دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Edited by Peter F Pallett & Ray Filip
سری:
ISBN (شابک) : 0727763385, 9780727763389
ناشر: ICE Publishing
سال نشر: 2019
تعداد صفحات: 535
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 87 مگابایت
در صورت تبدیل فایل کتاب Temporary Works: Principles of design and construction, Second edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آثار موقت: اصول طراحی و ساخت، چاپ دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کارهای موقت: اصول طراحی و ساخت راهنمایی معتبر و جامع در مورد کارهای موقت برای مهندسان شاغل ارائه می دهد. با مشارکت بیست و چهار کارشناس صنعت، این تنها کتاب مرجعی است که تمام زیر تخصص های کارهای موقت را در یک جلد پوشش می دهد. طبق آخرین مقررات بریتانیا و استفاده از کدهای اروپایی در بریتانیا، فصلها چگونگی و چرایی روشهای فعلی را در طیف گستردهای از موضوعات بررسی میکنند. این کتاب با تکیه بر سال ها تجربه جمعی از کارهای موقت در عمل منبعی برای راه حل های فوری و عملی برای مشکلات رایج است و همچنین شامل فهرست گسترده ای از مراجع برای هر موضوع است. این نسخه جدید موضوعات ذاتی کارهای موقت را در 27 فصل اصلی به روز می کند و همچنین شامل هفت فصل جدید در زمینه پشتیبان گیری، ساخت زیرزمین، سوزن زدن، آزمایش لوله، پایداری میلگرد، تحویل پروژه دیجیتال، و کارهای موقت در تخریب است. Temporary Works، نسخه دوم همراهی ارزشمند برای طراحان کارهای موقت و دائمی، مهندسان، تکنسین ها، هماهنگ کننده ها و ناظران کارهای موقت، مدرسین و همچنین پیمانکارانی است که به دنبال به حداقل رساندن هزینه ها، به حداکثر رساندن کارایی و اطمینان از ایمنی افرادی است که در محل کار می کنند.
Temporary Works: Principles of design and construction provides authoritative and comprehensive guidance on temporary works for practising engineers. With contributions from twenty four industry experts, this is the only reference book to cover all sub-specialities of temporary works within a single volume. Informed by the latest UK Regulations and use of European codes in the UK, chapters consider the how and why of current methods across a wide range of topics. Drawing on years of collective experience of temporary works in practice the book is a source of immediate, practical solutions to common problems and also includes an extensive list of references for each subject. This new edition brings up to date the topics inherent in temporary works in the original 27 chapters and also includes seven new chapters on Backpropping, Basement Construction, Needling, Pipe testing, Rebar stability, Digital Project Delivery, and Temporary Works in Demolition. Temporary Works, Second edition is an invaluable companion for temporary and permanent works designers, engineers, technicians, temporary works co-coordinators and supervisors, lecturers and also contractors looking to minimise costs, maximise efficiency and ensure the safety of those working on site.
Temporary Works Contents Foreword List of contributors Introduction Corrigendum Chapter 1 Safety, statutory and contractual obligations 1.1. Introduction 1.2. Background 1.3. Management of temporary works 1.4. Construction (Design and Management) Regulations 2015 1.4.1 Designers and principal designers 1.4.2 Contractors and principal contractors 1.5. The Work at Height Regulations 2005 1.6. The Health and Safety (Offences) Act 2008 1.7. Contractual obligations 1.7.1 General 1.7.2 Functions and relationships between parties 1.7.3 Responsibilities for the temporary works 1.8. Robustness 1.9. Public safety 1.10. Summary of main points References Bragg SL (1974) Bragg SL (1975) BSI (British Standards Institution) (2003) BSI (2008) BSI (2011) BSI (2019) CITB (Construction Industry Training Board) (2015) Concrete Society (1971) CSG (Concrete Structures Group) (2010) EC (European Council) (1992) EC (European Council) (2001) Highways Agency (2006) HSE (Health and Safety Executive) (2001) HSE (2007) HSE (2015) ICE (Institution of Civil Engineers) (1986-1999) ICE (2011) ICE (2017) NASC (National Access & Scaffolding Confederation)&cb0; (2013) National Building Specification (annually) SCOSS (Standing Committee on Structural Safety) (2002) SCOSS (Standing Committee on Structural Safety) (2010) UK Government (1974) UK Government (1996) UK Government (2005) UK Government (2007) UK Government (2008) UK Government (2015) UKWIR (2011) Further reading Burrow M, Clark L, Pallett P, Ward R and Thomas D (2005) ICE (Institution of Civil Engineers) (2010) NASC (National Access & Scaffolding Confederation)&cb0; (2010) Smith NJ (2006) Chapter 2 Management of temporary works 2.1. Introduction 2.2. What are (or may be considered as) temporary works? Table 2.1 2.3. The parties (who is involved) 2.3.1 The interface between parties 2.3.2 Clients 2.3.3 Principal designer (PD) 2.3.4 Principal contractor (PC) 2.3.5 Temporary works designer (TWD) 2.3.6 Lead designer (temporary works) 2.4. The management controls (the who) 2.4.1 Designated individual (DI) 2.4.2 Temporary works coordinator (TWC) 2.4.3 Temporary works supervisor (TWS) 2.5. Principal activities of the TWC (how temporary works are managed) 2.5.1 The temporary works register 2.5.2 The design brief 2.5.3 Design check Table 2.2 2.5.4 On-site supervision and control Table 2.3 2.5.5 On-site checking 2.5.6 Permit to load 2.5.7 Permit to unload 2.6. Summary - answers to the questions why, what, who and how temporary works are managed References Barber EHE, Bull FB and Shirley-Smith H (1971) Bragg SL (1975) BSI (British Standards Institution) (2008) BSI (2011) BSI (2019) Burrow M, Clark L, Pallett P, Ward R and Thomas D (2005) Concrete Society (2014a) Concrete Society (2014b) HSE (Health and Safety Executive) (2001) HSE (2015) ICE (Institution of Civil Engineers) (1986) ICE/SCOSS (Institution of Civil Engineers/Standing Committee on Structural Safety) (2002) Irvine DJ and Smith RJH (2001) Marples F (2011) Marples F and Richings JD (2014) UK Government (2015) Chapter 3 Site compounds and set-up 3.1. Introduction Table 3.1 3.2. Land and access 3.2.1 Site visit and inspection 3.2.2 Site surveys for topography, ground conditions (geotechnical) and environmental impact 3.2.3 Locating the compound Figure 3.1 3.2.4 Infrastructure link-up Figure 3.2 3.3. Communications, energy, clean water supply and wastewater disposal 3.3.1 Communications 3.3.2 Energy 3.3.3 Clean water supply 3.3.4 Wastewater disposal 3.4. Office and welfare accommodation space planning Figure 3.3 3.5. Materials (distribution, fabrication, handling, storage, testing and unloading) 3.6. Hoarding and fencing References BSI (British Standards Institution) (2010) Temporary Works Forum (2014) UK Government (1974) UK Government (1974) UK Government (1992) UK Government (1999) UK Government (2005) UK Government (2007) UK Government (2013) UK Government (2015) Further reading Hall F and Greeno R (2001) Chapter 4 Tower crane bases 4.1. Types of tower crane 4.2. Loading on foundations 4.3. Foundation options 4.3.1 Cruciform base for static crane Figure 4.1 Figure 4.2 4.3.2 On rails Figure 4.3 4.3.3 Expendable base (pad base) for static crane Figure 4.4 Figure 4.5 Figure 4.6 4.3.4 Climbing 4.4. Foundation design principles 4.5. Foundation construction and inspection References BSI (British Standards Institution) (2002) BSI (2004a) BSI (2004b) BSI (2012) BSI (2014) BSI (2015) BSI (2019) CIRIA (2018) CPA (Construction Plant-hire Association) (2015) DIN (Deutsches Institut für Normung) (1984) FEM (European Materials Handling Federation) (1998) FEM (2014) Skinner H, Watson T, Dunkley B and Blackmore P (2006) UK Government (2015) Further reading BSI (2006) CPA (2009) CPA (2009) HSE (Health and Safety Executive) (2010) Chapter 5 Site roads and working platforms 5.1. Introduction Figure 5.1 5.2. Site roads: principles and design 5.2.1 Alignment 5.2.2 Traffic loading Table 5.1 5.2.3 Ground conditions 5.2.4 Formulating the design Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 5.3. Working platforms: principles and design Figure 5.6 5.3.1 Working platforms for tracked plant Figure 5.7 5.4. Temporary roads for public use 5.5. Construction 5.5.1 Materials and maintenance 5.5.2 Drainage References Black WPM and Lister NW (1979) BRE (Building Research Establishment) (2004) Britpave (British Cementitious Paving Association) (2007) BSI (British Standards Institution) (2001) Chaddock BCJ and Atkinson VM (1997) Garvin S (2016) Giroud JP and Noiray L (1981) HA (Highways Agency) (1998) HA (2006) HA (2007) HA (2009) Mayhew HC and Harding HM (1987) Powell WD, Potter JF, Mayhew HC and Nunn ME (1984) Tensar (2017a) Tensar (2017b) Terram (2017) WRAP (Waste and Resources Action Programme) (2013) Further reading Britpave (British Cementitious Paving Association) (2007) Jewell RA (1996) WRAP (Waste and Resources Action Programme) (2006) Chapter 6 Control of groundwater 6.1. Introduction 6.2. Techniques 6.2.1 Selection of appropriate technique 6.2.2 Sump pumping: extraction from the surface of the excavation Figure 6.1 6.2.3 Deep wells, wellpoints and ejectors: extraction from below the excavation Figure 6.2 Figure 6.3 Figure 6.4 6.2.4 Filters 6.2.5 Hazards 6.2.6 Recharge 6.2.7 Monitoring and maintenance 6.2.8 Consents 6.3. Investigation for dewatering 6.4. Analysis and design 6.4.1 Steps in analysis and design 6.4.2 Permeability 6.4.3 Analysis of pumped well dewatering systems Figure 6.5 References Bond A (ed.) (1994) Preene M, Roberts TOL and Powrie W (2016) Roberts TOL and Preene M (1994) Further reading Roberts TOL and Preene M (1994) Chapter 7 Lime and cement stabilisation 7.1. Introduction 7.2. Materials and their effects on the soil 7.2.1 Lime Figure 7.1 7.2.2 Cement Figure 7.2 7.2.3 Blends 7.3. The performance of treated soils 7.3.1 Soil modification 7.3.2 Soil stabilisation 7.4. Testing 7.5. Plant Figure 7.3 7.6. Health and safety References Bell FG (1988) Christensen AP (1969) Highways Agency (1991) Highways Agency (2007) Longworth I (2004) Perry J, MacNeil D and Wilson P (1996a) Perry J, Snowdon R and Wilson P (1996b) Further reading BRE (Building Research Establishment) (2005) BSI (British Standards Institution) (2012) BSI (2013) BSI (2018) BSI (2018) Mitchell J and Jardine FM (2002) Chapter 8 Jet grouting 8.1. Introduction Figure 8.1 Figure 8.2 8.2. Construction methods 8.3. Design principles 8.3.1 Material properties 8.3.2 Design of the treated mass Figure 8.3 8.3.3 Design verification 8.4. Monitoring and validation 8.5. Secondary and side effects 8.5.1 Ground heave and hydrofracture 8.5.2 Reaction with the ground 8.5.3 Spoil disposal References Berry GL, Shirlaw JN, Hayata K and Tan SH (1987) BSI (British Standards Institution) (2001) Coupland J (2010) de Wit JCM, Bogaards PJ, Langhorst OS et al. (2007a) de Wit JCM, Bogaards PJ, Langhorst OS et al. (2007b) Josifovski J, Susinov B and Markov I (2015) Stark TD, Axtell PJ, Lewis JR et al. (2009) Further reading Bell AL (ed.) (1994) Chapter 9 Artificial ground freezing 9.1. Introduction 9.2. Construction principles 9.2.1 Methods of ground freezing Figure 9.1 Figure 9.2 9.2.2 Advantages and disadvantages 9.3. Design principles 9.3.1 Introduction Figure 9.3 9.3.2 Thermal behaviour 9.3.3 Structural design 9.3.4 Practical aspects of design Figure 9.4 9.4. The effects of freezing and thawing Figure 9.5 9.5. Monitoring Acknowledgements References Haasnoot J (2010) Harris JS (1995) Kofoed N and Doran SR (1995) Viggiani GMB and Casini F (2015) Further reading Auld FA, Belton J and Allenby D (2015) BGFS (British Ground Freezing Society) (1995) BTS/ICE (British Tunnelling Society/Institution of Civil Engineers) (2010) Chapter 10 Slope stability in temporary excavations 10.1. Introduction Figure 10.1 10.2. The consequences of failure 10.3. Construction principles 10.4. Design principles - some simple fundamentals 10.4.1 The nature of fine- and coarse-grained soil Figure 10.2 10.4.2 Effects of groundwater 10.4.3 Geotechnical categories Figure 10.3 10.4.4 Design for soil slopes of ‘small’ size 10.4.5 Design for soil slopes of ‘medium’ size Figure 10.4 Table 10.1 10.4.6 Design of rock slopes 10.5. Monitoring References Bishop AW (1954) BSI (British Standards Institution) (2004) BSI (2014) BSI (2015) Janbu N (1954) Kovacevic N, Hight DW and Potts DM (2004) Kovacevic N, Hight DW and Potts DM (2007) Pettifer GS and Fookes PG (1994) Smith CC and Gilbert M (2007) Tomlinson MJ (2001) Further reading Bromhead E (1992) Hoek E and Bray JW (1981) Chapter 11 Sheet piling 11.1. Major alternatives 11.2. Types of steel sheet piling Figure 11.1 11.3. Installing sheet piles Figure 11.2 11.3.1 Open trench 11.3.2 Dig and push 11.3.3 Vibrators 11.3.4 Percussive or impact hammers 11.3.5 Hydraulic pushing 11.3.6 Driving aids Figure 11.3 11.3.7 Water control 11.3.8 Extracting piles 11.3.9 Cofferdams Figure 11.4 11.4. Eurocode 7 11.5. Design 11.5.1 Stresses due to applied loads 11.5.2 Limit equilibrium methodology 11.5.3 The installation and removal sequence 11.5.4 Deflection 11.5.5 Corrosion protection 11.5.6 Workmanship, construction tolerances 11.5.7 Framing and anchor support loads 11.5.8 Tension cracks 11.5.9 Thermal effects 11.5.10 Releasing strut and anchor loads 11.5.11 Circular cell structures 11.5.12 Twin-wall cofferdams and other gravity structures 11.5.13 Site constraints 11.5.14 Driveability 11.5.15 Design sequence 11.5.16 Partial factors that may be considered for use in sheet piling design 11.5.17 Other allowances suggested in the design 11.6. Inspection and maintenance 11.7. Plastic sheet piles References ArcelorMittal (2008) ArcelorMittal (2016) BSI (British Standards Institution) (1969) BSI (1990) BSI (1996a) BSI (1996b) BSI (1999) BSI (2002) BSI (2003) BSI (2004a) BSI (2004b) BSI (2004c) BSI (2006a) BSI (2006b) BSI (2014) BSI (2015) BSI (2019) CIRIA (Construction Industry Research and Information Association) (1995) Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017) ICE (Institution of Civil Engineers) (2016) UK Government (1974) UK Government (2015) Williams B and Waite D (1993) Further reading ArcelorMittal (2004) ArcelorMittal (2014) ArcelorMittal (2016) BSI (British Standards Institution) (2010) BSI (2015) BSI (2015) Byfield M and Mawer R (2001) Dawson R (2001) Day RA and Potts DH (1989) Driscoll R, Scott P and Powell J (2009) Filip RK (2004) Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017) ICE (Institution of Civil Engineers) (1996) Packshaw S (1962) Padfield CJ (1984) Rowe PW (1955) Rowe PW (1957) Symons IF, Little JA, McNulty TA, Carder DR and Williams SGO (1987) ThyssenKrupp GfT Bautechnik (2010) Yau JHW and McNicholl DP (1990) Chapter 12 Trenching 12.1. Introduction 12.1.1 Major alternatives 12.1.2 Soils 12.1.3 Battering trenches 12.1.4 Risks, planning and construction 12.2. Techniques 12.2.1 Traditional timbering 12.2.2 Trench and drag boxes Figure 12.1 12.2.3 Vertical shores Figure 12.2 Figure 12.3 12.2.4 Trench sheets and hydraulic waling frames Figure 12.4 12.2.5 Post and plank vertical H-sections 12.3. Design to CIRIA 97 trenching practice Figure 12.5 Figure 12.6 12.4. Controlling water References BSI (British Standards Institution) (2000) BSI (2004a) BSI (2004b) BSI (2015) BSI (2019) Irvine DJ and Smith RJH (1983) Terzaghi K and Peck R (1996) TRADA (Timber Research and Development Association) (1990) UK Government (2015) Watson TJ (1987) Further reading ArcelorMittal (2016) BSI (British Standards Institution) (2002) BSI (2015) CPA (Construction Plant-hire Association) (2001) CPA (2004) CPA (2016) Department for Transport (2000) HSE (Health and Safety Executive) (1997) HSE (1997) HSE (1999) HSE (2000) HSE (2009) HSE (2012) HSE (2013) Mackay EB (1986) Preene M (2000) Sommerville SH (1986) ThyssenKrupp GfT Bautechnik (2010) UK Government (1991) Chapter 13 Diaphragm walls 13.1. Introduction 13.2. Applications 13.3. Construction methods and plant 13.3.1 Planning 13.3.2 Site preparation Figure 13.1 13.3.3 Working platforms 13.3.4 Guide walls 13.3.5 Support fluid 13.3.6 Reinforcement cages Figure 13.2 Figure 13.3 13.3.7 Concreting 13.3.8 Grabs (rope and hydraulic) Figure 13.4 Figure 13.5 13.3.9 Hydrofraise/hydromill/trenchcutter Figure 13.6 Figure 13.7 13.3.10 Panel joints (stop ends) 13.4. Design 13.4.1 Scope 13.4.2 Geotechnical model 13.4.3 Embedded retaining wall design 13.4.4 Vertical capacity of walls 13.4.5 Reinforcement design 13.4.6 Watertightness and wall toe level for groundwater cut-off 13.4.7 Observation method References Bolton M, Lam SY and Vardanega PJ (2010) BSI (British Standards Institution) (2004a) BSI (2004b) BSI (2010) BSI (2015) EFFC/DFI (European Federation of Foundation Contractors/Deep Foundations Institute) (2016) Fernie R and Suckling T (1996) Fernie R, Shaw SM, Dickson RA et al. (2001) Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017) Huder H (1972) ICE (Institution of Civil Engineers) (2009) ICE (2017) Nicholson D, Tse CM and Penny C (1999) Potts DM and Burland JB (1983) Further reading BSI (British Standards Institution) (1997) BSI (2009) BSI (2015) Powrie W and Batten M (2000) Puller MJ (1994) Puller MJ (2003) Twine D and Roscoe H (1999) Chapter 14 Contiguous and secant piled walls 14.1. Introduction 14.1.1 Contiguous pile wall 14.1.2 Secant pile wall: hard/soft or hard/firm Figure 14.1 Figure 14.2 14.1.3 Secant wall: hard/hard Figure 14.3 14.2. Applications 14.3. Construction methods and plant 14.3.1 General considerations Figure 14.4 Figure 14.5 14.3.2 Site preparation 14.3.3 Working platforms 14.3.4 Guide walls 14.3.5 Pile construction techniques 14.3.6 Reinforcement cages 14.3.7 Concreting 14.4. Design 14.4.1 Scope 14.4.2 Temporary support for lateral wall stability 14.4.3 Instrumentation Figure 14.6 14.4.4 Reinforcement design 14.4.5 Watertightness and wall toe level for groundwater cut-off (secant walls only) 14.4.6 Vertical capacity of walls 14.4.7 Other aspects References BSI (British Standards Institution) (2004a) BSI (2004b) BSI (2009) BSI (2010) BSI (2015) EFFC/DFI (European Federation of Foundation Contractors/Deep Foundations Institute) (2016) Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017) ICE (Institution of Civil Engineers) (2016) Nicholson D, Tse CM and Penny C (1999) Further reading BSI (British Standards Institution) (1997) BSI (2015) ICE (Institution of Civil Engineers) (2009) ICE (2016) Powrie W and Batten M (2000) Puller MJ (2003) Twine D and Roscoe H (1999) Chapter 15 Caissons and shafts 15.1. Introduction 15.2. Major alternatives 15.3. Common methods of construction 15.3.1 Underpinning Figure 15.1 15.3.2 Caisson sinking Figure 15.2 Figure 15.3 Figure 15.4 Figure 15.5 15.3.3 Pre-cast roof slabs 15.4. Principles of design References BTS (British Tunnelling Society) (2004) BTS/ICE (British Tunnelling Society/Institution of Civil Engineers) (2010) Further reading BSI (British Standards Institution) (2011) Chapter 16 Bearing piles 16.1. Introduction 16.2. Types and installation 16.2.1 Use of bearing piles in temporary works 16.2.2 Installation methods 16.3. Design principles 16.3.1 Ground parameters Figure 16.1 Figure 16.2 16.3.2 Load factors 16.3.3 Loadings 16.3.4 Analytical process 16.3.5 Installation tolerances and site constraints References ArcelorMittal (2016) BSI (British Standards Institution) (2004) BSI (2015) BSI (2019) ICE (2016) Lord JA, Clayton CRI and Mortimore RN (2002) Lord A, Hayward T and Clayton CRI (2003) SCI (Steel Construction Institute) (1989) Tomlinson MJ (1994) Tomlinson MJ and Woodward J (2008) Further reading AGS (Association of Geotechnical and Geoenvironmental Specialists) (2006) Atkinson JH (1993) BSI (British Standards Institution) (2000) BSI (2000) BSI (2004) BSI (2005) BSI (2007) BSI (2007) BSI (2009) BSI (2009) BSI (2015) Fleming WGK, Randolph M, Weltman A and Elson K (2009) FPS (Federation of Piling Specialists) (2006) Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017) Healy PR and Weltman AJ (1980) ICE (Institution of Civil Engineers) (2016) Jardine R, Chow F, Overy R and Standing J (2005) Tomlinson MJ (1995) Turner MJ (1997) Chapter 17 Jetties and plant platforms 17.1. Introduction 17.2. Solid structure 17.2.1 Mass fill gravity platform or jetty structure Figure 17.1 Figure 17.2 17.2.2 Sheet piled platform or jetty structure 17.3. Open jetty structure Figure 17.3 Figure 17.4 17.4. Floating jetties Figure 17.5 Figure 17.6 17.4.1 Mooring points 17.4.2 Connections Figure 17.7 Figure 17.8 17.4.3 Consents 17.4.4 Interface with site team 17.4.5 Installation of piles 17.5. Loadings 17.5.1 Self-weight 17.5.2 Plant Figure 17.9 17.5.3 Environmental loadings 17.6. Analysis References BSI (British Standards Institution) (2005) BSI (2012) BSI (2013a) BSI (2013b) BSI (2019) Gaba AR, Simpson B, Powrie W and Beadman DR (2003) HA (Highways Agency) (2001) Further Reading Blake LS (2004) Ehrlich LA (1982) Elson WK (1984) Williams BP and Waite D (1993) Chapter 18 Floating plant 18.1. Introduction 18.2. Types and uses 18.2.1 Pontoons and barges Figure 18.1 Figure 18.2 18.2.2 Lightweight modular systems 18.2.3 Jack-up barges Figure 18.3 Figure 18.4 18.2.4 Other 18.3. Design principles 18.3.1 General stability principles Figure 18.5 Figure 18.6 Figure 18.7 18.3.2 Design of jack-up barges References Bennett WT, Hoyle MJR and Jones DE (1994) Hathrell JAE (1968) Tupper EC (2004) Webber NB (1990) Further reading Blake LS (1994) Chapter 19 Temporary bridging 19.1. Introduction 19.2. Temporary bridge types 19.2.1 Historical: the Bailey bridge 19.2.2 Proprietary bridging systems Figure 19.1 Figure 19.2 Figure 19.3 19.2.3 Special designs 19.2.4 Foundations types and intermediate supports Figure 19.4 19.3. The design process 19.3.1 Programme 19.3.2 Loading 19.3.3 Cross-section and span considerations Figure 19.5 19.3.4 Detailed design and checking 19.3.5 Design standards and strength data 19.3.6 Client technical approval 19.3.7 Other design considerations 19.4. Transportation and construction 19.4.1 Transportation 19.4.2 Range of installation methods available Figure 19.6 19.4.3 Site planning and execution 19.5. Other applications of temporary bridging parts References BSI (British Standards Institution) (2003) BSI (2019) Highways Agency (2001) Further reading Harpur J (1991) Joiner JH (2001) Network Rail (2012) Chapter 20 Heavy moves 20.1. Introduction 20.1.1 Programme savings Figure 20.1 20.1.2 Improved safety 20.1.3 Improved quality 20.1.4 Cost savings 20.2. Techniques 20.2.1 Cranes Figure 20.2 20.2.2 Trailers Figure 20.3 20.2.3 Jacking systems Figure 20.4 Figure 20.5 Figure 20.6 Figure 20.7 20.2.4 Skidding systems Figure 20.8 Table 20.1 20.3. Design 20.3.1 General 20.3.2 Crane lifting design Table 20.2 Table 20.3 20.3.3 Heavy transport using SPMTs References ASME (American Society of Mechanical Engineers) (2000) BSI (British Standards Institution) (1998-2016) DNV (Det Norske Veritas) (2000) HSE (Health and Safety Executive) (2013) UK Government (1989) Further reading Bates GE, Hontz RM and Brent G (1998) BSI (1998-2016) CIRIA (Construction Industry Research and Information Association) (1977) Energy Networks Association (2007) GL Noble Denton (2010) Lloyd D (ed.) (2003) MacDonald JA, Rossnagel WA and Higgins LA (2009) Shapiro H, Shapiro JP and Shapiro LK (1999) UK Government (1998) UK Government (1998) Chapter 21 Access and proprietary scaffolds 21.1. Introduction 21.2. Managing scaffolding 21.3. Selection and designation 21.3.1 Selection Figure 21.1 21.3.2 Designation 21.4. Materials and components 21.4.1 Scaffold tube Table 21.1 21.4.2 Scaffold fittings Table 21.2 Figure 21.2 21.4.3 Proprietary scaffolds 21.5. Scaffold design 21.5.1 General 21.5.2 Permissible stress or limit state design 21.5.3 Loading on scaffolds 21.5.4 Design of tube and fitting scaffolds Table 21.3 Figure 21.3 21.5.5 Design of proprietary system scaffolds Figure 21.4 Figure 21.5 21.6. Workmanship and inspections References BSI (British Standards Institution) (1990a) BSI (1990b) BSI (2001) BSI (2003a) BSI (2003b) BSI (2003c) BSI (2005a) BSI (2005b) BSI (2005c) BSI (2006) BSI (2008) BSI (2019) NASC (National Access & Scaffolding Confederation)&cb0; (2008) NASC (2013a) NASC (2013b) NASC (2013c) NASC (2014a) NASC (2014b) NASC (2016a) NASC (2016b) UK Government (1974) UK Government (1994) UK Government (2005) UK Government (2007) UK Government (2015) Chapter 22 Falsework 22.1. Introduction 22.1.1 Permissible stress versus limit state 22.1.2 Choice of standard 22.1.3 Use of BS 5975:2019 - permissible stress 22.1.4 Use of BS EN 12812:2008 - limit state 22.2. Materials and components 22.2.1 Proprietary falsework equipment Figure 22.1 Figure 22.2 22.2.2 Scaffold tube and fittings 22.2.3 Adjustable telescopic props 22.3. Loads on falsework 22.3.1 General 22.3.2 Permanent loads 22.3.3 Imposed loads 22.3.4 Loading from construction operations Figure 22.3 22.3.5 Environmental loads 22.3.6 Indirect loads: settlement and elastic shortening 22.3.7 Minimum horizontal disturbing force 22.3.8 Variable persistent horizontal imposed load 22.4. Falsework design 22.4.1 Method of analysis 22.4.2 General Figure 22.4 22.4.3 Check 1: Structural strength 22.4.4 Check 2: Lateral stability 22.4.5 Check 3: Overall stability 22.4.6 Check 4: Positional stability Figure 22.5 22.4.7 Difference between fully and partially braced falsework 22.4.8 Erection tolerance 22.5. Workmanship and inspections References Bragg SL (1975) BSI (British Standards Institution) (1999) BSI (2002) BSI (2003) BSI (2004) BSI (2005a) BSI (2005b) BSI (2008) BSI (2016) BSI (2019) Burrows M, Clark L, Pallett P, Ward R and Thomas D (2005) CONSTRUCT (Concrete Structures Group) (2003) CS (Concrete Society) (1999) CS (2012) CS/ISE (Concrete Society/Institution of Structural Engineers) (1971) Chapter 23 Formwork 23.1. Introduction 23.2. Vertical formwork Figure 23.1 23.3. Economy 23.4. Specifications and finishes Table 23.1 23.5. Tolerances/deviations 23.6. Formwork materials 23.6.1 Face contact material 23.6.2 Bearers 23.6.3 Soldiers 23.6.4 Formwork ties Figure 23.2 23.6.5 Proprietary panels 23.6.6 Release agents Figure 23.3 23.7. Concrete pressure calculation 23.7.1 General Figure 23.4 23.7.2 Effect of stiffening of the concrete Figure 23.5 23.7.3 The pressure of concrete on formwork Table 23.2 Table 23.3 23.8. Wall formwork design 23.8.1 Double-faced formwork Figure 23.6 Figure 23.7 23.8.2 Stability of formwork 23.8.3 Single-faced formwork Figure 23.8 Figure 23.9 23.9. Column formwork design 23.10. Striking vertical formwork 23.11. Workmanship/checking References BSI (British Standards Institution) (2009) CIRIA/CS (Construction Industry Research and Information Association/Concrete Society) (2000) CONSTRUCT (Concrete Structures Group) (2008) CONSTRUCT (2010) CS (Concrete Society) (1999) CS (2003) CS (2012) Dhir RK, McCarthy MJ, Caliskan S and Ashraf MK (2004) HA (Highways Agency) (2004) Harrison TA and Clear C (1985) National Building Specification (annually) Pallett PF (2009) UK Government (2005) UK Government (2015) UKWIR (UK Water Industry Research) (2011) Further reading BRE (Building Research Establishment) (2007) Chapter 24 Soffit formwork 24.1. Introduction 24.2. Preamble to soffit form design 24.2.1 General Figure 24.1 24.2.2 Specification and finishes 24.2.3 Equipment selection Figure 24.2 Figure 24.3 24.3. Loading on soffit forms 24.3.1 Vertical 24.3.2 Horizontal 24.3.3 Notional force 24.4. Design Figure 24.4 24.5. Cantilevered soffits Figure 24.5 24.6. Striking soffit formwork 24.6.1 General Table 24.1 24.6.2 Striking bridge soffits 24.6.3 Striking slabs up to 350 mm thick Figure 24.6 Figure 24.7 24.6.4 Sequence of striking 24.7. Assessment of concrete strength Figure 24.8 24.8. Checking and inspection References Beeby AW (2000) BCA (British Cement Association) (2000) BSI (British Standards Institution) (2008) BSI (2009) BSI (2011) BSI (2019) CONSTRUCT (Concrete Structures Group) (2003) CONSTRUCT (2008) CONSTRUCT (2010) CS (Concrete Society) (2012) CS (2014) HA (Highways Agency) (2006) Harrison TA (1995) National Building Specification (annually) Ray SS, Barr J and Clark L (1996) UKWIR (UK Water Industry Research) (2011) Chapter 25 Climbing and slip forms 25.1. Introduction 25.2. Climbing and slip-form viability assessment 25.2.1 General 25.2.2 Economy of construction Figure 25.1 25.2.3 Assessment/suitability of structure 25.2.4 Design 25.3. Climbing formwork 25.3.1 System selection 25.3.2 Climbing/concreting cycle Figure 25.2 25.3.3 Design considerations Figure 25.3 25.4. Slip forms 25.4.1 General Figure 25.4 Figure 25.5 25.4.2 Design considerations 25.5. Climbing protection screens 25.5.1 General 25.5.2 Types of screens Figure 25.6 Figure 25.7 25.5.3 Design considerations 25.6. Checking and inspection References BSI (British Standards Institution) (2005) BSI (2015) CS (Concrete Society) (2008) CS (2012) Further reading BRE (2007) Concrete Society (2014) CONSTRUCT (2010) Chapter 26 Temporary fac¸ade retention 26.1. Introduction 26.2. Philosophy of façade retention 26.2.1 Major alternative 26.2.2 General principles 26.2.3 Party walls 26.2.4 Surveying the existing building 26.3. Types of temporary façade retention schemes 26.3.1 Timber shoring 26.3.2 Scaffolding 26.3.3 Proprietary equipment 26.3.4 Fabricated steelwork 26.3.5 Vertical towers Figure 26.1 Figure 26.2 26.3.6 Horizontal frame arrangements Figure 26.3 26.4. Loads to be considered 26.4.1 General 26.4.2 Vertical loads 26.4.3 Construction operation loads 26.4.4 Impact loads 26.4.5 Wind loading Table 26.1 26.4.6 Notional lateral forces Figure 26.4 26.4.7 Other loads 26.5. Design considerations 26.5.1 General 26.5.2 Overall stability 26.5.3 Deflection criteria 26.5.4 Connections and restraint 26.5.5 Lateral restraint 26.6. Demolition, monitoring and inspection References Alexander SJ and Lawson RM (1981) BRE (Building Research Establishment) (1995) BSI (British Standards Institution) (1997) BSI (2005) BSI (2011a) BSI (2011b) BSI (2019) Bussell M, Lazarus D and Ross P (2003) CIRIA (Construction Industry Research and Information Association) (1986) Goodchild SL and Kaminski MP (1989) Lazarus D, Bussell M and Ross P (2003) Further reading BRE (Building Research Establishment) (1991-1992) BSI (British Standards Institution) (1981) BSI (1993) BSI (2015) Doran D, Douglas J and Pratley R (2009) Gilbertson A (2017) Highfield D (1991) Historic England (2016) HSE (Health and Safety Executive) (1984) HSE (1985) HSE (2006) Knight LR (1984) Lamsden BS (1988) NSWC (New South Wales Construction) (1992) Perry JG (1994) Thorburn S and Littlejohn GS (1992) UK Government (1990) UK Government (2015) Chapter 27 Bridge installation techniques 27.1. Introduction 27.2. Preparation and selection of installation technique 27.3. Partial deck erection schemes 27.3.1 Large crane erection to single and multi-span bridges Figure 27.1 27.3.2 Pre-cast concrete arch Figure 27.2 27.4. Deck erection as a single unit 27.4.1 Launching Figure 27.3 Figure 27.4 27.4.2 Self-propelled modular transporter (SPMT) Figure 27.5 27.5. Bridge and deck erection by tunnelling and mining 27.5.1 General description of erection technique 27.5.2 Base requirements 27.5.3 Risks and opportunities 27.5.4 Design considerations Figure 27.6 27.6. Segmental bridge construction Figure 27.7 References Barnes JN and Gill JC (2018) BTS/ICE (British Tunnelling Society/Institution of Civil Engineers) (2010) Carney CT (2015) NCE (New Civil Engineer) (2005) Oliveira PJJ and Reis AJ (2016) Parag CD, Frangopol DM, Nowak AS (1999) Further reading Allenby D and Ropkins JWT (2015) Rosignoli M (2002) Troyano LF (2003) Watt D (2017) Chapter 28 Backpropping 28.1. Introduction 28.2. The theory Figure 28.1 Figure 28.2 28.3. Loads (actions) to be considered 28.4. Research 28.4.1 European Concrete Building Project (ECBP) 28.4.2 Latest research 28.4.3 Pre-loading backprops 28.5. Methodology - multi-storey construction 28.5.1 General 28.5.2 Left-in-place prop-and-panel systems 28.5.3 Struck-and-moved props Figure 28.3 28.5.4 One-for-one or 50% fewer backprops 28.5.5 Concrete slab strength 28.5.6 Slab stiffness 28.6. Calculation methods - flat slabs 28.6.1 Method One - Revised 28.6.2 Method Two 28.6.3 Method Three Figure 28.4 28.6.4 Method Four 28.7. With one level of backpropping 28.8. With two levels of backpropping 28.9. Worked examples - multi-storey construction 28.10. Methodology - heavy construction Figure 28.5 28.11. Conclusion References Alexander R (2004) BRE (Building Research Establishment) (2000) BSI (2019) CONSTRUCT (2003) CS (Concrete Society) (2012a) CS (2012b) HSE (2015) Pallett PF (2017) UK Government (2015) Vollum R (2008) Further reading BCA (British Cement Association) (2000) BCA (2001) Beeby AW (2001) Chapter 29 Pressure testing of pipelines 29.1. Introduction Figure 29.1 29.2. Gravity sewer pipelines 29.3. Pressure pipelines Table 29.1 29.4. Design 29.4.1 Preventing injury and damage 29.5. Can restraint be provided without temporary works? 29.6. If temporary works are required, what are the options? 29.6.1 Propping of existing structures 29.6.2 Constructing new structures 29.6.3 Design of steel supports 29.7. Design of thrust blocks Figure 29.2 29.8. Internal (puddle) flanges 29.9. On-site safety considerations 29.9.1 Testing procedures Figure 29.3 References BSI (British Standards Institution) (1988) BSI (1989) BSI (2000) BSI (2007) BSI (2009) BSI (2010) BSI (2011) BSI (2015a) BSI (2015b) DIPRA (Ductile Iron Pipe Research Association) (2016) HSE (Health and Safety Executive) (2012) Southern Water (2018) Thorley ARD and Atkinson JH (1994) UK Government (1998) UK Government (2015) UKWIR (2011) Water UK (2015) WRc (2012) Further reading BSI (British Standards Institution) (1997) BSI (1999) BSI (2010) UK Government (1999) UK Government (2010) Chapter 30 Basement construction 30.1. Introduction 30.2. General planning considerations prior to work commencing Figure 30.1 30.3. Constructing a basement in open cut 30.4. Constructing a basement in a supported excavation 30.5. Constructing a basement beneath an existing building or next to adjacent buildings 30.6. Temporary retaining wall Figure 30.2 Figure 30.3 30.7. Support scheme to retaining wall Figure 30.4 Figure 30.5 30.8. Top-down construction 30.9. Other design considerations References ArcelorMittal (2016) BSI (British Standards Institution) (2009) BSI (2019) Gilbertson A (2017) UK Government (2015) Further reading Admiral H and Corano A (2018) ArcelorMittal (2004) ArcelorMittal (2014) ArcelorMittal (2016) BSI (British Standards Institution) (2004) BSI (2004) BSI (2004) BSI (2009) BSI (2010) BSI (2015) Concrete Centre (2012) EFFC/DFI (European Federation of Foundation Contractors/Deep Foundations Institute) (2016) Filip RK (2006) Gaba A, Hardy S, Doughty L, Powrie W and Selemetas D (2017) HSE (Health and Safety Executive) (2012) ICE (Institution of Civil Engineers) (2009) ICE (2016) LABC (2014) NHBC (2011) Nicholson D, Tse CM and Penny C (1999) Powrie W and Batten M (2000) Puller MJ (2003) Twine D and Roscoe H (1999) UK Government (1990) UK Government (1990) UK Government (1996) Chapter 31 Digital project delivery – visual planning and BIM 31.1. Introduction 31.2. Basics of building information modelling 31.3. BIM and communication Figure 31.1 31.4. Key issues 31.5. Methods and techniques 31.5.1 Initial baseline information Figure 31.2 Figure 31.3 Figure 31.4 31.5.2 3D/4D modelling 31.5.3 Virtual reality, augmented reality and mixed reality Figure 31.5 Figure 31.6 Figure 31.7 31.6. Managing and minimising risk 31.7. Example - temporary substation Figure 31.8 Figure 31.9 Figure 31.10 Figure 31.11 31.8. High-quality animations Figure 31.12 Figure 31.13 Figure 31.14 31.9. Operations and future maintenance 31.10. Communication and engagement 31.11. Training and support References BSI (British Standards Institution) (2007) BSI (2019) HSE (Health and Safety Executive) (2011) Smith DJ (2017) Further reading BSI (British Standards Institution) (2013) BSI (2014) Chapter 32 Rebar stability 32.1. Introduction Figure 32.1 Figure 32.2 Table 32.1 32.2. Potential problems and modes of failure Figure 32.3 32.3. Common solutions 32.4. Design 32.5. Design rules 32.6. Structural behaviour of cages 32.7. Design solutions - walls 32.8. Wind loading 32.9. On-site inspections 32.10. Ties References BSI (British Standards Institution) (1999-2017) BSI (2001) BSI (2005) BSI (2019) TWf (Temporary Works Forum) (2013) UK Government (1998a) UK Government (1998b) UK Government (2015) Further reading BSI (British Standards Institution) (2005) BSI (2005) BSI (2005) BSI (2006) BSI (2006) Tubman J (1995) Chapter 33 Needling and forming openings inwalls 33.1. Introduction 33.2. Assessment of the building 33.3. Is support required? 33.4. Assessing the loads to be supported Figure 33.1 33.5. Responsibility for temporary works 33.6. Simple temporary works solutions 33.7. Needling schemes Figure 33.2 Figure 33.3 Figure 33.4 Figure 33.5 33.8. Propping to needles 33.9. Sequence of removal of needles 33.10. On-site checklist References BSI (British Standards Institution) (1969) BSI (1981) BSI (2011) BSI (2019) Gilbertson A (2017) HSE (2015) Further reading BRE (Building Research Establishment) (1991) BRE (1991) BRE (1992) BRE (1992) BRE (1992) BRE (1995) BRE (1999) BRE (1999) BSI (British Standards Institution) (1999) BSI (2015) CIRIA (Construction Industry Research and Information Association) (1994) HSE (Health and Safety Executive) (1990) HSE (2004) HSE (2006) NASC (National Access & Scaffolding Confederation)&cb0; (2013) Chapter 34 Temporary works in demolition 34.1. Introduction 34.2. Understand the structure Figure 34.1 Figure 34.2 Figure 34.3 34.3. Demolition 34.3.1 General 34.3.2 Progressive demolition 34.3.3 Deliberate collapse mechanism Figure 34.4 34.3.4 Deliberate collapse of steel structures 34.3.5 Deliberate collapse of concrete structures 34.3.6 Key points for pre-weakening 34.4. Temporary works for demolition 34.4.1 Site perimeter 34.4.2 Scaffold for demolition 34.4.3 Working platforms for high-reach machines Figure 34.5 Figure 34.6 34.4.4 Propping for demolition plant Figure 34.7 34.4.5 Temporary vertical propping Figure 34.8 34.5. Load testing of slabs 34.6. Moving plant between floors 34.7. Structural stability during demolition 34.7.1 General 34.7.2 Stability of prefabricated and large panel structures 34.8. Basement stability and shoring during demolition Figure 34.9 34.9. Column removal/structural openings Figure 34.10 34.10. Conclusion References BRE (Building Research Establishment) (2004) BSI (British Standards Institution) (2011) BSI (2019) Currie RJ, Armer CST and Moore JFA (1987a) Currie RJ, Armer CST and Moore JFA (1987b) NFDC (National Federation of Demolition Contractors) (2012) NFDC (2014a) NFDC (2014b) TWf (Temporary Works Forum) (2012) Further reading Clarke R (2010) 35 Index