (2010)
		NASC (National Access & Scaffolding Confederation)&cb0; (2010)
		Smith NJ (2006)
Chapter 2
Management of temporary works
	2.1. Introduction
	2.2. What are (or may be considered as) temporary works?
	Table 2.1
	2.3. The parties (who is involved)
		2.3.1 The interface between parties
		2.3.2 Clients
		2.3.3 Principal designer (PD)
		2.3.4 Principal contractor (PC)
		2.3.5 Temporary works designer (TWD)
		2.3.6 Lead designer (temporary works)
	2.4. The management controls (the who)
		2.4.1 Designated individual (DI)
		2.4.2 Temporary works coordinator (TWC)
		2.4.3 Temporary works supervisor (TWS)
	2.5. Principal activities of the TWC (how temporary works are managed)
		2.5.1 The temporary works register
		2.5.2 The design brief
		2.5.3 Design check
		Table 2.2
		2.5.4 On-site supervision and control
		Table 2.3
		2.5.5 On-site checking
		2.5.6 Permit to load
		2.5.7 Permit to unload
	2.6. Summary - answers to the questions why, what, who and how temporary works are managed
	References
		Barber EHE, Bull FB and Shirley-Smith H (1971)
		Bragg SL (1975)
		BSI (British Standards Institution) (2008)
		BSI (2011)
		BSI (2019)
		Burrow M, Clark L, Pallett P, Ward R and Thomas D (2005)
		Concrete Society (2014a)
		Concrete Society (2014b)
		HSE (Health and Safety Executive) (2001)
		HSE (2015)
		ICE (Institution of Civil Engineers) (1986)
		ICE/SCOSS (Institution of Civil Engineers/Standing Committee on Structural Safety) (2002)
		Irvine DJ and Smith RJH (2001)
		Marples F (2011)
		Marples F and Richings JD (2014)
		UK Government (2015)
Chapter 3
Site compounds and set-up
	3.1. Introduction
		Table 3.1
	3.2. Land and access
		3.2.1 Site visit and inspection
		3.2.2 Site surveys for topography, ground conditions (geotechnical) and environmental impact
		3.2.3 Locating the compound
		Figure 3.1
		3.2.4 Infrastructure link-up
		Figure 3.2
	3.3. Communications, energy, clean water supply and wastewater disposal
		3.3.1 Communications
		3.3.2 Energy
		3.3.3 Clean water supply
		3.3.4 Wastewater disposal
	3.4. Office and welfare accommodation space planning
		Figure 3.3
	3.5. Materials (distribution, fabrication, handling, storage, testing and unloading)
	3.6. Hoarding and fencing
	References
		BSI (British Standards Institution) (2010)
		Temporary Works Forum (2014)
		UK Government (1974)
		UK Government (1974)
		UK Government (1992)
		UK Government (1999)
		UK Government (2005)
		UK Government (2007)
		UK Government (2013)
		UK Government (2015)
	Further reading
		Hall F and Greeno R (2001)
Chapter 4
Tower crane bases
	4.1. Types of tower crane
	4.2. Loading on foundations
	4.3. Foundation options
		4.3.1 Cruciform base for static crane
		Figure 4.1
		Figure 4.2
		4.3.2 On rails
		Figure 4.3
		4.3.3 Expendable base (pad base) for static crane
		Figure 4.4
		Figure 4.5
		Figure 4.6
		4.3.4 Climbing
	4.4. Foundation design principles
	4.5. Foundation construction and inspection
	References
		BSI (British Standards Institution) (2002)
		BSI (2004a)
		BSI (2004b)
		BSI (2012)
		BSI (2014)
		BSI (2015)
		BSI (2019)
		CIRIA (2018)
		CPA (Construction Plant-hire Association) (2015)
		DIN (Deutsches Institut für Normung) (1984)
		FEM (European Materials Handling Federation) (1998)
		FEM (2014)
		Skinner H, Watson T, Dunkley B and Blackmore P (2006)
		UK Government (2015)
	Further reading
		BSI (2006)
		CPA (2009)
		CPA (2009)
		HSE (Health and Safety Executive) (2010)
Chapter 5
Site roads and working platforms
	5.1. Introduction
		Figure 5.1
	5.2. Site roads: principles and design
		5.2.1 Alignment
		5.2.2 Traffic loading
		Table 5.1
		5.2.3 Ground conditions
		5.2.4 Formulating the design
		Figure 5.2
		Figure 5.3
		Figure 5.4
		Figure 5.5
	5.3. Working platforms: principles and design
		Figure 5.6
		5.3.1 Working platforms for tracked plant
		Figure 5.7
	5.4. Temporary roads for public use
	5.5. Construction
		5.5.1 Materials and maintenance
		5.5.2 Drainage
	References
		Black WPM and Lister NW (1979)
		BRE (Building Research Establishment) (2004)
		Britpave (British Cementitious Paving Association) (2007)
		BSI (British Standards Institution) (2001)
		Chaddock BCJ and Atkinson VM (1997)
		Garvin S (2016)
		Giroud JP and Noiray L (1981)
		HA (Highways Agency) (1998)
		HA (2006)
		HA (2007)
		HA (2009)
		Mayhew HC and Harding HM (1987)
		Powell WD, Potter JF, Mayhew HC and Nunn ME (1984)
		Tensar (2017a)
		Tensar (2017b)
		Terram (2017)
		WRAP (Waste and Resources Action Programme) (2013)
	Further reading
		Britpave (British Cementitious Paving Association) (2007)
		Jewell RA (1996)
		WRAP (Waste and Resources Action Programme) (2006)
Chapter 6
Control of groundwater
	6.1. Introduction
	6.2. Techniques
		6.2.1 Selection of appropriate technique
		6.2.2 Sump pumping: extraction from the surface of the excavation
		Figure 6.1
		6.2.3 Deep wells, wellpoints and ejectors: extraction from below the excavation
		Figure 6.2
		Figure 6.3
		Figure 6.4
		6.2.4 Filters
		6.2.5 Hazards
		6.2.6 Recharge
		6.2.7 Monitoring and maintenance
		6.2.8 Consents
	6.3. Investigation for dewatering
	6.4. Analysis and design
		6.4.1 Steps in analysis and design
		6.4.2 Permeability
		6.4.3 Analysis of pumped well dewatering systems
		Figure 6.5
	References
		Bond A (ed.) (1994)
		Preene M, Roberts TOL and Powrie W (2016)
		Roberts TOL and Preene M (1994)
	Further reading
		Roberts TOL and Preene M (1994)
Chapter 7
Lime and cement stabilisation
	7.1. Introduction
	7.2. Materials and their effects on the soil
		7.2.1 Lime
		Figure 7.1
		7.2.2 Cement
		Figure 7.2
		7.2.3 Blends
	7.3. The performance of treated soils
		7.3.1 Soil modification
		7.3.2 Soil stabilisation
	7.4. Testing
	7.5. Plant
		Figure 7.3
	7.6. Health and safety
	References
		Bell FG (1988)
		Christensen AP (1969)
		Highways Agency (1991)
		Highways Agency (2007)
		Longworth I (2004)
		Perry J, MacNeil D and Wilson P (1996a)
		Perry J, Snowdon R and Wilson P (1996b)
	Further reading
		BRE (Building Research Establishment) (2005)
		BSI (British Standards Institution) (2012)
		BSI (2013)
		BSI (2018)
		BSI (2018)
		Mitchell J and Jardine FM (2002)
Chapter 8
Jet grouting
	8.1. Introduction
		Figure 8.1
		Figure 8.2
	8.2. Construction methods
	8.3. Design principles
		8.3.1 Material properties
		8.3.2 Design of the treated mass
		Figure 8.3
		8.3.3 Design verification
	8.4. Monitoring and validation
	8.5. Secondary and side effects
		8.5.1 Ground heave and hydrofracture
		8.5.2 Reaction with the ground
		8.5.3 Spoil disposal
	References
		Berry GL, Shirlaw JN, Hayata K and Tan SH (1987)
		BSI (British Standards Institution) (2001)
		Coupland J (2010)
		de Wit JCM, Bogaards PJ, Langhorst OS et al. (2007a)
		de Wit JCM, Bogaards PJ, Langhorst OS et al. (2007b)
		Josifovski J, Susinov B and Markov I (2015)
		Stark TD, Axtell PJ, Lewis JR et al. (2009)
	Further reading
		Bell AL (ed.) (1994)
Chapter 9
Artificial ground freezing
	9.1. Introduction
	9.2. Construction principles
		9.2.1 Methods of ground freezing
		Figure 9.1
		Figure 9.2
		9.2.2 Advantages and disadvantages
	9.3. Design principles
		9.3.1 Introduction
		Figure 9.3
		9.3.2 Thermal behaviour
		9.3.3 Structural design
		9.3.4 Practical aspects of design
		Figure 9.4
	9.4. The effects of freezing and thawing
		Figure 9.5
	9.5. Monitoring
	Acknowledgements
	References
		Haasnoot J (2010)
		Harris JS (1995)
		Kofoed N and Doran SR (1995)
		Viggiani GMB and Casini F (2015)
	Further reading
		Auld FA, Belton J and Allenby D (2015)
		BGFS (British Ground Freezing Society) (1995)
		BTS/ICE (British Tunnelling Society/Institution of Civil Engineers) (2010)
Chapter 10
Slope stability in temporary excavations
	10.1. Introduction
		Figure 10.1
	10.2. The consequences of failure
	10.3. Construction principles
	10.4. Design principles - some simple fundamentals
		10.4.1 The nature of fine- and coarse-grained soil
		Figure 10.2
		10.4.2 Effects of groundwater
		10.4.3 Geotechnical categories
		Figure 10.3
		10.4.4 Design for soil slopes of ‘small’ size
		10.4.5 Design for soil slopes of ‘medium’ size
		Figure 10.4
		Table 10.1
		10.4.6 Design of rock slopes
	10.5. Monitoring
	References
		Bishop AW (1954)
		BSI (British Standards Institution) (2004)
		BSI (2014)
		BSI (2015)
		Janbu N (1954)
		Kovacevic N, Hight DW and Potts DM (2004)
		Kovacevic N, Hight DW and Potts DM (2007)
		Pettifer GS and Fookes PG (1994)
		Smith CC and Gilbert M (2007)
		Tomlinson MJ (2001)
	Further reading
		Bromhead E (1992)
		Hoek E and Bray JW (1981)
Chapter 11
Sheet piling
	11.1. Major alternatives
	11.2. Types of steel sheet piling
		Figure 11.1
	11.3. Installing sheet piles
		Figure 11.2
		11.3.1 Open trench
		11.3.2 Dig and push
		11.3.3 Vibrators
		11.3.4 Percussive or impact hammers
		11.3.5 Hydraulic pushing
		11.3.6 Driving aids
		Figure 11.3
		11.3.7 Water control
		11.3.8 Extracting piles
		11.3.9 Cofferdams
		Figure 11.4
	11.4. Eurocode 7
	11.5. Design
		11.5.1 Stresses due to applied loads
		11.5.2 Limit equilibrium methodology
		11.5.3 The installation and removal sequence
		11.5.4 Deflection
		11.5.5 Corrosion protection
		11.5.6 Workmanship, construction tolerances
		11.5.7 Framing and anchor support loads
		11.5.8 Tension cracks
		11.5.9 Thermal effects
		11.5.10 Releasing strut and anchor loads
		11.5.11 Circular cell structures
		11.5.12 Twin-wall cofferdams and other gravity structures
		11.5.13 Site constraints
		11.5.14 Driveability
		11.5.15 Design sequence
		11.5.16 Partial factors that may be considered for use in sheet piling design
		11.5.17 Other allowances suggested in the design
	11.6. Inspection and maintenance
	11.7. Plastic sheet piles
	References
		ArcelorMittal (2008)
		ArcelorMittal (2016)
		BSI (British Standards Institution) (1969)
		BSI (1990)
		BSI (1996a)
		BSI (1996b)
		BSI (1999)
		BSI (2002)
		BSI (2003)
		BSI (2004a)
		BSI (2004b)
		BSI (2004c)
		BSI (2006a)
		BSI (2006b)
		BSI (2014)
		BSI (2015)
		BSI (2019)
		CIRIA (Construction Industry Research and Information Association) (1995)
		Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017)
		ICE (Institution of Civil Engineers) (2016)
		UK Government (1974)
		UK Government (2015)
		Williams B and Waite D (1993)
	Further reading
		ArcelorMittal (2004)
		ArcelorMittal (2014)
		ArcelorMittal (2016)
		BSI (British Standards Institution) (2010)
		BSI (2015)
		BSI (2015)
		Byfield M and Mawer R (2001)
		Dawson R (2001)
		Day RA and Potts DH (1989)
		Driscoll R, Scott P and Powell J (2009)
		Filip RK (2004)
		Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017)
		ICE (Institution of Civil Engineers) (1996)
		Packshaw S (1962)
		Padfield CJ (1984)
		Rowe PW (1955)
		Rowe PW (1957)
		Symons IF, Little JA, McNulty TA, Carder DR and Williams SGO (1987)
		ThyssenKrupp GfT Bautechnik (2010)
		Yau JHW and McNicholl DP (1990)
Chapter 12
Trenching
	12.1. Introduction
		12.1.1 Major alternatives
		12.1.2 Soils
		12.1.3 Battering trenches
		12.1.4 Risks, planning and construction
	12.2. Techniques
		12.2.1 Traditional timbering
		12.2.2 Trench and drag boxes
		Figure 12.1
		12.2.3 Vertical shores
		Figure 12.2
		Figure 12.3
		12.2.4 Trench sheets and hydraulic waling frames
		Figure 12.4
		12.2.5 Post and plank vertical H-sections
	12.3. Design to CIRIA 97 trenching practice
		Figure 12.5
		Figure 12.6
	12.4. Controlling water
	References
		BSI (British Standards Institution) (2000)
		BSI (2004a)
		BSI (2004b)
		BSI (2015)
		BSI (2019)
		Irvine DJ and Smith RJH (1983)
		Terzaghi K and Peck R (1996)
		TRADA (Timber Research and Development Association) (1990)
		UK Government (2015)
		Watson TJ (1987)
	Further reading
		ArcelorMittal (2016)
		BSI (British Standards Institution) (2002)
		BSI (2015)
		CPA (Construction Plant-hire Association) (2001)
		CPA (2004)
		CPA (2016)
		Department for Transport (2000)
		HSE (Health and Safety Executive) (1997)
		HSE (1997)
		HSE (1999)
		HSE (2000)
		HSE (2009)
		HSE (2012)
		HSE (2013)
		Mackay EB (1986)
		Preene M (2000)
		Sommerville SH (1986)
		ThyssenKrupp GfT Bautechnik (2010)
		UK Government (1991)
Chapter 13
Diaphragm walls
	13.1. Introduction
	13.2. Applications
	13.3. Construction methods and plant
		13.3.1 Planning
		13.3.2 Site preparation
		Figure 13.1
		13.3.3 Working platforms
		13.3.4 Guide walls
		13.3.5 Support fluid
		13.3.6 Reinforcement cages
		Figure 13.2
		Figure 13.3
		13.3.7 Concreting
		13.3.8 Grabs (rope and hydraulic)
		Figure 13.4
		Figure 13.5
		13.3.9 Hydrofraise/hydromill/trenchcutter
		Figure 13.6
		Figure 13.7
		13.3.10 Panel joints (stop ends)
	13.4. Design
		13.4.1 Scope
		13.4.2 Geotechnical model
		13.4.3 Embedded retaining wall design
		13.4.4 Vertical capacity of walls
		13.4.5 Reinforcement design
		13.4.6 Watertightness and wall toe level for groundwater cut-off
		13.4.7 Observation method
	References
		Bolton M, Lam SY and Vardanega PJ (2010)
		BSI (British Standards Institution) (2004a)
		BSI (2004b)
		BSI (2010)
		BSI (2015)
		EFFC/DFI (European Federation of Foundation Contractors/Deep Foundations Institute) (2016)
		Fernie R and Suckling T (1996)
		Fernie R, Shaw SM, Dickson RA et al. (2001)
		Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017)
		Huder H (1972)
		ICE (Institution of Civil Engineers) (2009)
		ICE (2017)
		Nicholson D, Tse CM and Penny C (1999)
		Potts DM and Burland JB (1983)
	Further reading
		BSI (British Standards Institution) (1997)
		BSI (2009)
		BSI (2015)
		Powrie W and Batten M (2000)
		Puller MJ (1994)
		Puller MJ (2003)
		Twine D and Roscoe H (1999)
Chapter 14
Contiguous and secant piled walls
	14.1. Introduction
		14.1.1 Contiguous pile wall
		14.1.2 Secant pile wall: hard/soft or hard/firm
		Figure 14.1
		Figure 14.2
		14.1.3 Secant wall: hard/hard
		Figure 14.3
	14.2. Applications
	14.3. Construction methods and plant
		14.3.1 General considerations
		Figure 14.4
		Figure 14.5
		14.3.2 Site preparation
		14.3.3 Working platforms
		14.3.4 Guide walls
		14.3.5 Pile construction techniques
		14.3.6 Reinforcement cages
		14.3.7 Concreting
	14.4. Design
		14.4.1 Scope
		14.4.2 Temporary support for lateral wall stability
		14.4.3 Instrumentation
		Figure 14.6
		14.4.4 Reinforcement design
		14.4.5 Watertightness and wall toe level for groundwater cut-off (secant walls only)
		14.4.6 Vertical capacity of walls
		14.4.7 Other aspects
	References
		BSI (British Standards Institution) (2004a)
		BSI (2004b)
		BSI (2009)
		BSI (2010)
		BSI (2015)
		EFFC/DFI (European Federation of Foundation Contractors/Deep Foundations Institute) (2016)
		Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017)
		ICE (Institution of Civil Engineers) (2016)
		Nicholson D, Tse CM and Penny C (1999)
	Further reading
		BSI (British Standards Institution) (1997)
		BSI (2015)
		ICE (Institution of Civil Engineers) (2009)
		ICE (2016)
		Powrie W and Batten M (2000)
		Puller MJ (2003)
		Twine D and Roscoe H (1999)
Chapter 15
Caissons and shafts
	15.1. Introduction
	15.2. Major alternatives
	15.3. Common methods of construction
		15.3.1 Underpinning
		Figure 15.1
		15.3.2 Caisson sinking
		Figure 15.2
		Figure 15.3
		Figure 15.4
		Figure 15.5
		15.3.3 Pre-cast roof slabs
	15.4. Principles of design
	References
		BTS (British Tunnelling Society) (2004)
		BTS/ICE (British Tunnelling Society/Institution of Civil Engineers) (2010)
	Further reading
		BSI (British Standards Institution) (2011)
Chapter 16
Bearing piles
	16.1. Introduction
	16.2. Types and installation
		16.2.1 Use of bearing piles in temporary works
		16.2.2 Installation methods
	16.3. Design principles
		16.3.1 Ground parameters
		Figure 16.1
		Figure 16.2
		16.3.2 Load factors
		16.3.3 Loadings
		16.3.4 Analytical process
		16.3.5 Installation tolerances and site constraints
	References
		ArcelorMittal (2016)
		BSI (British Standards Institution) (2004)
		BSI (2015)
		BSI (2019)
		ICE (2016)
		Lord JA, Clayton CRI and Mortimore RN (2002)
		Lord A, Hayward T and Clayton CRI (2003)
		SCI (Steel Construction Institute) (1989)
		Tomlinson MJ (1994)
		Tomlinson MJ and Woodward J (2008)
	Further reading
		AGS (Association of Geotechnical and Geoenvironmental Specialists) (2006)
		Atkinson JH (1993)
		BSI (British Standards Institution) (2000)
		BSI (2000)
		BSI (2004)
		BSI (2005)
		BSI (2007)
		BSI (2007)
		BSI (2009)
		BSI (2009)
		BSI (2015)
		Fleming WGK, Randolph M, Weltman A and Elson K (2009)
		FPS (Federation of Piling Specialists) (2006)
		Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017)
		Healy PR and Weltman AJ (1980)
		ICE (Institution of Civil Engineers) (2016)
		Jardine R, Chow F, Overy R and Standing J (2005)
		Tomlinson MJ (1995)
		Turner MJ (1997)
Chapter 17
Jetties and plant platforms
	17.1. Introduction
	17.2. Solid structure
		17.2.1 Mass fill gravity platform or jetty structure
		Figure 17.1
		Figure 17.2
		17.2.2 Sheet piled platform or jetty structure
	17.3. Open jetty structure
		Figure 17.3
		Figure 17.4
	17.4. Floating jetties
		Figure 17.5
		Figure 17.6
		17.4.1 Mooring points
		17.4.2 Connections
		Figure 17.7
		Figure 17.8
		17.4.3 Consents
		17.4.4 Interface with site team
		17.4.5 Installation of piles
	17.5. Loadings
		17.5.1 Self-weight
		17.5.2 Plant
		Figure 17.9
		17.5.3 Environmental loadings
	17.6. Analysis
	References
		BSI (British Standards Institution) (2005)
		BSI (2012)
		BSI (2013a)
		BSI (2013b)
		BSI (2019)
		Gaba AR, Simpson B, Powrie W and Beadman DR (2003)
		HA (Highways Agency) (2001)
	Further Reading
		Blake LS (2004)
		Ehrlich LA (1982)
		Elson WK (1984)
		Williams BP and Waite D (1993)
Chapter 18
Floating plant
	18.1. Introduction
	18.2. Types and uses
		18.2.1 Pontoons and barges
		Figure 18.1
		Figure 18.2
		18.2.2 Lightweight modular systems
		18.2.3 Jack-up barges
		Figure 18.3
		Figure 18.4
		18.2.4 Other
	18.3. Design principles
		18.3.1 General stability principles
		Figure 18.5
		Figure 18.6
		Figure 18.7
		18.3.2 Design of jack-up barges
	References
		Bennett WT, Hoyle MJR and Jones DE (1994)
		Hathrell JAE (1968)
		Tupper EC (2004)
		Webber NB (1990)
	Further reading
		Blake LS (1994)
Chapter 19
Temporary bridging
	19.1. Introduction
	19.2. Temporary bridge types
		19.2.1 Historical: the Bailey bridge
		19.2.2 Proprietary bridging systems
		Figure 19.1
		Figure 19.2
		Figure 19.3
		19.2.3 Special designs
		19.2.4 Foundations types and intermediate supports
		Figure 19.4
	19.3. The design process
		19.3.1 Programme
		19.3.2 Loading
		19.3.3 Cross-section and span considerations
		Figure 19.5
		19.3.4 Detailed design and checking
		19.3.5 Design standards and strength data
		19.3.6 Client technical approval
		19.3.7 Other design considerations
	19.4. Transportation and construction
		19.4.1 Transportation
		19.4.2 Range of installation methods available
		Figure 19.6
		19.4.3 Site planning and execution
	19.5. Other applications of temporary bridging parts
	References
		BSI (British Standards Institution) (2003)
		BSI (2019)
		Highways Agency (2001)
	Further reading
		Harpur J (1991)
		Joiner JH (2001)
		Network Rail (2012)
Chapter 20
Heavy moves
	20.1. Introduction
		20.1.1 Programme savings
		Figure 20.1
		20.1.2 Improved safety
		20.1.3 Improved quality
		20.1.4 Cost savings
	20.2. Techniques
		20.2.1 Cranes
		Figure 20.2
		20.2.2 Trailers
		Figure 20.3
		20.2.3 Jacking systems
		Figure 20.4
		Figure 20.5
		Figure 20.6
		Figure 20.7
		20.2.4 Skidding systems
		Figure 20.8
		Table 20.1
	20.3. Design
		20.3.1 General
		20.3.2 Crane lifting design
		Table 20.2
		Table 20.3
		20.3.3 Heavy transport using SPMTs
	References
		ASME (American Society of Mechanical Engineers) (2000)
		BSI (British Standards Institution) (1998-2016)
		DNV (Det Norske Veritas) (2000)
		HSE (Health and Safety Executive) (2013)
		UK Government (1989)
	Further reading
		Bates GE, Hontz RM and Brent G (1998)
		BSI (1998-2016)
		CIRIA (Construction Industry Research and Information Association) (1977)
		Energy Networks Association (2007)
		GL Noble Denton (2010)
		Lloyd D (ed.) (2003)
		MacDonald JA, Rossnagel WA and Higgins LA (2009)
		Shapiro H, Shapiro JP and Shapiro LK (1999)
		UK Government (1998)
		UK Government (1998)
Chapter 21
Access and proprietary scaffolds
	21.1. Introduction
	21.2. Managing scaffolding
	21.3. Selection and designation
		21.3.1 Selection
		Figure 21.1
		21.3.2 Designation
	21.4. Materials and components
		21.4.1 Scaffold tube
		Table 21.1
		21.4.2 Scaffold fittings
		Table 21.2
		Figure 21.2
		21.4.3 Proprietary scaffolds
	21.5. Scaffold design
		21.5.1 General
		21.5.2 Permissible stress or limit state design
		21.5.3 Loading on scaffolds
		21.5.4 Design of tube and fitting scaffolds
		Table 21.3
		Figure 21.3
		21.5.5 Design of proprietary system scaffolds
		Figure 21.4
		Figure 21.5
	21.6. Workmanship and inspections
	References
		BSI (British Standards Institution) (1990a)
		BSI (1990b)
		BSI (2001)
		BSI (2003a)
		BSI (2003b)
		BSI (2003c)
		BSI (2005a)
		BSI (2005b)
		BSI (2005c)
		BSI (2006)
		BSI (2008)
		BSI (2019)
		NASC (National Access & Scaffolding Confederation)&cb0; (2008)
		NASC (2013a)
		NASC (2013b)
		NASC (2013c)
		NASC (2014a)
		NASC (2014b)
		NASC (2016a)
		NASC (2016b)
		UK Government (1974)
		UK Government (1994)
		UK Government (2005)
		UK Government (2007)
		UK Government (2015)
Chapter 22
Falsework
	22.1. Introduction
		22.1.1 Permissible stress versus limit state
		22.1.2 Choice of standard
		22.1.3 Use of BS 5975:2019 - permissible stress
		22.1.4 Use of BS EN 12812:2008 - limit state
	22.2. Materials and components
		22.2.1 Proprietary falsework equipment
		Figure 22.1
		Figure 22.2
		22.2.2 Scaffold tube and fittings
		22.2.3 Adjustable telescopic props
	22.3. Loads on falsework
		22.3.1 General
		22.3.2 Permanent loads
		22.3.3 Imposed loads
		22.3.4 Loading from construction operations
		Figure 22.3
		22.3.5 Environmental loads
		22.3.6 Indirect loads: settlement and elastic shortening
		22.3.7 Minimum horizontal disturbing force
		22.3.8 Variable persistent horizontal imposed load
	22.4. Falsework design
		22.4.1 Method of analysis
		22.4.2 General
		Figure 22.4
		22.4.3 Check 1: Structural strength
		22.4.4 Check 2: Lateral stability
		22.4.5 Check 3: Overall stability
		22.4.6 Check 4: Positional stability
		Figure 22.5
		22.4.7 Difference between fully and partially braced falsework
		22.4.8 Erection tolerance
	22.5. Workmanship and inspections
	References
		Bragg SL (1975)
		BSI (British Standards Institution) (1999)
		BSI (2002)
		BSI (2003)
		BSI (2004)
		BSI (2005a)
		BSI (2005b)
		BSI (2008)
		BSI (2016)
		BSI (2019)
		Burrows M, Clark L, Pallett P, Ward R and Thomas D (2005)
		CONSTRUCT (Concrete Structures Group) (2003)
		CS (Concrete Society) (1999)
		CS (2012)
		CS/ISE (Concrete Society/Institution of Structural Engineers) (1971)
Chapter 23
Formwork
	23.1. Introduction
	23.2. Vertical formwork
		Figure 23.1
	23.3. Economy
	23.4. Specifications and finishes
		Table 23.1
	23.5. Tolerances/deviations
	23.6. Formwork materials
		23.6.1 Face contact material
		23.6.2 Bearers
		23.6.3 Soldiers
		23.6.4 Formwork ties
		Figure 23.2
		23.6.5 Proprietary panels
		23.6.6 Release agents
		Figure 23.3
	23.7. Concrete pressure calculation
		23.7.1 General
		Figure 23.4
		23.7.2 Effect of stiffening of the concrete
		Figure 23.5
		23.7.3 The pressure of concrete on formwork
		Table 23.2
		Table 23.3
	23.8. Wall formwork design
		23.8.1 Double-faced formwork
		Figure 23.6
		Figure 23.7
		23.8.2 Stability of formwork
		23.8.3 Single-faced formwork
		Figure 23.8
		Figure 23.9
	23.9. Column formwork design
	23.10. Striking vertical formwork
	23.11. Workmanship/checking
	References
		BSI (British Standards Institution) (2009)
		CIRIA/CS (Construction Industry Research and Information Association/Concrete Society) (2000)
		CONSTRUCT (Concrete Structures Group) (2008)
		CONSTRUCT (2010)
		CS (Concrete Society) (1999)
		CS (2003)
		CS (2012)
		Dhir RK, McCarthy MJ, Caliskan S and Ashraf MK (2004)
		HA (Highways Agency) (2004)
		Harrison TA and Clear C (1985)
		National Building Specification (annually)
		Pallett PF (2009)
		UK Government (2005)
		UK Government (2015)
		UKWIR (UK Water Industry Research) (2011)
	Further reading
		BRE (Building Research Establishment) (2007)
Chapter 24
Soffit formwork
	24.1. Introduction
	24.2. Preamble to soffit form design
		24.2.1 General
		Figure 24.1
		24.2.2 Specification and finishes
		24.2.3 Equipment selection
		Figure 24.2
		Figure 24.3
	24.3. Loading on soffit forms
		24.3.1 Vertical
		24.3.2 Horizontal
		24.3.3 Notional force
	24.4. Design
		Figure 24.4
	24.5. Cantilevered soffits
		Figure 24.5
	24.6. Striking soffit formwork
		24.6.1 General
		Table 24.1
		24.6.2 Striking bridge soffits
		24.6.3 Striking slabs up to 350 mm thick
		Figure 24.6
		Figure 24.7
		24.6.4 Sequence of striking
	24.7. Assessment of concrete strength
		Figure 24.8
	24.8. Checking and inspection
	References
		Beeby AW (2000)
		BCA (British Cement Association) (2000)
		BSI (British Standards Institution) (2008)
		BSI (2009)
		BSI (2011)
		BSI (2019)
		CONSTRUCT (Concrete Structures Group) (2003)
		CONSTRUCT (2008)
		CONSTRUCT (2010)
		CS (Concrete Society) (2012)
		CS (2014)
		HA (Highways Agency) (2006)
		Harrison TA (1995)
		National Building Specification (annually)
		Ray SS, Barr J and Clark L (1996)
		UKWIR (UK Water Industry Research) (2011)
Chapter 25
Climbing and slip forms
	25.1. Introduction
	25.2. Climbing and slip-form viability assessment
		25.2.1 General
		25.2.2 Economy of construction
		Figure 25.1
		25.2.3 Assessment/suitability of structure
		25.2.4 Design
	25.3. Climbing formwork
		25.3.1 System selection
		25.3.2 Climbing/concreting cycle
		Figure 25.2
		25.3.3 Design considerations
		Figure 25.3
	25.4. Slip forms
		25.4.1 General
		Figure 25.4
		Figure 25.5
		25.4.2 Design considerations
	25.5. Climbing protection screens
		25.5.1 General
		25.5.2 Types of screens
		Figure 25.6
		Figure 25.7
		25.5.3 Design considerations
	25.6. Checking and inspection
	References
		BSI (British Standards Institution) (2005)
		BSI (2015)
		CS (Concrete Society) (2008)
		CS (2012)
	Further reading
		BRE (2007)
		Concrete Society (2014)
		CONSTRUCT (2010)
Chapter 26
Temporary fac¸ade retention
	26.1. Introduction
	26.2. Philosophy of façade retention
		26.2.1 Major alternative
		26.2.2 General principles
		26.2.3 Party walls
		26.2.4 Surveying the existing building
	26.3. Types of temporary façade retention schemes
		26.3.1 Timber shoring
		26.3.2 Scaffolding
		26.3.3 Proprietary equipment
		26.3.4 Fabricated steelwork
		26.3.5 Vertical towers
		Figure 26.1
		Figure 26.2
		26.3.6 Horizontal frame arrangements
		Figure 26.3
	26.4. Loads to be considered
		26.4.1 General
		26.4.2 Vertical loads
		26.4.3 Construction operation loads
		26.4.4 Impact loads
		26.4.5 Wind loading
		Table 26.1
		26.4.6 Notional lateral forces
		Figure 26.4
		26.4.7 Other loads
	26.5. Design considerations
		26.5.1 General
		26.5.2 Overall stability
		26.5.3 Deflection criteria
		26.5.4 Connections and restraint
		26.5.5 Lateral restraint
	26.6. Demolition, monitoring and inspection
	References
		Alexander SJ and Lawson RM (1981)
		BRE (Building Research Establishment) (1995)
		BSI (British Standards Institution) (1997)
		BSI (2005)
		BSI (2011a)
		BSI (2011b)
		BSI (2019)
		Bussell M, Lazarus D and Ross P (2003)
		CIRIA (Construction Industry Research and Information Association) (1986)
		Goodchild SL and Kaminski MP (1989)
		Lazarus D, Bussell M and Ross P (2003)
	Further reading
		BRE (Building Research Establishment) (1991-1992)
		BSI (British Standards Institution) (1981)
		BSI (1993)
		BSI (2015)
		Doran D, Douglas J and Pratley R (2009)
		Gilbertson A (2017)
		Highfield D (1991)
		Historic England (2016)
		HSE (Health and Safety Executive) (1984)
		HSE (1985)
		HSE (2006)
		Knight LR (1984)
		Lamsden BS (1988)
		NSWC (New South Wales Construction) (1992)
		Perry JG (1994)
		Thorburn S and Littlejohn GS (1992)
		UK Government (1990)
		UK Government (2015)
Chapter 27
Bridge installation techniques
	27.1. Introduction
	27.2. Preparation and selection of installation technique
	27.3. Partial deck erection schemes
		27.3.1 Large crane erection to single and multi-span bridges
		Figure 27.1
		27.3.2 Pre-cast concrete arch
		Figure 27.2
	27.4. Deck erection as a single unit
		27.4.1 Launching
		Figure 27.3
		Figure 27.4
		27.4.2 Self-propelled modular transporter (SPMT)
		Figure 27.5
	27.5. Bridge and deck erection by tunnelling and mining
		27.5.1 General description of erection technique
		27.5.2 Base requirements
		27.5.3 Risks and opportunities
		27.5.4 Design considerations
		Figure 27.6
	27.6. Segmental bridge construction
		Figure 27.7
	References
		Barnes JN and Gill JC (2018)
		BTS/ICE (British Tunnelling Society/Institution of Civil Engineers) (2010)
		Carney CT (2015)
		NCE (New Civil Engineer) (2005)
		Oliveira PJJ and Reis AJ (2016)
		Parag CD, Frangopol DM, Nowak AS (1999)
	Further reading
		Allenby D and Ropkins JWT (2015)
		Rosignoli M (2002)
		Troyano LF (2003)
		Watt D (2017)
Chapter 28
Backpropping
	28.1. Introduction
	28.2. The theory
		Figure 28.1
		Figure 28.2
	28.3. Loads (actions) to be considered
	28.4. Research
		28.4.1 European Concrete Building Project (ECBP)
		28.4.2 Latest research
		28.4.3 Pre-loading backprops
	28.5. Methodology - multi-storey construction
		28.5.1 General
		28.5.2 Left-in-place prop-and-panel systems
		28.5.3 Struck-and-moved props
		Figure 28.3
		28.5.4 One-for-one or 50% fewer backprops
		28.5.5 Concrete slab strength
		28.5.6 Slab stiffness
	28.6. Calculation methods - flat slabs
		28.6.1 Method One - Revised
		28.6.2 Method Two
		28.6.3 Method Three
		Figure 28.4
		28.6.4 Method Four
	28.7. With one level of backpropping
	28.8. With two levels of backpropping
	28.9. Worked examples - multi-storey construction
	28.10. Methodology - heavy construction
		Figure 28.5
	28.11. Conclusion
	References
		Alexander R (2004)
		BRE (Building Research Establishment) (2000)
		BSI (2019)
		CONSTRUCT (2003)
		CS (Concrete Society) (2012a)
		CS (2012b)
		HSE (2015)
		Pallett PF (2017)
		UK Government (2015)
		Vollum R (2008)
	Further reading
		BCA (British Cement Association) (2000)
		BCA (2001)
		Beeby AW (2001)
Chapter 29
Pressure testing of pipelines
	29.1. Introduction
		Figure 29.1
	29.2. Gravity sewer pipelines
	29.3. Pressure pipelines
		Table 29.1
	29.4. Design
		29.4.1 Preventing injury and damage
	29.5. Can restraint be provided without temporary works?
	29.6. If temporary works are required, what are the options?
		29.6.1 Propping of existing structures
		29.6.2 Constructing new structures
		29.6.3 Design of steel supports
	29.7. Design of thrust blocks
		Figure 29.2
	29.8. Internal (puddle) flanges
	29.9. On-site safety considerations
		29.9.1 Testing procedures
		Figure 29.3
	References
		BSI (British Standards Institution) (1988)
		BSI (1989)
		BSI (2000)
		BSI (2007)
		BSI (2009)
		BSI (2010)
		BSI (2011)
		BSI (2015a)
		BSI (2015b)
		DIPRA (Ductile Iron Pipe Research Association) (2016)
		HSE (Health and Safety Executive) (2012)
		Southern Water (2018)
		Thorley ARD and Atkinson JH (1994)
		UK Government (1998)
		UK Government (2015)
		UKWIR (2011)
		Water UK (2015)
		WRc (2012)
	Further reading
		BSI (British Standards Institution) (1997)
		BSI (1999)
		BSI (2010)
		UK Government (1999)
		UK Government (2010)
Chapter 30
Basement construction
	30.1. Introduction
	30.2. General planning considerations prior to work commencing
		Figure 30.1
	30.3. Constructing a basement in open cut
	30.4. Constructing a basement in a supported excavation
	30.5. Constructing a basement beneath an existing building or next to adjacent buildings
	30.6. Temporary retaining wall
		Figure 30.2
		Figure 30.3
	30.7. Support scheme to retaining wall
		Figure 30.4
		Figure 30.5
	30.8. Top-down construction
	30.9. Other design considerations
	References
		ArcelorMittal (2016)
		BSI (British Standards Institution) (2009)
		BSI (2019)
		Gilbertson A (2017)
		UK Government (2015)
	Further reading
		Admiral H and Corano A (2018)
		ArcelorMittal (2004)
		ArcelorMittal (2014)
		ArcelorMittal (2016)
		BSI (British Standards Institution) (2004)
		BSI (2004)
		BSI (2004)
		BSI (2009)
		BSI (2010)
		BSI (2015)
		Concrete Centre (2012)
		EFFC/DFI (European Federation of Foundation Contractors/Deep Foundations Institute) (2016)
		Filip RK (2006)
		Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017)
		HSE (Health and Safety Executive) (2012)
		ICE (Institution of Civil Engineers) (2009)
		ICE (2016)
		LABC (2014)
		NHBC (2011)
		Nicholson D, Tse CM and Penny C (1999)
		Powrie W and Batten M (2000)
		Puller MJ (2003)
		Twine D and Roscoe H (1999)
		UK Government (1990)
		UK Government (1990)
		UK Government (1996)
Chapter 31
Digital project delivery – visual planning and BIM
	31.1. Introduction
	31.2. Basics of building information modelling
	31.3. BIM and communication
		Figure 31.1
	31.4. Key issues
	31.5. Methods and techniques
		31.5.1 Initial baseline information
		Figure 31.2
		Figure 31.3
		Figure 31.4
		31.5.2 3D/4D modelling
		31.5.3 Virtual reality, augmented reality and mixed reality
		Figure 31.5
		Figure 31.6
		Figure 31.7
	31.6. Managing and minimising risk
	31.7. Example - temporary substation
		Figure 31.8
		Figure 31.9
		Figure 31.10
		Figure 31.11
	31.8. High-quality animations
		Figure 31.12
		Figure 31.13
		Figure 31.14
	31.9. Operations and future maintenance
	31.10. Communication and engagement
	31.11. Training and support
	References
		BSI (British Standards Institution) (2007)
		BSI (2019)
		HSE (Health and Safety Executive) (2011)
		Smith DJ (2017)
	Further reading
		BSI (British Standards Institution) (2013)
		BSI (2014)
Chapter 32
Rebar stability
	32.1. Introduction
		Figure 32.1
		Figure 32.2
		Table 32.1
	32.2. Potential problems and modes of failure
		Figure 32.3
	32.3. Common solutions
	32.4. Design
	32.5. Design rules
	32.6. Structural behaviour of cages
	32.7. Design solutions - walls
	32.8. Wind loading
	32.9. On-site inspections
	32.10. Ties
	References
		BSI (British Standards Institution) (1999-2017)
		BSI (2001)
		BSI (2005)
		BSI (2019)
		TWf (Temporary Works Forum) (2013)
		UK Government (1998a)
		UK Government (1998b)
		UK Government (2015)
	Further reading
		BSI (British Standards Institution) (2005)
		BSI (2005)
		BSI (2005)
		BSI (2006)
		BSI (2006)
		Tubman J (1995)
Chapter 33
Needling and forming openings inwalls
	33.1. Introduction
	33.2. Assessment of the building
	33.3. Is support required?
	33.4. Assessing the loads to be supported
		Figure 33.1
	33.5. Responsibility for temporary works
	33.6. Simple temporary works solutions
	33.7. Needling schemes
		Figure 33.2
		Figure 33.3
		Figure 33.4
		Figure 33.5
	33.8. Propping to needles
	33.9. Sequence of removal of needles
	33.10. On-site checklist
	References
		BSI (British Standards Institution) (1969)
		BSI (1981)
		BSI (2011)
		BSI (2019)
		Gilbertson A (2017)
		HSE (2015)
	Further reading
		BRE (Building Research Establishment) (1991)
		BRE (1991)
		BRE (1992)
		BRE (1992)
		BRE (1992)
		BRE (1995)
		BRE (1999)
		BRE (1999)
		BSI (British Standards Institution) (1999)
		BSI (2015)
		CIRIA (Construction Industry Research and Information Association) (1994)
		HSE (Health and Safety Executive) (1990)
		HSE (2004)
		HSE (2006)
		NASC (National Access & Scaffolding Confederation)&cb0; (2013)
Chapter 34
Temporary works in demolition
	34.1. Introduction
	34.2. Understand the structure
		Figure 34.1
		Figure 34.2
		Figure 34.3
	34.3. Demolition
		34.3.1 General
		34.3.2 Progressive demolition
		34.3.3 Deliberate collapse mechanism
		Figure 34.4
		34.3.4 Deliberate collapse of steel structures
		34.3.5 Deliberate collapse of concrete structures
		34.3.6 Key points for pre-weakening
	34.4. Temporary works for demolition
		34.4.1 Site perimeter
		34.4.2 Scaffold for demolition
		34.4.3 Working platforms for high-reach machines
		Figure 34.5
		Figure 34.6
		34.4.4 Propping for demolition plant
		Figure 34.7
		34.4.5 Temporary vertical propping
		Figure 34.8
	34.5. Load testing of slabs
	34.6. Moving plant between floors
	34.7. Structural stability during demolition
		34.7.1 General
		34.7.2 Stability of prefabricated and large panel structures
	34.8. Basement stability and shoring during demolition
		Figure 34.9
	34.9. Column removal/structural openings
		Figure 34.10
	34.10. Conclusion
	References
		BRE (Building Research Establishment) (2004)
		BSI (British Standards Institution) (2011)
		BSI (2019)
		Currie RJ, Armer CST and Moore JFA (1987a)
		Currie RJ, Armer CST and Moore JFA (1987b)
		NFDC (National Federation of Demolition Contractors) (2012)
		NFDC (2014a)
		NFDC (2014b)
		TWf (Temporary Works Forum) (2012)
	Further reading
		Clarke R (2010)
35
	Index




نظرات کاربران