ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Technical Advances in Minimally Invasive Spine Surgery: Navigation, Robotics, Endoscopy, Augmented and Virtual Reality

دانلود کتاب پیشرفت های فنی در جراحی ستون فقرات کم تهاجمی: ناوبری، رباتیک، آندوسکوپی، واقعیت افزوده و مجازی

Technical Advances in Minimally Invasive Spine Surgery: Navigation, Robotics, Endoscopy, Augmented and Virtual Reality

مشخصات کتاب

Technical Advances in Minimally Invasive Spine Surgery: Navigation, Robotics, Endoscopy, Augmented and Virtual Reality

ویرایش: [1st ed. 2022] 
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9811901740, 9789811901744 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 508
[484] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 43 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Technical Advances in Minimally Invasive Spine Surgery: Navigation, Robotics, Endoscopy, Augmented and Virtual Reality به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پیشرفت های فنی در جراحی ستون فقرات کم تهاجمی: ناوبری، رباتیک، آندوسکوپی، واقعیت افزوده و مجازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پیشرفت های فنی در جراحی ستون فقرات کم تهاجمی: ناوبری، رباتیک، آندوسکوپی، واقعیت افزوده و مجازی

این کتاب راهنمای جامعی برای کاربرد فناوری های اخیراً معرفی شده و در حال ظهور در جراحی با حداقل تهاجم ستون فقرات (MISS) است. این فناوری‌ها، از جمله ناوبری دو بعدی و سه بعدی، آندوسکوپی، واقعیت مجازی و افزوده، روباتیک و پرینت سه بعدی، به غلبه بر محدودیت‌های قبلی MISS، مانند منحنی یادگیری شیب‌دار و نیاز به تجربه زیاد برای دستیابی به اهداف کمک می‌کنند. نتایج بهینه در مقایسه با تکنیک‌های سنتی، استفاده از آن‌ها برای کاهش آسیب بافت جراحی موضعی، کاهش استرس جراحی سیستمیک و امکان بازگشت زودتر به عملکرد طراحی شده است. این کتاب گزارش های دقیق و گسترده ای از نقش فن آوری ها و تکنیک های جدید در طیف گسترده ای از نشانه ها ارائه می دهد. در اصل، تمام شرایط ستون فقرات، اعم از دژنراتیو، تروماتیک، یا انکولوژیک، در آینده نزدیک با استفاده از این رویکردها قابل MISS خواهند بود. این کتاب منبع بینش و کمک عملی برای همه جراحانی خواهد بود که صرف نظر از سطح تجربه آنها MISS را انجام می دهند.


توضیحاتی درمورد کتاب به خارجی

This book is a comprehensive guide to the application of recently introduced and emerging technologies in minimally invasive spine surgery (MISS). These technologies, including 2D and 3D navigation, endoscopy, virtual and augmented reality, robotics, and 3D printing, are helping to overcome previous limitations of MISS, such as the steep learning curve and the need for a great deal of experience in order to achieve optimal outcomes. Compared with traditional techniques, their use is designed to reduce local operative tissue damage, alleviate systemic surgical stress, and enable earlier return to function. The book provides detailed and extensively illustrated accounts of the role of the new technologies and techniques in a wide range of indications. In essence, all spine conditions, whether degenerative, traumatic, or oncologic, will in the near future be amenable to MISS using these approaches. The book will be a source of insight and practical assistance for all surgeons who perform MISS, regardless of their level of experience.



فهرست مطالب

Foreword
Foreword
Preface
Contents
List of Contributors
Part I: Navigation Guided Spinal Fusion
	1: History of Navigation Guided Spine Surgery
		1.1	 Introduction
		1.2	 Single and Biplanar Fluoroscopy (Non-navigated)
		1.3	 Navigated Two-Dimensional Fluoroscopy
		1.4	 Fan Beam and Cone Beam Computed Tomography-Based Three-Dimensional Navigation
		1.5	 Robotics
		1.6	 Augmented Reality and Virtual Reality
		1.7	 Conclusion
		References
	2: Navigation Guided Single-Stage Lateral Surgery
		2.1	 Introduction
		2.2	 Published Reports of Single-Stage Lateral Surgery
		2.3	 Single Position Lateral Surgery with Navigation
		2.4	 General Technique
		2.5	 Positioning and Lateral Interbody Cage Placement
		2.6	 Navigated Pedicle Screw Placement
		2.7	 Illustrative Cases
			2.7.1	 Case 1
			2.7.2	 Case 2
			2.7.3	 Case 3
			2.7.4	 Case 4
		References
	3: The Six Pillars of Minimally Invasive Spine Surgery
		3.1	 The Unmet Potential of Minimally Invasive Spinal Surgery
		3.2	 The “6 T’s of MISS”
		3.3	 Target
			3.3.1	 Tools and Technology
			3.3.2	 Surgical Technique
			3.3.3	 Teaching/Training
			3.3.4	 Curriculum Development
			3.3.5	 Testing: Research and Outcomes
			3.3.6	 Talent
		3.4	 Conclusion
		References
	4: MI-TLIF with 3D Navigation
		4.1	 Introduction
		4.2	 Components in Spine Navigation Systems [5]
			4.2.1	 Image Acquisition and Processing Unit
			4.2.2	 Referencing System
				4.2.2.1	 Dynamic Reference Array
				4.2.2.2	 Light-Emitting Diodes
				4.2.2.3	 Tracking System
			4.2.3	 Registration Process
		4.3	 Evolution
		4.4	 Generations of Navigation System [5]
			4.4.1	 First-Generation Spine Navigation
			4.4.2	 Second-Generation Spine Navigation
				4.4.2.1	 3D C-Arm Navigation System
				4.4.2.2	 Cone Beam CT
				4.4.2.3	 Third-Generation Spine Navigation Systems
			4.4.3	 Senior Author’s MIS Navigation Surgical Technique
		4.5	 Indications
			4.5.1	 Operating Room Setup
			4.5.2	 Anaesthesia
			4.5.3	 Positioning
			4.5.4	 3D Navigation Registration
			4.5.5	 Decompression
			4.5.6	 Disc Space Preparation
			4.5.7	 Percutaneous Pedicle Screw and Rod Fixation
			4.5.8	 Post Operative Care
			4.5.9	 Advantages of MIS
		4.6	 Advantages of Navigation-Assisted Surgery
			4.6.1	 Accuracy
			4.6.2	 Radiation Safety
			4.6.3	 Surgical Site Infection
			4.6.4	 Facet Joint Preservation
			4.6.5	 In Obese/Osteoporotic Patients
		4.7	 Concerns with Spine Navigation
			4.7.1	 Operative Time
			4.7.2	 Wobbling and Motion Related Artefacts
			4.7.3	 Distance from Reference Array
			4.7.4	 Cost-Effectiveness
			4.7.5	 Learning Curve
		4.8	 Senior Authors Experience
			4.8.1	 Results
		4.9	 Conclusions
		References
	5: Navigation Guided Oblique Lumbar Interbody Fusion
		5.1	 Indications
		5.2	 Advantages of OLIF Over Other Interbody Fusion Techniques [8]
			5.2.1	 OLIF Vs. TLIF
			5.2.2	 OLIF Vs. Direct/Lateral Lumbar Interbody Fusion (DLIF/LLIF)
		5.3	 Relevant Surgical Anatomy
		5.4	 Advantages of Navigation in OLIF
		5.5	 Technique of OLIF
		5.6	 Complications of OLIF and Tips to Avoid them
		5.7	 Disadvantages of OLIF
		5.8	 Limitations of OLIF
		5.9	 Conclusion
		References
	6: Navigation-Guided Spinal Fusion: MIS Fusion and Reconstruction in Complex Spine Disease and Deformity
		6.1	 Introduction
		6.2	 CT (O-Arm)-Based Navigation Surgery
		6.3	 Mixed Reality-Based Navigation
		6.4	 Augmented Reality-Based Navigation
		References
	7: Single-Stage Lateral Lumbar Interbody Fusion Based on O-arm Navigation
		7.1	 Introduction
		7.2	 Settings and Surgical Techniques
		7.3	 Advantages of Single-Position Anterior and Posterior Lumbar Interbody Fusion
		7.4	 Learning Curve
		7.5	 Future Possibilities of Single-Position Surgery
		References
	8: The Role of 3D Navigation for MIS Cervical Spine Surgery
		8.1	 The 3D Navigation for MIS Cervical Spine Surgery
			8.1.1	 Evolution of Posterior Cervical Fixation
			8.1.2	 Development of Navigation System for Cervical Spine Surgery
			8.1.3	 Development of Navigation Tools
		8.2	 Cervical Pedicle Screw Placement with Navigation
			8.2.1	 CPS Placement with Intraoperative 3D-CT Based Navigation System (O-Arm)
			8.2.2	 The Problems of the Navigated CPS Placement
			8.2.3	 Navigated Surgical Drill for CPS Placement
				8.2.3.1	 CPS Placement with the Use of a Navigated Drill with Use of O-arm
				8.2.3.2	 Clinical Results
				8.2.3.3	 Case Presentation
		8.3	 Minimally Invasive Cervical Pedicle Screw Fixation (MICEPS) via a Posterolateral Approach
			8.3.1	 Minimally Invasive Cervical Pedicle Screw Fixation (MICEPS)
				8.3.1.1	 Instruments and Materials
				8.3.1.2	 Surgical Technique
				8.3.1.3	 Instructions for the Procedure
				8.3.1.4	 Complications
				8.3.1.5	 Clinical Results
			8.3.2	 Advantages of MICEPS
		8.4	 Minimally Invasive C1–C2 Posterior Fixation Via a Posterolateral Approach.
			8.4.1	 Minimally Invasive C1–C2 Posterior Fixation
				8.4.1.1	 Surgical Technique
				8.4.1.2	 Instructions for the Procedure
				8.4.1.3	 Complications
				8.4.1.4	 Clinical Results
			8.4.2	 The Intraoperative 3D Navigation for Minimally Invasive C1–C2 Posterior Fixation
		References
	9: Minimally Invasive Lateral Transpsoas Approach with Intraoperative CT Navigation
		9.1	 Introduction
			9.1.1	 Background
			9.1.2	 3D Navigation with an Intraoperative CT
			9.1.3	 Main Indications and Contraindications
			9.1.4	 Preoperative Assessment and Planning
		9.2	 Description of the Procedure
			9.2.1	 Surgical Technique
				9.2.1.1	 Patient Positioning
				9.2.1.2	 Room and Navigation Setup
				9.2.1.3	 Planning Skin Incision and Performing Initial Dissection
				9.2.1.4	 Deep Dissection and Crossing of the Psoas Muscle
				9.2.1.5	 Discectomy and Implant Insertion
			9.2.2	 Use of Intraoperative CT Navigation
			9.2.3	 IONM Tools
			9.2.4	 Postoperative Management
		9.3	 Outcomes
		9.4	 Complications
		9.5	 General Considerations
		9.6	 Conclusion
		9.7	 Summary
		References
Part II: Navigation Guided MIS Decompressive Spinal Surgery
	10: Navigation Guided MIS Tubular Decompression in Cervical Spine
		10.1	 Introduction
		10.2	 Anatomical Considerations
		10.3	 Indications
		10.4	 Surgical Technique
			10.4.1	 Patient Positioning, Anaesthesia, and Operating Room Set-Up
			10.4.2	 Surgical Procedure
			10.4.3	 Post-operative Care
			10.4.4	 Complications
		10.5	 Conclusion
		References
	11: Navigation-Guided Tubular Decompression in the Lumbar Spine
		11.1	 Introduction
		11.2	 Indications and Contraindications
		11.3	 Operating Room Setup and Localization
		11.4	 Surgical Technique
		11.5	 Case Example 1: Revision Case
		11.6	 Case Example 2: Upper Lumbar Level
		11.7	 Case Example 3: Complex Anatomy
		11.8	 Conclusion
		References
	12: EM-Based Navigation-Guided Transforaminal Endoscopic Lumbar Discectomy
		12.1	 Introduction
		12.2	 Components of the Electromagnetic Navigation System
		12.3	 Indications and Contraindications
			12.3.1	 Indications
			12.3.2	 Contraindications
		12.4	 Surgical Procedure
		12.5	 Case Study
		12.6	 Discussion
		12.7	 Conclusions
		References
	13: Navigation-Guided Endoscopic Lumbar Laminotomy
		13.1	 Introduction
		13.2	 Indications
		13.3	 Operative Procedures
			13.3.1	 Equipment and Instruments
		13.4	 Operative Setting
		13.5	 Surgical Technique
		13.6	 Case Illustration
		13.7	 Discussion
		13.8	 Conclusion
		References
	14: O-arm Navigation-Guided Lumbar Foraminotomy
		14.1	 Introduction
			14.1.1	 Anatomy
			14.1.2	 Options of Full-Endoscopic Lumbar Foraminotomy
			14.1.3	 Indications
		14.2	 Surgical Technique
			14.2.1	 Operating Room Setup
				14.2.1.1	 O-arm Navigation-Guided Transforaminal Endoscopic Lumbar Foraminotomy
				14.2.1.2	 Case Illustration
				14.2.1.3	 O-arm Navigation-Guided Interlaminar Contralateral Endoscopic Lumbar Foraminotomy
				14.2.1.4	 Case Illustration
		14.3	 Pitfalls and Complication Avoidance
		14.4	 Conclusion
		References
	15: EM-based Navigation-Guided Percutaneous Endoscopic Lumbar Foraminoplasty
		15.1	 Introduction
			15.1.1	 Development of Foraminoplasty
			15.1.2	 Anatomical Basis of Lumbar Foraminoplasty
			15.1.3	 The Key Steps of TESSYS Technique
			15.1.4	 Application of Navigation System in Spinal Surgery
		15.2	 Working Principle of EM-Based Navigation
		15.3	 Indications and Contraindications
			15.3.1	 Indications
			15.3.2	 Contraindications
		15.4	 Surgical Tools
		15.5	 Surgical Procedure
		15.6	 Case Study
		15.7	 Discussion
		15.8	 Conclusion
		References
	16: O-Arm Navigation-Guided Endoscopic Cervical Laminoforaminotomy
		16.1	 Introduction
		16.2	 Goal of the Surgery
		16.3	 Patient Selection and Indications [7–10]
		16.4	 Contraindications [7–10]
		16.5	 Setup
			16.5.1	 Information for the Patient
			16.5.2	 Preparation for Surgery
			16.5.3	 Instruments
		16.6	 Surgical Technique
			16.6.1	 Data Acquisition and Registration
			16.6.2	 Access
			16.6.3	 Decompression (Laminoforaminotomy)
		16.7	 Pearls and Pitfalls
			16.7.1	 Neural Structure Injury
			16.7.2	 Intraoperative Bleeding Control
			16.7.3	 Maintaining Navigation Accuracy
		16.8	 Conclusion
		References
	17: Feasibility of Endoscopic Transforaminal Lumbar Interbody Fusion
		17.1	 Introduction
		17.2	 Anatomical Description of Kambin’s Triangle
		17.3	 The Working Zone and Safe Zone
		17.4	 Technical Considerations and Limitations
		17.5	 Conclusion
		References
	18: O-Arm Navigation-Guided Biportal Endoscopic Transforaminal Lumbar Interbody Fusion
		18.1	 Introduction
		18.2	 Basic Concepts
		18.3	 Advantages of Navigation-Guided UBE-TLIF
		18.4	 Surgical Anatomy
		18.5	 Indications and Contraindications
		18.6	 Operative Technique
		18.7	 Discussion
		18.8	 Conclusions
		References
	19: O-Arm Navigation-Guided Endoscopic Oblique Lumbar Interbody Fusion
		19.1	 Introduction
		19.2	 Indications
		19.3	 Contraindications
		19.4	 Operative Procedure
			19.4.1	 Preoperative Planning
			19.4.2	 Equipment and Instruments
			19.4.3	 Operative Flow
			19.4.4	 Endoscope and Its Role in OLIF
		19.5	 Advantages
		19.6	 Disadvantages
		19.7	 Discussion
		19.8	 Conclusion
		19.9	 Case Illustration
		References
	20: Virtu4D Navigation-Guided Endoscopic Transforaminal Lumbar Interbody Fusion and Percutaneous Pedicle Screw Fixation
		20.1	 Historical Perspective
		20.2	 Terminology
		20.3	 Patient Selection
			20.3.1	 General Indications
			20.3.2	 Indications for Endo-TLIF
		20.4	 Pros and Cons of Endo-LIF
			20.4.1	 Pros
			20.4.2	 Cons
		20.5	 Preoperative Planning
			20.5.1	 Examinations
			20.5.2	 Preparation
			20.5.3	 Anesthesia
			20.5.4	 Positioning
			20.5.5	 Technical Equipment
		20.6	 Surgical Procedures
			20.6.1	 Surface Localization of the Surgical Area and Incision Planning
			20.6.2	 Electromagnetic Navigation Registration
			20.6.3	 Anatomical Identification and Exposure
			20.6.4	 Endoscopic Decompression
			20.6.5	 Intervertebral Disc Space Treatment
			20.6.6	 Intervertebral Bone Grafting and Cage Implantation
			20.6.7	 Percutaneous Pedicle Screws Implantation
			20.6.8	 Cleaning the Operating Field
		20.7	 Postoperative Care
		20.8	 Complications
		References
	21: Three-dimensional Endoscopic Spine Surgery Using the Biportal Endoscopic Approach
		21.1	 Introduction
		21.2	 Surgical Instruments and Equipment
		21.3	 Surgical Procedure
		21.4	 Clinical Application
		21.5	 Discussion
		21.6	 Conclusion
		References
	22: Navigation in Spinal Tumor Surgery
		22.1	 Introduction
		22.2	 Applications of Navigation in Spinal Tumor Surgery
			22.2.1	 Localization with Intraoperative CT Scanography
			22.2.2	 Tracking During the Surgical Procedures
		22.3	 Case Illustration
		22.4	 Conclusion
		References
	23: The Usefulness of Navigation in Thoracic Endoscopic Discectomy and Decompression
		23.1	 Introduction
		23.2	 Anatomical Considerations
		23.3	 Indications and Contraindications of Full-Endoscopic Thoracic Decompression
		23.4	 Options of Full-Endoscopic Thoracic Decompression
		23.5	 Surgical Technique
			23.5.1	 Operating Room Setup
			23.5.2	 Navigation Setup
			23.5.3	 Case Illustration: Full-Endoscopic Interlaminar Thoracic Decompression
			23.5.4	 Determine Entry Point and Docking the Endoscope
			23.5.5	 Full-Endoscopic Discectomy and Decompression
		23.6	 Pitfalls and Avoidance of Complications
		23.7	 Conclusion
		References
Part III: Robot-Assisted MISS
	24: Currently Available Robot Systems in Spinal Surgery
		24.1	 Introduction
			24.1.1	 Brief History of Robotic Surgery
		24.2	 Currently Available Technologies
			24.2.1	 Medtronic/Mazor Robotics: Mazor Spine Assist, Renaissance, X
			24.2.2	 Zimmer Biomet/Medtech: ROSA® Spine
			24.2.3	 Globus Medical: ExcelsiusGPS
			24.2.4	 Brainlab: Cirq
			24.2.5	 Other Technologies
		24.3	 Where We Are
		24.4	 Where We Are Going
		24.5	 Conclusion
		References
	25: Evidence of Navigation-Guided/Robot-Assisted Spinal Surgery
		25.1	 Introduction
		25.2	 Computer-Assistant Navigation
		25.3	 Telesurgical Robot System
			25.3.1	 da Vinci
		25.4	 Robotic-Assisted Navigation Systems
			25.4.1	 Mazor: SpineAssist
			25.4.2	 Mazor: Renaissance
			25.4.3	 Mazor: Mazor X
			25.4.4	 ROSA
			25.4.5	 ExcelsiusGPS
			25.4.6	 CUVIS-Spine
		25.5	 Advantages of Robotics and Navigation Systems
		25.6	 Accuracy of Pedicle Screw Placement
		25.7	 Radiation Exposure
		25.8	 Expansion of the Field of Use of Robotic Systems in Spine Surgery
		25.9	 Augmented Reality in Spine Surgery
		25.10	 Conclusion
		References
	26: Workflows for Robotic Surgery in the Lumbar Spine: MIS TLIF
		26.1	 Case History
		26.2	 Surgical Decision-Making
		26.3	 Surgical Workflow
		26.4	 Procedure Description
		References
	27: Recent Advancements in Robot-Assisted Spinal Surgery in China and Future Perspective
		27.1	 Introduction
		27.2	 Clinical Outcomes and Accuracy
		27.3	 TiRobot®
		27.4	 Mazor Renaissance®
		27.5	 Cost-Effectiveness Analysis
		27.6	 Future Perspective
		27.7	 Conclusion
		References
	28: The Role of Robot-Assisted MIS Spinal Deformity Surgery
		28.1	 Case History
		28.2	 Key Challenges
		28.3	 Surgeon’s Rationale
		28.4	 Procedural Steps
		28.5	 Pearls and Tips to Optimize Surgical Planning
		28.6	 Key Points
		References
	29: Endoscopic Robotic Spinal Surgery: Current Status and Future
		29.1	 Introduction
		29.2	 Localization and Access
		29.3	 Robotic Endoscopic Technique
		29.4	 Future Outlook
		29.5	 Conclusions
		References
	30: Robot-Assisted Posterior Endoscopic Cervical Decompression
		30.1	 Introduction
		30.2	 The Composition of the TiRobot
		30.3	 The Key Principle of the TiRobot
		30.4	 Indications and Contraindications
			30.4.1	 Indications
			30.4.2	 Contraindications
		30.5	 Surgical Procedure
		30.6	 Case Study
		30.7	 Discussion
		30.8	 Conclusion
		References
	31: Robot-Assisted Percutaneous Endoscopic Lumbar Interbody Fusion
		31.1	 Introduction
		31.2	 The Key Working Principle of Orthopedic Robot
		31.3	 The Composition of the Robot
			31.3.1	 Robotic Arm System
			31.3.2	 Optical Tracking System
			31.3.3	 Surgical Planning and Navigation System
		31.4	 Indications and Contraindications
			31.4.1	 Indications
			31.4.2	 Contraindications
		31.5	 Surgical Procedure
		31.6	 Case Study
		31.7	 Discussion
		31.8	 Conclusion
		References
	32: Future Perspective of Robot-Assisted Minimally Invasive Spine Surgery
		32.1	 Introduction
		32.2	 Current Products in the Corporate Pipeline
			32.2.1	 NuVasive: Pulse
			32.2.2	 Medtronic: Mazor X Stealth
			32.2.3	 Globus: Excelsius GPS
			32.2.4	 Zimmer Biomet: Rosa ONE
			32.2.5	 Discussion
		32.3	 New Advances in Robotics
			32.3.1	 Remote Surgery
			32.3.2	 Haptic and Auditory Feedback
			32.3.3	 Expanding Procedures for Robotics in MISS
			32.3.4	 Machine Learning (ML) for MISS
				32.3.4.1	 What Is Machine Learning?
				32.3.4.2	 Radiation- and Fluoroscopy-Free Navigation
				32.3.4.3	 Collision Avoidance and Path Planning
				32.3.4.4	 Outcome predictions
		32.4	 Necessity Dictates Innovation: What the Field of MISS Needs
			32.4.1	 Reduction of Cost
			32.4.2	 Increased Portability
			32.4.3	 Better Generalization
		32.5	 Conclusion
		References
Part IV: Augmented and Virtual Reality in Spine Surgery
	33: Current Status of Augmented Reality in the Spine
		33.1	 Introduction
		33.2	 Historical Background
		33.3	 Terminology
		33.4	 Why Do We Need AR Navigation in Spine Surgery?
		33.5	 How to Design a Surgical Navigation System: The Necessary Components
		33.6	 Current Applications of VR, AR, MIXR Navigation
		33.7	 Currently Available AR Navigation Systems
		References
	34: Optimizing Visualization in Endoscopic Spine Surgery
		34.1	 A Global View of Spinal Endoscopy
		34.2	 A Brief History of Light and Endoscopy
		34.3	 The Scientific Foundations of the Modern Spinal Endoscope
			34.3.1	 Transmission of Light
			34.3.2	 Image Visualization and Processing
		34.4	 Methods of Enhanced Visualization
		34.5	 Methods of Direct Tissue Manipulation
			34.5.1	 Topical Chromoendoscopy
			34.5.2	 Endoscopic Tattooing
		34.6	 Methods of Light Transformation
			34.6.1	 Optical Chromendoscopy
			34.6.2	 LASER as a Light Source
		34.7	 A Culmination of Methods: Tissue Manipulation with Light Transformation
			34.7.1	 5-ALA
			34.7.2	 Indocyanine Green
			34.7.3	 Fluorescein
			34.7.4	 Laser Scanning Confocal Endomicroscopy
		34.8	 Methods of Image Processing
			34.8.1	 Three-Dimensional Endoscopy
		34.9	 Looking Forward: The Future of Endoscopic Spinal Surgery
		References
	35: MIS-TLIF with 3D Navigation and Augmented Reality Enhanced
		35.1	 Introduction
			35.1.1	 Preoperative Planning
			35.1.2	 Procedure Steps
		35.2	 Summary
		References
	36: Application of Extended Reality to MIS Lumbar Fusion
		36.1	 Single Position Lateral Surgery with 3D Navigation Enhanced by XR
		36.2	 Extended Reality (XR)
		36.3	 Single Position Lumbar Interbody Fusion in VR Technology
		36.4	 Utility of Augmented Reality (AR) in Spinal Surgery
		36.5	 Intraoperative MR Assistance for PPS in the Lateral Position
		36.6	 Remote Conferencing Using XR Technology (Teleconferencing)
		36.7	 Future Prospects and Challenges of Reality Technology
		References
	37: Technical Feasibility of Augmented Reality in Spinal Tumor Surgery
		37.1	 Introduction
		37.2	 Spinal Tumor Surgery
		37.3	 Intradural Tumors
		37.4	 Extradural Tumors
		References
	38: Future Perspective of Augmented Reality in Minimally Invasive Spine Surgery
		38.1	 Introduction
		38.2	 Segmentation
		38.3	 Hybrid OR and AR
		38.4	 Tracking Technologies
		38.5	 Intraoperative Imaging to Realign Co-registration
		38.6	 Robotics and AR
		38.7	 Machine Learning Technology
		38.8	 Tissue Recognition for MISS and AR Navigation
		References
Part V: Augmented and Virtual Reality in Spine Surgery Training
	39: History and Application of Virtual Reality in Spinal Surgery
		39.1	 Historical Overview of Surgical Simulation
		39.2	 Historical Overview of Virtual Reality in Surgery
		39.3	 First Publications on Spinal Surgery and VR
		References
	40: The Impact of Virtual Reality on Surgical Training
		References
	41: Mixed and Augmented Reality Simulation for Minimally Invasive Spine Surgery Education
		41.1	 Introduction
		41.2	 VR and AR Simulation
		41.3	 AR in Spine Surgery Simulation
		41.4	 AR in Simulation-Based Assessment
		41.5	 Discussion
			41.5.1	 The Goal of the Simulation
			41.5.2	 The Case for AR
			41.5.3	 Current Status of AR Spine Simulation
			41.5.4	 Skills Transfer
			41.5.5	 Economics
		41.6	 Conclusion
		References
	42: Immersive Virtual Reality of Endoscopic and Open Spine Surgery Training
		42.1	 Introduction
		42.2	 Immersive Virtual Reality
			42.2.1	 Haptics and Spine Surgery Training with Immersive Virtual Reality
		42.3	 Endoscopic Spine Surgery Training and Immersive Virtual Reality
			42.3.1	 Skill Acquisition
			42.3.2	 Medical Student
			42.3.3	 Resident
			42.3.4	 Surgeons
			42.3.5	 Summary
		42.4	 Open Spine Surgery Training and Immersive Virtual Reality
			42.4.1	 Medical Student
			42.4.2	 Resident
			42.4.3	 Surgeon
		42.5	 Future Directions
			42.5.1	 Evidence of Training Effectiveness
			42.5.2	 Skill Retention
			42.5.3	 Improved Haptic Interfaces, Commercial Availability, and Cost Analyses
			42.5.4	 Integrative Immersive VR, AR, and MR and Longitudinal Patient Study
		References
	43: Future Applications of Virtual Reality in Spinal Surgery




نظرات کاربران