ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications (Solar Cell Engineering)

دانلود کتاب راه حل های مواد پایدار برای فناوری های انرژی خورشیدی: تکنیک ها و کاربردهای پردازش (مهندسی سلول های خورشیدی)

Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications (Solar Cell Engineering)

مشخصات کتاب

Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications (Solar Cell Engineering)

ویرایش: 1 
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0128215925, 9780128215920 
ناشر: Elsevier 
سال نشر: 2021 
تعداد صفحات: 669 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 60,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications (Solar Cell Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راه حل های مواد پایدار برای فناوری های انرژی خورشیدی: تکنیک ها و کاربردهای پردازش (مهندسی سلول های خورشیدی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Sustainable Material Solutions for Solar Energy Technologies
Copyright Page
Contents
List of contributors
Preface
I. Trends in Materials Development for Solar Energy Applications
	1 Bismuth-based nanomaterials for energy applications
		1.1 Introduction
		1.2 Photovoltaics
			1.2.1 Solar Cell Operation
			1.2.2 Nanoengineering
			1.2.3 Bismuth-Based Nanomaterials
				1.2.3.1 Bismuth-based Perovskites and Bismuth Halides
				1.2.3.2 Bismuth Chalcogenides
			1.2.4 Summary
		1.3 Thermoelectric devices
			1.3.1 Thermoelectric Devices Operation
			1.3.2 Nanoengineering
			1.3.3 Bi-Based Nanomaterials
				1.3.3.1 Metallic bismuth
				1.3.3.2 Bi2Te3 and (Bi,Sb)2(Te,Se)3 alloys
				1.3.3.3 Bi2Se3 and Bi2S3
				1.3.3.4 Ternary materials
			1.3.4 Summary
		1.4 Batteries & Supercapacitors
			1.4.1 Battery Operation
			1.4.2 Supercapacitor Operation
			1.4.3 Bismuth-Based Electrodes
			1.4.4 Nanoengineering
			1.4.5 Coating or Mixing with Conductive Materials
			1.4.6 Bismuth Perovskite Supercapacitors
			1.4.7 Summary
		1.5 Solar-hydrogen production
			1.5.1 Fundamentals of photocatalysis for hydrogen production
			1.5.2 Nanoengineering
			1.5.3 Bi-based nanomaterials
				1.5.3.1 Bismuth chalcogenides Bi2E3 (E = S, Se, Te)
				1.5.3.2 Ternary Bismuth Chalcogenides (I-Bi-VI2)
				1.5.3.3 Bismuth-based composite oxides
					1.5.3.3.1 Bismuth oxides
					1.5.3.3.2 Bismuth Oxyhalides BiOX (X= Cl, Br, I)
					1.5.3.3.3 BiMO4 (M = P, V, Nb and Ta)
					1.5.3.3.4 Aurivillius oxides Bi2MO6 (M = Cr, Mo and W)
			1.5.4 Summary
		1.6 Conclusions
		Acknowledgements
		References
	2 Emergent materials and concepts for solar cell applications
		2.1 Introduction
		2.2 Perovskite solar cells
			2.2.1 Historical review
			2.2.2 Solar cells
			2.2.3 Stability
			2.2.4 Scaling up and possibilities for commercialization
		2.3 III–V semiconductor materials for multijunction solar cells applications
			2.3.1 Historical review
			2.3.2 Some basics of multijunction solar cells
			2.3.3 III–V materials for photovoltaic applications
			2.3.4 Selected examples
				2.3.4.1 Bonded lattice matched structures
				2.3.4.2 Inverted metamorphic lattice mismatched structures
			2.3.5 Discussion
		2.4 Final remarks and future perspectives
		References
	3 Novel dielectrics compounds grown by atomic layer deposition as sustainable materials for chalcogenides thin-films photov...
		3.1 Introduction
		3.2 Atomic layer deposition technique
			3.2.1 Requirements for ideal precursors and atomic layer deposition signature quality
			3.2.2 Commercial and research tools
		3.3 Atomic layer deposition applied on chalcogenides thin films technologies
			3.3.1 Absorber layers: Cu(In,Ga)Se2, Cu2ZnSnS4, and Cu2ZnSn(S,Se)4
				3.3.1.1 Chalcopyrite thin films: mature level
				3.3.1.2 Kesterite thin films: under development level
			3.3.2 Sustainable buffer layers based on atomic layer deposition
			3.3.3 Sustainable passivation layers based on atomic layer deposition
		3.4 Final remarks
		Acknowledgments
		References
	4 First principles methods for solar energy harvesting materials
		4.1 Introduction
		4.2 Fundamental concepts
			4.2.1 Crystalline representation
			4.2.2 The multielectron system
			4.2.3 The variational principle
			4.2.4 The universal functional of the density
			4.2.5 The auxiliary Kohn-Sham system
		4.3 Selected materials with solar energy harvesting implementations
			4.3.1 The input file
			4.3.2 A supercell of zinc oxide
			4.3.3 Structural stability of FAPbI3 perovskites
			4.3.4 Charge order and half metallicity of Fe3O4
			4.3.5 Optimization of anatase titanium dioxide
			4.3.6 A conventional and a reduced representation of mBiVO4
			4.3.7 A template structure for chalcopyrite
		4.4 Conclusion
		References
II. Sustainable Materials for Photovoltaics
	5 Introduction to photovoltaics and alternative materials for silicon in photovoltaic energy conversion
		5.1 Introduction
		5.2 Current status of photovoltaics
		5.3 Fundamental properties of photovoltaics semiconductors
			5.3.1 Crystal structure of semiconductors
			5.3.2 Energy band structure
			5.3.3 Density of energy states
			5.3.4 Drift-motion due to the electric field
				5.3.4.1 Drift velocity
				5.3.4.2 Mobility of carriers
				5.3.4.3 The resistivity of charge carriers
			5.3.5 Diffusion-due to a concentration gradient
			5.3.6 Absorption coefficient
		5.4 Physics of solar cell
			5.4.1 Homojunction and heterojunction structure
			5.4.2 p-n junction under illumination
			5.4.3 I-V equations of solar cell
				5.4.3.1 Short circuit current Isc
				5.4.3.2 Open circuit voltage Voc
				5.4.3.3 Fill factor
				5.4.3.4 Efficiency
		5.5 Categories of the photovoltaic market
		5.6 Commercialization of Si solar cells
		5.7 Status of alternative photovoltaics materials
		5.8 Thin film technology
		5.9 Material selection in thin film technology
		5.10 Thin film deposition techniques
			5.10.1 Physical deposition
				5.10.1.1 Evaporation techniques
					5.10.1.1.1 Vacuum thermal evaporation
					5.10.1.1.2 Electron beam evaporation
					5.10.1.1.3 Laser beam evaporation/pulsed laser deposition
					5.10.1.1.4 Arc evaporation
					5.10.1.1.5 Molecular beam epitaxy
				5.10.1.2 Sputtering techniques
			5.10.2 Chemical deposition
				5.10.2.1 Sol-gel technique
				5.10.2.2 Chemical bath deposition
				5.10.2.3 Spray pyrolysis technique
				5.10.2.4 Chemical vapor deposition
					5.10.2.4.1 Low pressure and atmospheric pressure chemical vapor deposition
					5.10.2.4.2 Plasma enhanced chemical vapor deposition
					5.10.2.4.3 Hot wire chemical vapor deposition
					5.10.2.4.4 Ion assisted deposition
		5.11 Copper indium gallium selenide-based solar cell
			5.11.1 Alkali metal postdeposition treatment on copper indium gallium selenide based solar cells
		5.12 Cadmium telluride solar cells
		5.13 Multijunction solar cells
		5.14 Emerging solar cell technologies
			5.14.1 Organic solar cells
			5.14.2 Dye-sensitized solar cells
			5.14.3 Perovskite solar cells
			5.14.4 Quantum dot solar cells
		5.15 Summary, conclusions, and outlook
		Acknowledgment
		References
	6 An overview on ferroelectric photovoltaic materials
		6.1 Overview
		6.2 Ferroelectric materials
		6.3 Photovoltaic effect
			6.3.1 Mechanism of ferroelectric photovoltaic
			6.3.2 History and current status of ferroelectric photovoltaic
		6.4 Barium titanate
			6.4.1 Crystal structure
			6.4.2 Dielectric properties
			6.4.3 Ferroelectric phenomena in BaTiO3
			6.4.4 Optical properties
			6.4.5 Various techniques of depositing BaTiO3 thin film
			6.4.6 Potential applications of BaTiO3
		6.5 Bismuth ferrite
		6.6 Conclusion
		Acknowledgments
		References
	7 Nanostructured materials for high efficiency solar cells
		7.1 Introduction
		7.2 Nanostructures and quantum mechanics
		7.3 Quantum wells in solar cells
		7.4 Quantum wires (nanowires) in solar cells
		7.5 Quantum dots in solar cells
			7.5.1 InAs quantum dots on GaAs
			7.5.2 In(Ga)As or InAsP quantum dots on wide bandgap material barriers
		7.6 Conclusions
		Acknowledgments
		References
	8 Crystalline-silicon heterojunction solar cells with graphene incorporation
		8.1 Heterojunction solar cells and graphene
			8.1.1 Heterojunction solar cells
			8.1.2 Graphene
		8.2 Fabrication of silicon heterojunction solar cell
			8.2.1 Surface patterning and surface cleaning
			8.2.2 Deposition of a-silicon:H layers
			8.2.3 Deposition of transparent conductive oxide
			8.2.4 Metallization
			8.2.5 Thermal treatment
		8.3 Synthesis of graphene
			8.3.1 Incorporating graphene into silicon heterojunction solar cells
		8.4 Conclusion
		Acknowledgment
		References
	9 Tin halide perovskites for efficient lead-free solar cells
		9.1 Introduction
		9.2 Halide perovskite solar cells: why tin?
			9.2.1 Perovskite structure
			9.2.2 Carrier transport and tin halide perovskite defects
			9.2.3 Tin perovskite bandgap
			9.2.4 Tin oxidation
			9.2.5 Tin toxicity
		9.3 ASnX3: a brief historical excursus
		9.4 Toward efficient and stable ASnX3 PSCs
			9.4.1 Additives
				9.4.1.1 Tin containing additives: SnX2 and Sn
				9.4.1.2 Reducing agents
			9.4.2 Passivation
			9.4.3 Low dimensional perovskites
			9.4.4 Solvent
		9.5 Conclusion
		References
III. Sustainable Materials for Photocatalysis and Water Splitting
	10 Photocatalysis using bismuth-based heterostructured nanomaterials for visible light harvesting
		10.1 Introduction
		10.2 Fundamentals of heterogeneous photocatalysis
			10.2.1 Heterogeneous photocatalysis applied to environmental engineering processes
			10.2.2 Factors affecting the photocatalytic process
				10.2.2.1 Physical properties
				10.2.2.2 (Photo)electrochemical properties
				10.2.2.3 The matrix composition
			10.2.3 Insights of physicochemical characterization of nanophotocatalysts
		10.3 Bismuth-based heterostructures for photocatalytic applications
			10.3.1 Semiconductor-semiconductor heterostructures using bismuth-based materials
			10.3.2 General strategies for synthesis of bismuth-based semiconductors
				10.3.2.1 Sol-gel synthesis
				10.3.2.2 Hydrothermal/solvo thermal synthesis
				10.3.2.3 Ball milling process
				10.3.2.4 Sputtering process
			10.3.3 Applications of bismuth-based heterostructures
				10.3.3.1 Water treatment
				10.3.3.2 Self-cleaning
				10.3.3.3 Water splitting
		10.4 Conclusions
		Acknowledgments
		References
	11 Recent advances in 2D MXene-based heterostructured photocatalytic materials
		11.1 Introduction
		11.2 Synthesis of 2D-MXenes
			11.2.1 Functionalization and electronic properties of MXene
		11.3 Photocatalytic applications
			11.3.1 H2 evolution by H2O splitting
				11.3.1.1 Water splitting activity of MXenes
				11.3.1.2 MXene-based heterojunctions
					11.3.1.2.1 2D/2D composites
					11.3.1.2.2 2D/3D composites
					11.3.1.2.3 Doped MXene
					11.3.1.2.4 Tertiary composite system
					11.3.1.2.5 Electrochemical water splitting
			11.3.2 Photocatalytic CO2 reduction to fuel
			11.3.3 Environmental applications
				11.3.3.1 Organic degradation
				11.3.3.2 Photoreduction process
				11.3.3.3 MXene for antimicrobial activity
		11.4 Conclusion and future prospects
		Acknowledgments
		References
	12 Atomic layer deposition of materials for solar water splitting
		12.1 Introduction
		12.2 Solar energy
		12.3 Photoelectrochemical cells
		12.4 Hydrogen generation from water photoelectrolysis
		12.5 Materials for photoelectrode
		12.6 Atomic layer deposition technique: process and equipment
			12.6.1 Atomic layer deposition process
			12.6.2 Atomic layer deposition reactors: types and characteristics
		12.7 Final remarks
		Acknowledgments
		References
IV. Sustainable Materials for Thermal Energy Systems
	13 Solar selective coatings and materials for high-temperature solar thermal applications
		13.1 Introduction
			13.1.1 Concentrated solar power: facts
			13.1.2 Concentrated solar power: basics
		13.2 CSP efficiency considerations: the concept of solar selectivity
		13.3 State-of-the-art review of solar absorber surfaces and materials for high-temperature applications (%3e 565°C in air)
			13.3.1 Absorber paints
			13.3.2 Solar selective coatings
				13.3.2.1 Intrinsic absorber
				13.3.2.2 Metal-semiconductor tandem stack
				13.3.2.3 Textured surface absorber
				13.3.2.4 Multilayer absorber
				13.3.2.5 Metal-cermet coatings
			13.3.3 Volumetric receivers
		13.4 Current trends and issues
			13.4.1 Durability studies of solar absorbers
			13.4.2 Lack of standardized characterization protocols
		13.5 Roadmap for concentrated solar power absorbing surfaces and materials
			13.5.1 Alternative concentrated solar power absorbing surfaces: selectively solar-transmitting coatings
			13.5.2 Industrialization of high-temperature solar selective coatings
		Acknowledgments
		References
	14 Applications of wastes based on inorganic salts as low-cost thermal energy storage materials
		14.1 Introduction
		14.2 Thermal energy storage
			14.2.1 Sensible, latent and thermochemical heat storage
				14.2.1.1 Sensible heat storage
				14.2.1.2 Latent heat storage
				14.2.1.3 Chemical reaction/thermochemical heat storage
			14.2.2 Basic concepts for thermal energy storage materials
			14.2.3 Overview of thermal energy storage system types
			14.2.4 Comparison of energy storage density for different thermal energy storage materials
		14.3 Overview of industrial waste studied as thermal energy storage materials
		14.4 Inorganic salt-based products and wastes as low-cost materials for sustainable thermal energy storage
			14.4.1 Availability and abundance of inorganic salts in Northern Chile
			14.4.2 Economic analysis of inorganic salts as low-cost thermal energy storage materials
			14.4.3 State-of-art of currently proposed by-products and wastes as thermal energy storage materials
				14.4.3.1 Sensible heat storage materials
				14.4.3.2 Latent heat storage materials
				14.4.3.3 Thermochemical storage materials
		14.5 Challenges for the application of waste and by-products in thermal energy storage systems
			14.5.1 Proposed uses of wastes as thermal energy storage materials
			14.5.2 Challenges for the application of inorganic salt-based wastes in thermal energy storage systems
			14.5.3 Optimization of thermal properties of thermal energy storage materials based on inorganic salt wastes
				14.5.3.1 Encapsulation of latent heat storage materials
				14.5.3.2 Use of additives
				14.5.3.3 Graphite, enhancing thermal conductivity
		14.6 Conclusion
		References
	15 Nanoencapsulated phase change materials for solar thermal energy storage
		15.1 Introduction
			15.1.1 Selection criteria of phase change materials
			15.1.2 Working principle of phase change material
			15.1.3 Encapsulation in phase change materials
			15.1.4 Advantages of micro or nanoencapsulation of phase change material
		15.2 Brief review of the work done
		15.3 Results and discussion
		15.4 Applications
			15.4.1 Need for phase change material-based solar air heaters
				15.4.1.1 Phase change materials in solar air heaters
				15.4.1.2 Construction and working principle of solar-air heating systems
				15.4.1.3 Deliverables: Performance criteria for solar-air heating
			15.4.2 Need for phase change material-based building materials for rural houses
				15.4.2.1 Phase change materials for building applications
				15.4.2.2 Deliverables: performance criteria for phase change materials for building applications
			15.4.3 Need for phase change material-based textiles
				15.4.3.1 Phase change materials in textiles
		15.5 Challenges ahead
		15.6 Conclusions
		Acknowledgments
		References
		Further reading
V. Sustainable Carbon-Based and Biomaterials for Solar Energy Applications
	16 Carbon nanodot integrated solar energy devices
		16.1 Introduction
		16.2 Carbon nanodot integrated solar energy devices
			16.2.1 Dye-sensitized solar cells
				16.2.1.1 Carbon dots as sensitizer in dye-sensitized solar cells
				16.2.1.2 Carbon dots modified photoanodes in dye-sensitized solar cells
				16.2.1.3 Carbon dots as counter electrode in dye-sensitized solar cells
			16.2.2 Quantum dot solar cells
			16.2.3 Organic solar cells
			16.2.4 Polymer solar cells
			16.2.5 Perovskite solar cells
		16.3 Summary and future aspects
		Acknowledgments
		References
	17 Solar cell based on carbon and graphene nanomaterials
		17.1 Introduction
		17.2 Carbon and its derivatives
			17.2.1 Fullerene
			17.2.2 Carbon nanotube
			17.2.3 Graphene
		17.3 Solar cells based on carbon nanomaterials
			17.3.1 Carbon in dye-sensitized solar
			17.3.2 Carbon in organic solar cells
			17.3.3 Carbon in perovskite solar cells
		17.4 Challenges and prospects
		References
	18 Sustainable biomaterials for solar energy technologies
		18.1 Introduction
		18.2 Structural properties of biomaterials
		18.3 Biomaterials used in biophotovoltaics
			18.3.1 Living organism based solar cell systems
				18.3.1.1 Algae and cyanobacteria
				18.3.1.2 Plants
				18.3.1.3 Bioengineered bacteria
			18.3.2 Light-harvesting proteins
				18.3.2.1 Green fluorescent protein
				18.3.2.2 Bacteriorhodopsin
				18.3.2.3 Artificial photosynthetic devices
				18.3.2.4 Protein pigment complexes from Rhodopseudomonaspalustris CQV97 and Rhodobacter azotoformans R7
				18.3.2.5 Peptide
			18.3.3 Natural pigments
				18.3.3.1 Carotenoids
				18.3.3.2 Lycopene
				18.3.3.3 Flavin
				18.3.3.4 Xanthophylls from Hymenobacter sp. (Antarctica bacteria)
				18.3.3.5 Chromatophores from Rhodospirillum rubrum S1 biological redox
				18.3.3.6 Chlorophyll a derived Spirulina xanthin carotenoid in Spirulina platensis
		References
	19 Bioinspired solar cells: contribution of biology to light harvesting systems
		19.1 Introduction
		19.2 Methodologies for engineered biomimicry
			19.2.1 Bioinspiration
				19.2.1.1 Function
				19.2.1.2 Simplicity
				19.2.1.3 Dissipation
				19.2.1.4 Soft matter
				19.2.1.5 Scientific impact
			19.2.2 Biomimetic
			19.2.3 Bioreplication
		19.3 Bioinspired solar cells
		19.4 Bioinspired structures and organisms
			19.4.1 Dyes
			19.4.2 Wettability and superhydrophobic dyes
			19.4.3 Organisms
				19.4.3.1 Common rose butterfly
				19.4.3.2 Leaf
				19.4.3.3 Lotus
				19.4.3.4 Firefly
				19.4.3.5 Human eye
				19.4.3.6 Beetle
				19.4.3.7 Dipteran
				19.4.3.8 Crab
		19.5 Biological processes for bioinspiration
			19.5.1 Photosynthesis
				19.5.1.1 Artificial photosynthesis
			19.5.2 Cyanobacteria
			19.5.3 Bioinspired chromophores
		19.6 Physics in biological systems
			19.6.1 Coherence effects in biological systems
			19.6.2 Excitation energy transfer
			19.6.3 Charge transfer
		19.7 Structures
			19.7.1 Origami structures
			19.7.2 Graphene
			19.7.3 Multijunction solar cells
			19.7.4 Perovskite solar cells
			19.7.5 Silicon-based solar cell
			19.7.6 Dye-sensitized solar cell technology
			19.7.7 Thin film solar cell
		19.8 Conclusions
		References
Index
Back Cover




نظرات کاربران