ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable Bioprocessing for a Clean and Green Environment: Concepts and Applications

دانلود کتاب پردازش زیستی پایدار برای محیطی پاک و سبز: مفاهیم و کاربردها

Sustainable Bioprocessing for a Clean and Green Environment: Concepts and Applications

مشخصات کتاب

Sustainable Bioprocessing for a Clean and Green Environment: Concepts and Applications

ویرایش: 1 
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0367459086, 9780367459086 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 330 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 مگابایت 

قیمت کتاب (تومان) : 56,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Sustainable Bioprocessing for a Clean and Green Environment: Concepts and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پردازش زیستی پایدار برای محیطی پاک و سبز: مفاهیم و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پردازش زیستی پایدار برای محیطی پاک و سبز: مفاهیم و کاربردها



زیست فرآوری پایدار برای محیطی پاک و سبز: مفاهیم و کاربردها اهمیت زباله برای سلامتی را برجسته می‌کند که در آن زباله‌ها به طور ایمن از طریق فناوری‌های فرآیند زیستی به محصولات با ارزش افزوده تبدیل می‌شوند. این کتاب با ارائه مفاهیم و کاربردهای اساسی، روش شناسی پشت عملیات انواع فرآیندهای بیولوژیکی مورد استفاده در توسعه محصولات ارزشمند از زباله را به خوانندگان ارائه می دهد.

ویژگی ها:

  • درباره سنتز و استفاده از مواد زیستی سازگار با محیط زیست، مانند فیلم های پلیمری زیستی و نرم کننده های زیستی
  • بر کاربردهای نانوتکنولوژی در درمان آلودگی تاکید می کند و بر سنتز نانومواد بیوژنیک برای اصلاح محیط زیست تاکید می کند
  • استفاده از بیوسورفکتانت ها و فن آوری های جلبکی نوظهور، مانند کاربردهای ریزجلبک ها در مواد غذایی و تولید سوخت های زیستی را شرح می دهد
  • جزئیات لایه برداری برای زیست توده لیگنوسلولزی < /li>

این کتاب میان رشته ای به محققان و متخصصان مهندسی شیمی، مهندسی محیط زیست، و زمینه های مرتبط دیدگاه گسترده ای در زمینه مبانی، فناوری ها و کاربردهای زیست محیطی پردازش زیستی پایدار ارائه می دهد.< /p>


توضیحاتی درمورد کتاب به خارجی

Sustainable Bioprocessing for a Clean and Green Environment: Concepts and Applications highlights the importance of waste to health in which waste is safely converted to value-added products via bioprocess technologies. Providing fundamental concepts and applications, this book also offers readers the methodology behind the operation of a variety of biological processes used in developing valuable products from waste.

Features:

  • Discusses synthesis and use of environmentally friendly biobased materials, such as biopolymer films and biobased plasticizers
  • Highlights nanotechnology applications in the treatment of pollution and emphasizes the synthesis of biogenic nanomaterials for environmental remediation
  • Describes the use of biosurfactants and emerging algal technologies, such as applications of microalgae in nutraceuticals and biofuel production
  • Details delignification for lignocellulosic biomass

This interdisciplinary book offers researchers and practitioners in chemical engineering, environmental engineering, and related fields a broad perspective on fundamentals, technologies, and environmental applications of sustainable bioprocessing.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Editor Biographies
Contributors
Chapter 1: Alternative Plastics from Wastes through Biomass Valorization Approaches
	1.1 Introduction
	1.2 Classification of Bioplastic
		1.2.1 Based on Biological Macromolecules
			1.2.1.1 Starch
				1.2.1.1.1 Modifications of Starch
				1.2.1.1.2 Cross-linking
				1.2.1.1.3 Esterification
				1.2.1.1.4 Stabilization
				1.2.1.1.5 Pre-gelatinization
				1.2.1.1.6 Thermoplastic Starch
					1.2.1.1.6.1 Thermoplastic Starch-Polyethylene Blends
					1.2.1.1.6.2 Thermoplastic Starch-Polypropylene Blends
					1.2.1.1.6.3 Thermoplastic Starch-PLA Blends
			1.2.1.2 Chitosan
				1.2.1.2.1 Chitosan Incorporation with Other Polymers
				1.2.1.2.2 Chitosan-based Films
				1.2.1.2.3 Chitosan/Whey Protein Conglomerated Films
				1.2.1.2.4 Chitosan/Ovalbumin Films
				1.2.1.2.5 Chitosan/Soy Protein Films
			1.2.1.3 Proteins
				1.2.1.3.1 Plant-based Sources
					1.2.1.3.1.1 Corn Zein
					1.2.1.3.1.2 Wheat Gluten
					1.2.1.3.1.3 Soy Proteins
					1.2.1.3.1.4 Peanuts and Cotton Seed
					1.2.1.3.1.5 Milk Proteins
				1.2.1.3.2 Animal-based Sources
					1.2.1.3.2.1 Collagen and Gelatin
					1.2.1.3.2.2 Keratin
	1.3 Wastes As Source of Bioplastic
		1.3.1 Sugar Refinery Waste (Cane Molasses)
		1.3.2 Paper Mill Waste
		1.3.3 Bioplastic from Waste Glycerol
		1.3.4 Vegetable Waste
		1.3.5 Food Waste Valorization
		1.3.6 Palm Tree Biomass-based Processing Plants
		1.3.7 Banana Waste
	1.4 Cyano Bacteria and PHB
		1.4.1 PHB Synthesize
		1.4.2 Detection and Analysis of PHB
		1.4.3 Biodegradability and Biological Considerations of Poly-β-hydroxybutyrate
	1.5 Conclusion
	References
Chapter 2: Bioelectrochemical System: Waste/Wastewater to Bioenergy Conversion Technology
	2.1 Introduction
	2.2 Basic Principles of Bioelectrochemical System (BES)
		2.2.1 Electron Transfer Mechanism
		2.2.2 Voltage Generation in BES
		2.2.3 Performance of BES
	2.3 Components and Materials Used in BES
	2.4 Factors Influencing the BES Performance
		2.4.1 Types of Wastewater and Its Concentration
		2.4.2 Types of Bacteria
		2.4.3 Types of Electron Acceptors in the Cathodic Chamber
		2.4.4 Electrode Materials
		2.4.5 Membrane
		2.4.6 Reactor Configuration
	2.5 Various Types of Bioelectrochemical System
		2.5.1 Microbial Electrolysis Cell
		2.5.2 Microbial Desalination Cell
		2.5.3 Microbial Remediation Cell
	2.6 Conclusion
	References
Chapter 3: Bioelectrochemical Reactors: Factors Governing Power Production and Its Applications
	3.1 Introduction
	3.2 Bioelectrogenesis and Bioelectrochemical Reactors
	3.3 Factors Affecting Power Generation in BES
		3.3.1 Biological Parameters
			3.3.1.1 Biological Components
			3.3.1.2 Electron Transfer to Anode
		3.3.2 Physicochemical Parameters
			3.3.2.1 Electrode Materials
		3.3.3 Operating Parameters
			3.3.3.1 pH of the System
			3.3.3.2 Organic Loading Rate (OLR)
			3.3.3.3 Hydraulic Retention Time and Shear Stress
			3.3.3.4 Effect of Temperature
	3.4 Applications of Bioelectrochemical Systems
		3.4.1 Wastewater Treatment
		3.4.2 Microbial Electrmolymsis Cells
		3.4.3 Electro-synthesis of Products
		3.4.4 Removal of Pollutants
		3.4.5 Microbial Desalinization Cell
		3.4.6 Biosensors
			3.4.6.1 Biochemical Oxygen Demand
			3.4.6.2 Toxicity Sensor
		3.4.7 Microbial Activity Monitoring
		3.4.8 Monitoring of Corrosive Biofilm
	3.5 Conclusion
	References
Chapter 4: Photosynthetic Microbial Fuel Cells: Advances, Challenges and Applications
	4.1 Introduction
	4.2 General Concepts
		4.2.1 Microbial Fuel Cell Technology
		4.2.2 Phototrophic Microorganisms
			4.2.2.1 Microalgae
			4.2.2.2 Photosynthetic Bacteria
				4.2.2.2.1 Cyanobacteria
				4.2.2.2.2 Purple Bacteria
				4.2.2.2.3 Green Bacteria
	4.3 Classification of Photosynthetic MFCs
		4.3.1 Sub-cellular Photo-MFC
		4.3.2 Cellular Photo-MFC
		4.3.3 Complex Cellular Photo-MFCs
	4.4 Integrating Photosynthetic Organisms with MFC
		4.4.1 Phototrophic Microorganisms at Anode
			4.4.1.1 Microalgal Biomass as Substrate
			4.4.1.2 Phototrophic Microorganisms Assisting the Anode Process
				4.4.1.2.1 Oxygenic Photosynthetic Organisms as Biocatalyst Without Heterotrophic Bacteria
				4.4.1.2.2 Anoxygenic Photosynthetic Organisms as Biocatalyst – Without Heterotrophic Bacteria
				4.4.1.2.3 Syntrophic Relation between Phototrophic Organisms and Heterotrophic Bacteria Assisting the Anode Process
		4.4.2 Phototrophic Microorganisms Assisting the Cathode Process
	4.5 Application Aspects of Photosynthetic Microbial Fuel Cell
		4.5.1 Microbial Carbon Capture Cell
		4.5.2 Microbial Desalination Cell
		4.5.3 Photosynthetic Sediment MFCs
	4.6 Conclusions and Perspectives
	References
Chapter 5: Pretreatment of Paddy Straw for Sustainable Bioethanol Production
	5.1 Introduction
	5.2 Potential
	5.3 Chemical Composition
	5.4 Conversion of Paddy Straw into Bioethanol
	5.5 Physical Pretreatment Methods
	5.6 Chemical Pretreatment Methods
	5.7 Biological Pretreatment Methods
	5.8 Combined Pretreatment Methods
	5.9 Conclusions
	References
Chapter 6: Bio-based Coagulants for the Remediation of Environmental Pollutants
	6.1 Introduction
		6.1.1 Water Quality Parameters
		6.1.2 Turbidity-Sources and Factors Their Impacts
		6.1.3 Impacts of Turbidity
	6.2 Types of Wastewater Treatment
	6.3 Coagulation
	6.4 Bio-based Coagulants
	6.5 Plant-based Coagulant Materials
	6.6 Conclusions
	Acknowledgments
	References
Chapter 7: The Role of Nanomaterials in Wastewater Treatment
	7.1 Introduction
	7.2 Role of Nanomaterials in the Wastewater Treatment
		7.2.1 Nanophotocatalysts
		7.2.2 Nano- and Micromotors
		7.2.3 Nano-membranes
		7.2.4 Nano-adsorbents
			7.2.4.1 Carbon-based Nano-adsorbents
			7.2.4.2 Silica-based Nano-adsorbents
			7.2.4.3 Metal Oxide-based Nano-adsorbents
			7.2.4.4 Chitosan-based Nano-adsorbents
	7.3 The Challenges of Nanomaterials in the Wastewater Treatment
	7.4 Conclusion and Future Perceptions
	References
Chapter 8: Application of Biogenic Nanoparticles for a Clean Environment
	8.1 Introduction
	8.2 Pollutants and Environmental Contamination: A Global Issue
		8.2.1 Air Pollution
		8.2.2 Soil Pollution
		8.2.3 Water Pollution
	8.3 Nanotechnology: New Emerging Technology
	8.4 Green Synthesis of Nanoparticles and Its Properties
	8.5 Exploration of Nanoparticles in Different Fields
	8.6 Exploration of Biogenic Nanoparticles for Clean Environment: Nanoremediation
	References
Chapter 9: Phycoremediation of Heavy Metals in Wastewater: Strategy and Developments
	9.1 Introduction
		9.1.1 Wastewater and Its Characteristics
		9.1.2 Heavy Metals and Its Effects in Wastewater
	9.2 Treatment of Heavy Metals in Wastewater
		9.2.1 Electrocoagulation
		9.2.2 Chemical Precipitation
		9.2.3 Ion Exchange
		9.2.4 Reverse Osmosis
		9.2.5 Natural Resources in the Treatment of Heavy Metals
		9.2.6 Micro and Macro Algae
	9.3 Phycoremediation
		9.3.1 Cultivation Method
			9.3.1.1 Open Pond Cultivation
			9.3.1.2 Closed Photobioreactor
			9.3.1.3 Immobilized Cultivation
		9.3.2 Algae Harvesting Technologies
			9.3.2.1 Sedimentation
			9.3.2.2 Membrane Separation
			9.3.2.3 Flocculation
			9.3.2.4 Froth Floatation
	9.4 Phycoremediation Mechanism of Heavy Metal Removal
		9.4.1 Phycoremediation Strategy in Heavy Metal Removal
			9.4.1.1 Facultative Stabilization Pond
			9.4.1.2 High Rate Algae Ponds
			9.4.1.3 Algae Settling Pond
			9.4.1.4 Maturation Pond
	9.5 Challenges and Remedial Measures
		9.5.1 Recent Developments in Phycoremediation of Heavy Metals
	9.6 Summary
	References
Chapter 10: An Economic Perspective of Bio-waste Valorization for Extended Sustainability
	10.1 Introduction
		10.1.1 Disposal and Management
			10.1.1.1 Medical Bio-waste
			10.1.1.2 Liquid Waste
			10.1.1.3 Biodegradable Waste
	10.2 The Transition from Linear to a Circular Economy
		10.2.1 The Value Chain of Biomass Waste
		10.2.2 Waste Hierarchy
		10.2.3 Life Cycle Assessment of Bio-waste
	10.3 Valorization of Bio-waste and Their By-product
		10.3.1 Waste to Wealth Concept
	10.4 Sustainability of Bio-valorization
		10.4.1 Bio-waste to Biomaterials
			10.4.1.1 Biopolymers
			10.4.1.2 Hydroxyapatite
			10.4.1.3 Bioplastics
			10.4.1.4 Silica and Silicates
			10.4.1.5 Biopesticides
			10.4.1.6 Enzymes
	10.5 Bio-based Circular Economy
		10.5.1 Revenue of Bio-valorization
	10.6 Conclusion
	Acknowledgment
	References
Chapter 11: Recovery of Energy from Plastic Wastes by Pyrolysis Process for Sustainable Waste Management
	11.1 Introduction
	11.2 Thermochemical Treatment
		11.2.1 Gasification
		11.2.2 Hydrogenation
		11.2.3 Pyrolysis
			11.2.3.1 Pyrolysis of Different Types of Plastics
				11.2.3.1.1 Polyethylene Terephthalate (PET)
				11.2.3.1.2 High-density Polyethylene (HDPE)
				11.2.3.1.3 Polyvinyl Chloride (PVC)
				11.2.3.1.4 Low-density Polyethylene (LDPE)
				11.2.3.1.5 Polypropylene (PP)
				11.2.3.1.6 Polystyrene (PS)
	11.3 Hazardous Plastics
		11.3.1 Treatment Process
			11.3.1.1 Types of Pyrolysis Reactors Used
			11.3.1.2 Fixed-bed Reactors (FBR)
			11.3.1.3 Batch Reactors
			11.3.1.4 Fluidized-bed Reactors (FBR)
			11.3.1.5 Conical Spouted Bed Reactors (CSBR)
			11.3.1.6 Rotary Kiln Reactors
			11.3.1.7 Microwave-assisted Reactors
			11.3.1.8 Plasma Reactors
			11.3.1.9 Solar Reactors
	11.4 Value-added Products of Pyrolysis
		11.4.1 Bio-oil
		11.4.2 Production of Bio-oil
		11.4.3 Biochar
			11.4.3.1 Production of Biochar from Plastic Wastes
		11.4.4 Gas Fuel
		11.4.5 Production of Syngas (Synthetic Gas)
	11.5 Energy Recovery from Pyrolysis of Plastic Waste
	11.6 Conclusion
	References
Chapter 12: Biosurfactant: A Sustainable Replacement for Chemical Surfactants
	12.1 Surfactant
		12.1.1 Disadvantages of Surfactants
		12.1.2 Need for an Alternative
		12.1.3 Biosurfactants
		12.1.4 Types of Biosurfactant
		12.1.5 Production of Biosurfactants from Inexpensive Raw Materials
		12.1.6 Production
			12.1.6.1 Screening Tests for Biosurfactant Production
			12.1.6.2 Hemolysis Method
			12.1.6.3 Oil Spreading Test
			12.1.6.4 Emulsification Index Test
			12.1.6.5 Bacterial Adhesion to Hydrocarbon Assay (BATH)
			12.1.6.6 Hydrocarbon Overlay Agar Method
			12.1.6.7 CTAB Agar Plate Method
			12.1.6.8 Drop Collapse Method
			12.1.6.9 Emulsification Assay
		12.1.7 Fermentation Process
			12.1.7.1 Solid Fermentation Process
			12.1.7.2 Submerged Fermentation Process
		12.1.8 Parameters Controlling the Production of Biosurfactant
		12.1.9 Optimization for Biosurfactant Production
			12.1.9.1 Response Surface Methodology
			12.1.9.2 Plackett Burman Method
			12.1.9.3 Extraction of Biosurfactant
		12.1.10 Purification of Biosurfactant
			12.1.10.1 Ammonium Sulphate Precipitation Method
			12.1.10.2 Zinc Chloride Precipitation Method
	12.2 Production and Purification of Various Biosurfactant
		12.2.1 Sources of Biosurfactant Production ( Table 12.2)
		12.2.2 Screening, Extraction and Purification Process of Various Biosurfactant
	12.3 Recent Applications of Biosurfactant in Various Fields ( Nwaguma et al., 2016)
	12.4 Conclusion
	References
Chapter 13: Nutraceutical Prospects of Green Algal Resources in Sustainable Development
	13.1 Introduction
	13.2 Nutraceuticals
	13.3 Algae as a Food Resource
	13.4 Role of Nutraceuticals
		13.4.1 In Human Health
		13.4.2 In the Food Industry
	13.5 The Relevance of Microalgal Biomass as Alternative Nutraceutical Resource
	13.6 Nutraceutically Valuable Compounds in Microalgal Biomass
		13.6.1 Nutraceutically Valuable Proteins in Algae
		13.6.2 Nutraceutically Valuable Oils in Algae
		13.6.3 Nutraceutically Valuable Pigments in Algae
		13.6.4 Nutraceutically Valuable Carbohydrates in Algae
		13.6.5 Nutraceutically Valuable Vitamins and Minerals in Algae
		13.6.6 Nutraceutically Valuable Antioxidants and Antimicrobials in Algae
	13.7 The Industrial Significance of the Search of Algal Nutraceuticals
	13.8 Conclusion
	References
Chapter 14: Green Algae as a Bioenergy Resource with the Eco-technological Potential for Sustainable Development
	14.1 Introduction
	14.2 Research on Lipid-yielding Microalgae
	14.3 Research on Algal Technology as a Means of Pollution Control
	14.4 Research on Bioconversion Technologies
		14.4.1 Thermochemical Conversion of Algal Biomass
		14.4.2 Biochemical Conversion
		14.4.3 Transesterification
		14.4.4 Photosynthetic Microbial Fuel Cell
	14.5 Research on Up-gradation of the Quality of Algae-based Biofuel
		14.5.1 Fischer–Tropsch Conversion
		14.5.2 Hydrotreated Conversion
		14.5.3 Hydrocracking Conversion
		14.5.4 Hydroisomerization Conversion
	14.6 Conclusion
	References
Chapter 15: Compilation of Characterization and Electrochemical Behavior from Novel Biomass as Porous Electrode Materials for Energy Storage Devices
	15.1 Introduction
	15.2 Experimental
		15.2.1 Synthesis of Functional Carbon from Selected Dried Seaweeds and Plant Leaves
		15.2.2 Characterization of Synthesized Functional Carbon – SW-700/TC-700/PAL-1000/SLL-1000
		15.2.3 Electrode Fabrication of SW-700/TC-700/PAL-1000/SLL-1000
	15.3 Results and Discussion
		15.3.1 Compilation of Synthesized Functional Carbon Materials of SW-700/TC-700/PAL-1000/SLL-1000 by Characterization Techniques
		15.3.2 Comparison of Fabricated Functional Carbon Electrodes of SW-700/TC-700/PAL-1000/SLL-1000 by Electrochemical Measurements
	15.4 Conclusion
	Conflict of Interest
	References
Index




نظرات کاربران