دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Liudmil Antonov
سری:
ISBN (شابک) : 3527332944, 3527658858
ناشر: Wiley-VCH
سال نشر: 2014
تعداد صفحات: 390
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
کلمات کلیدی مربوط به کتاب توتومریسم: روش ها و نظریه ها: توموریسم.، توموریسم
در صورت تبدیل فایل کتاب Tautomerism: Methods and Theories به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توتومریسم: روش ها و نظریه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با پوشش شکاف بین کتاب های درسی پایه و انتشارات علمی فوق تخصصی،
این اولین مرجع موجود برای توصیف این موضوع بین رشته ای برای
دانشجویان دکترا و دانشمندانی است که در این زمینه شروع می
کنند.
نتیجه یک توصیف مقدماتی است که نمونههای عملی مناسبی از روشهای
اساسی مورد استفاده برای مطالعه فرآیندهای توتومری، و همچنین
نظریههایی را که پدیدههای توتومریسم و انتقال پروتون را توصیف
میکنند، ارائه میکند. همچنین شامل روشهای طیفسنجی مختلف برای
بررسی توتومریسم، مانند UV-VIs، طیفسنجی فلورسانس با زمان
تفکیکشده، و طیفسنجی NMR، بهعلاوه اطلاعات پسزمینه نظری و
عملی است.
با مروری عالی بر روشها، نظریهها و مثالها، این راهنمای عالی
برای هر دانشمندی است که با ترکیبات تومتری در یک زمینه وسیعتر
سروکار دارد.
Covering the gap between basic textbooks and over-specialized
scientific publications, this is the first reference available
to describe this interdisciplinary topic for PhD students and
scientists starting in the field.
The result is an introductory description providing suitable
practical examples of the basic methods used to study
tautomeric processes, as well as the theories describing the
tautomerism and proton transfer phenomena. It also includes
different spectroscopic methods for examining tautomerism, such
as UV-VIs, time-resolved fluorescence spectroscopy, and NMR
spectroscopy, plus the theoretical and practical background
information.
With its excellent overview of the methods, theories and
examples, this is the perfect guide for any scientist dealing
with tautomeric compounds in a wider context.
Content: Preface XV List of Contributors XIX 1 Tautomerism: Introduction, History, and Recent Developments in Experimental and Theoretical Methods 1 Peter J. Taylor, Gert van der Zwan, and Liudmil Antonov 1.1 The Definition and Scope of Tautomerism: Principles and Practicalities 1 1.2 Causes of Reversal in Tautomeric Form: Aromatic Resonance 3 1.3 Causes of Reversal in Tautomeric Form: Lone-Pair and Dipolar Repulsion 4 1.4 Causes of Reversal in Tautomeric Form: Selective Stabilization Through "Far" Intramolecular Hydrogen Bonding 5 1.5 Changes in Tautomeric Form Brought About by Electronegative Substituents 7 1.6 The Influence of Solvent on Tautomeric Form 8 1.7 Tautomeric Equilibrium: Historical Overview of an Analytical Problem 9 1.8 Short Historical Overview of Tautomerization Dynamics 13 1.9 Conclusions and Outlook 19 References 20 2 Absorption UV-vis Spectroscopy and Chemometrics: From Qualitative Conclusions to Quantitative Analysis 25 Liudmil Antonov 2.1 Introduction 25 2.2 Quantitative Analysis of Tautomeric Equilibria 26 2.2.1 Classical Spectrophotometric Analysis, Limitations, and Early Attempts to Find a Solution 26 2.2.2 Quantitative Analysis by Using Bands Decomposition 29 2.2.3 Change in the Environment Affects the Equilibrium: Physical Meaning and Mathematical Expression 33 2.3 Analysis of Real Tautomeric Systems 37 2.3.1 Keto-Enol Tautomerism in 4-(phenyldiazenyl)naphthalen-1-ol: Solvent Effect 37 2.3.2 Keto-Enol Tautomerism in 1-((phenylimino)methyl)naphthalen-2-ol: Verification of the Approach 40 2.3.3 Keto-Enol Tautomerism in 1-(phenyldiazenyl)naphthalen-2-ol and 1-((phenylimino)methyl)naphthalen-2-ol: Effects of the Temperature and the Strength of Intramolecular Hydrogen Bonding 41 2.3.4 Ammonium-Azonium Tautomerism in 4-((4-aminophenyl)diazenyl)-N,N-dimethylaniline: Effect of Protonation and Solvent 43 2.4 Concluding Remarks 46 References 46 3 Studies of Photoinduced NH Tautomerism by Stationary and Time-Resolved Fluorescence Techniques 49 Alexander Kyrychenko, Jerzy Herbich, and Jacek Waluk 3.1 Introduction 49 3.2 Photoinduced Proton/Hydrogen Atom Transfer 50 3.2.1 Direct Intramolecular Proton Transfer Reactions 50 3.2.2 Solvent-Mediated NH Tautomerism 52 3.3 Fluorescence Techniques for Studying Tautomerism 52 3.3.1 Steady-State Fluorescence Methods 52 3.3.2 Time-Resolved Fluorescence Approaches 54 3.3.3 Advanced Techniques in Fluorescence Spectroscopy 54 3.3.3.1 Fluorescence Anisotropy 54 3.3.3.2 Fluorescence Microscopy and Fluorescence Correlation Spectroscopy 55 3.4 Tautomerism in Bifunctional NH/N Azaaromatics 56 3.4.1 Intramolecular NH/N Tautomerization 56 3.4.2 Intermolecular NH/N Tautomerization in Hydrogen-Bonded Dimers 59 3.4.3 Tautomerization in Solute-Solvent Hydrogen-Bonded Complexes 60 3.5 Ab initio and DFT Computational Methods 67 3.5.1 Reaction Mechanisms and Cooperativity in Proton Migrations 67 3.5.1.1 Concerted versus Stepwise Mechanism 67 3.5.2 Reaction Path Calculations and Energy Barriers for Proton Transfer 69 3.5.3 Challenges for Molecular Dynamics and QM/MM Simulations 71 3.6 NH Tautomerism as a Tool in Biophysics 72 3.7 Concluding Remarks 74 Acknowledgment 74 References 75 4 Femtosecond Pump-Probe Spectroscopy of Photoinduced Tautomerism 79 Stefan Lochbrunner 4.1 Introduction 79 4.2 Ultrafast Pump-Probe Spectroscopy 81 4.2.1 Time-Resolved Absorption Measurements 82 4.2.2 Fluorescence Upconversion 84 4.2.3 Ionization Techniques 84 4.2.4 Time-Resolved Infrared Spectroscopy 84 4.3 Dynamics from Pump-Probe Spectroscopy 85 4.3.1 Ultrafast Transient Absorption Signatures of ESIPT 85 4.3.2 Data Analysis 87 4.3.3 Ballistic Wavepacket Motion 88 4.3.4 Coherently Excited Vibrations in Product Modes 90 4.3.5 Ultrafast IR Studies 92 4.3.6 Other Tautomeric Reactions 92 4.4 Reaction Mechanism 93 4.5 Reaction-Path-Specific Wavepacket Dynamics in Double ESIPT 96 4.6 Internal Conversion 97 4.7 Summary and Conclusions 99 Acknowledgments 100 References 100 5 NMR Spectroscopic Study of Tautomerism in Solution and in the Solid State 103 Erich Kleinpeter 5.1 Introduction 103 5.2 Methodologies of NMR Spectroscopy to Study Tautomerism 104 5.3 Types of Tautomerism Studied by NMR Spectroscopy 109 5.3.1 Ring-Chain Tautomerism 109 5.3.2 Tetrazole-Azide Tautomerism 111 5.3.3 Transannular Tautomerism 111 5.3.4 Keto-Enol Tautomerism 112 5.3.5 Imine-Amine Tautomerism 116 5.3.6 Lactam-Lactim Tautomerism 124 5.3.7 Annular Tautomerism of Five- or Six-Membered Heterocyclic Compounds 126 5.3.8 Nitroso (N-Oxide)-Oxime Tautomerism 128 5.3.9 Tautomeric Structures in Nucleosides, Nucleotides, and Proteins 129 5.3.10 Tautomerism in Porphyrins 131 5.3.11 Carbohydrate Tautomerism 132 5.3.12 Azo-Hydrazone Tautomerism 133 5.3.13 Tautomerism of Phosphorus Compounds 134 5.3.14 Miscellaneous Tautomerisms 136 5.4 Conclusions and Outlook 137 Acknowledgments 138 References 138 6 Isotope Effects on Chemical Shifts as a Tool in the Study of Tautomeric Equilibria 145 Poul Erik Hansen 6.1 Introduction 145 6.2 Experimental Requirements 148 6.2.1 One-Tube Experiments 148 6.2.2 Exchange of Isotopes 149 6.2.3 Concentric Tubes 149 6.2.4 Couplings 149 6.2.5 Primary Isotope Effects 149 6.2.6 Temperature 150 6.2.7 Variation of Solvent 150 6.2.8 Isotope Labeling 151 6.3 Isotope Effects on Chemical Shifts 151 6.3.1 Intrinsic Isotope Effects 151 6.3.1.1 Intrinsic Deuterium Isotope Effects on 13C CS 153 6.3.1.2 Intrinsic Deuterium Isotope Effects on 15N Chemical Shifts 154 6.3.1.3 Deuterium Isotope Effects on 17O Chemical Shifts 154 6.3.1.4 Deuterium Isotope Effects on 19F CS 154 6.3.1.5 18O Isotope Effects on 13C Chemical Shifts 155 6.4 Secondary Equilibrium Isotope Effects on CS 156 6.4.1 Isotopic Perturbation of Equilibrium 160 6.5 Primary Isotope Effects 161 6.6 Solid State 164 6.7 Theoretical Calculations 165 6.8 Examples 166 6.8.1 beta-Thioxoketones 166 6.8.2 Multiple Equilibria 169 6.9 Overview 172 References 173 7 Tautomer-Selective Spectroscopy of Nucleobases, Isolated in the Gas Phase 177 Mattanjah S. de Vries 7.1 Introduction 177 7.2 Techniques 177 7.3 Guanine 179 7.4 Adenine 187 7.5 Cytosine 187 7.6 Uracil and Thymine 188 7.7 Base Pairs 189 7.8 Outlook 191 Acknowledgments 192 References 192 8 Direct Evidence of Solid-State Tautomerism by Diffraction Methods: Isomers, Equilibria, and Kinetics 197 Pan!ce Naumov and Subash Chandra Sahoo 8.1 Application of X-Ray Diffraction to Study Tautomerism 197 8.2 Examples of X-Ray Diffraction Analysis of Proton Transfer 199 8.2.1 Tautomerism, Proton Transfer, and Resonance-Assisted Hydrogen Bonding 199 8.2.2 Examples of Thermally Induced Tautomerism 203 8.2.3 Photoinduced Tautomeric Processes 208 8.3 Other Diffraction Methods Used to Study Proton Transfer Reactions 211 References 211 9 Dynamics of Ground- and Excited-State Intramolecular Proton Transfer Reactions 213 Gert van der Zwan 9.1 Introduction 213 9.2 Transition State Theory 216 9.3 Two Examples of Tautomerization 218 9.4 The Role of the Solvent 221 9.5 Solvent Friction and Solvent Dynamics 224 9.6 The Solvent Coordinate: Basics 226 9.7 Polarization Fluctuations 229 9.8 The Solvent Coordinate: An Application 231 9.9 Electronic Rearrangement 233 9.10 The Rug that Ties the (Classical) Room Together 234 9.11 Quantum and Classical 236 9.12 Quantum Decay 239 9.13 Coupling Quantum and Classical Motion: A Simple Example 242 9.14 Nonlinear Optics 246 9.15 Femtochemistry 247 9.16 Concluding Remarks 249 References 250 10 Force Field Treatment of Proton and Hydrogen Transfer in Molecular Systems 253 Jing Huang and Markus Meuwly 10.1 Introduction 253 10.2 Computational Approaches to Proton Transfer 254 10.3 Proton Transfer Reactions with MMPT 256 10.4 Applications of MMPT 259 10.4.1 Infrared Spectroscopy 259 10.4.2 Classical and Quantum Proton Transfer in the Gas Phase 261 10.4.3 Condensed-Phase Proton Transfer 263 10.4.4 MMPT for NMR Properties 264 10.5 Discussion and Outlook 267 Acknowledgments 268 References 268 11 The Scope and Limitations of LSER in the Study of Tautomer Ratio 277 Peter J. Taylor 11.1 Introduction 277 11.2 The Taft-Kamlet LSER Methodology 277 11.2.1 The pi * Scale 278 11.2.2 The beta Scale 279 11.2.3 The alpha Scale 281 11.2.4 The beta Value for Water 283 11.2.5 pi * for the Gas Phase 286 11.3 LSER Case Histories in the Field of Tautomerism 287 11.3.1 Enol Formation from beta-Diketones and Related Compounds 288 11.3.2 Tautomerism in Schiff Bases and Related Azo Compounds 292 11.3.3 Three-Way Tautomerism in the Pyrazolone 25 295 11.4 Overview 298 Appendix 11.A: Earlier Approaches 301 References 302 12 The "Basicity Method" for Estimating Tautomer Ratio: A Radical Re-appraisal 305 Peter J. Taylor 12.1 Introduction 305 12.2 Experimental Protocol 307 12.3 The Derivation of Correction Factors 308 12.3.1 Amidines and Related Compounds 308 12.3.2 Conformational Effects on Amidine Correction Factors 309 12.3.3 Lactams: Simultaneous Determination of (NMe) and (OMe) 310 12.3.4 Vinylogous Lactams: Simultaneous Estimation of (NMe) and (OMe) 312 12.3.5 (NMe) in Acylamidines and Imides 313 12.3.6 (NMe) for Compounds with Contiguous Nitrogen Atoms 315 12.3.7 (NMe) for Thiolactams and Their Vinylogues 317 12.3.8 An Attempt at (SMe) for Thiolactams and Their Vinylogues 319 12.3.9 Correction Factors: Summary and Speculations 320 12.4 Regularities Revealed by Correction Factors 320 12.4.1 Benzofusion to Give Benzenoid Structures in Six-Membered Ring Oxoheterocycles 321 12.4.2 Benzofusion to Give Quinonoid Structures in a Variety of Compounds 324 12.5 Complicating Factors in the Use of the "Basicity Method" 326 12.5.1 Complications Caused by Steric and Stereoelectronic Factors 326 12.5.2 Complications Caused by Hydrogen Bonding 327 12.5.3 Complications Caused by Protonation at the "Wrong Site" 328 12.6 Tautomeric Problems to Which the "Basicity Method" Is Inapplicable 330 12.7 Overview 332 References 333 13 Quantum Chemical Calculation of Tautomeric Equilibria 337 Walter M.F. Fabian 13.1 Introduction 337 13.2 Computational Procedures 338 13.2.1 Wave-Function-Based Methods 338 13.2.1.1 Independent Particle Methods 339 13.2.1.2 Correlated Treatments 340 13.2.2 Density Functional Procedures 342 13.2.2.1 Overview of Density Functionals 343 13.2.2.2 Validation of Density Functionals 346 13.2.3 Choice of Basis Set 347 13.2.4 Calculation of Spectroscopic Properties 351 13.3 Solvent Effects 353 13.3.1 Continuum Solvation Models 353 13.3.2 Explicit Solvent Models 355 13.4 Applications of Quantum Chemical Methods to Tautomeric Equilibria 357 13.4.1 The SAMPL2 Challenge of Predicting Tautomer Ratios 357 13.4.2 Lactam-Lactim Tautomerism of 2-Hydroxypyridine 360 13.4.3 Annular Tautomerism in Tetrazole 363 13.5 Concluding Remarks 363 References 364 Index 369