ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainable Bioeconomy: Pathways to Sustainable Development Goals

دانلود کتاب اقتصاد زیستی پایدار: مسیرهایی برای دستیابی به اهداف توسعه پایدار

Sustainable Bioeconomy: Pathways to Sustainable Development Goals

مشخصات کتاب

Sustainable Bioeconomy: Pathways to Sustainable Development Goals

دسته بندی: فن آوری
ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9789811573200 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 347 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 مگابایت 

قیمت کتاب (تومان) : 47,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 14


در صورت تبدیل فایل کتاب Sustainable Bioeconomy: Pathways to Sustainable Development Goals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اقتصاد زیستی پایدار: مسیرهایی برای دستیابی به اهداف توسعه پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اقتصاد زیستی پایدار: مسیرهایی برای دستیابی به اهداف توسعه پایدار

توسعه پایدار مهمترین چالش پیش روی بشر در قرن بیست و یکم است. رشد اقتصاد جهانی در گذشته نه چندان دور در بسیاری از کشورها پیشرفت چشمگیری داشته است. با این وجود، مسائل مربوط به اختلاف درآمد، فقر، شکاف جنسیتی و سوءتغذیه در چشم انداز جهانی، به رغم رشد رو به رشد اقتصاد و پیشرفت های تکنولوژیکی، غیر معمول نیست. این تصویر وحشتناک با افزایش جمعیت انسانی ما، استفاده بی‌دیده از منابع، روند رو به افزایش مصرف و تغییر آب و هوا تشدید می‌شود. به منظور حفاظت از بشریت و حفظ کره زمین، سازمان ملل متحد "دستور کار 2030 برای توسعه پایدار" را صادر کرد که شامل فعالیت های تولید و مصرف پایدار اما محدود به آن نمی شود، به عنوان مثال. در یک اقتصاد زیستی پایدار ویژگی بارز اقتصاد زیستی پایدار تغییر پارادایم از یک اقتصاد مبتنی بر سوخت فسیلی به یک اقتصاد مبتنی بر بیولوژیکی است که توسط فضایل پایداری، استفاده کارآمد از منابع و «اقتصاد دایره‌ای» هدایت می‌شود. از آنجایی که اقتصاد زیستی پایدار مبتنی بر استفاده کارآمد از منابع بیولوژیکی و تحولات اجتماعی است، پتانسیل بسیار زیادی برای دستیابی به اهداف توسعه پایدار سازمان ملل دارد. این کتاب بینش‌های ارزشمندی را در مورد پیوندهای بین اقتصاد زیستی پایدار و اهداف توسعه پایدار به اشتراک می‌گذارد و آن را برای سیاست‌گذاران، محققان و دانشجویان مطالعات محیطی ضروری می‌سازد.


توضیحاتی درمورد کتاب به خارجی

Sustainable development is the most important challenge facing humanity in the 21st century. The global economic growth in the recent past has indeed exhibited marked progress in many countries. Nevertheless, the issues of income disparity, poverty, gender gaps, and malnutrition are not uncommon in the global landscape, in spite of the upward growth of the economy and technological advances. This grim picture is further exacerbated by our growing human population, unmindful resource use, ever-increasing consumption trends, and changing climate. In order to protect humanity and preserve the planet, the United Nations issued the “2030 agenda for sustainable development,” which includes but is not limited to sustainable production and consumption practices, e.g. in a sustainable bioeconomy. The hallmark of the sustainable bioeconomy is a paradigm shift from a fossil-fuel-based economy to a biological-based one, which is driven by the virtues of sustainability, efficient utilization of resources, and “circular economy.” As the sustainable bioeconomy is based on the efficient utilization of biological resources and societal transformations, it holds the immense potential to achieve the UN’s Sustainable Development Goals. This book shares valuable insights into the linkages between the sustainable bioeconomy and Sustainable Development Goals, making it an essential read for policymakers, researchers and students of environmental studies.



فهرست مطالب

Preface
Contents
Editors and Contributors
	About the Editors
	Contributors
1: Exploring the Economics of the Circular Bioeconomy
	1.1 Introduction
	1.2 Circularity in Bioeconomy Systems
	1.3 Optimal Rate of Circularity
	1.4 Discussion
	1.5 Conclusion
	References
2: The Role of Culture and Moral Responsibility in Facilitating a Sustainable Bioeconomy
	2.1 Introduction
	2.2 Consumption and Economic Growth
	2.3 Consumption and Sustainable Growth
	2.4 Consumption, Economics, and Culture
	2.5 Reconciling Economic Theory and Historical Context
	2.6 Values and the Tragedy of the Commons
	2.7 The Role of Culture in Averting and Promoting Tragedy
		2.7.1 Indigenous Relationship with the Commons
		2.7.2 Colonists Promotion of ``Tragedy´´
	2.8 Perception of Resource Value, Market Outcomes, and Price
	2.9 Competition and the Tragedy of the Commons
	2.10 Market Distortions, Externalities, and Failure of Market Equilibrium
	2.11 Market Prices, Values, and Common Goods
	2.12 Conscious Consumption and the Social Norm of Sustainability
	2.13 Conclusion
	References
3: Social and Economic Contribution of the Bioeconomic Sector in Ecuador: A Methodological Approach
	3.1 Introduction
	3.2 Conceptual Framework
	3.3 Sectors in the Ecuadorian Bioeconomy
		3.3.1 The Ecuadorian Economic Structure
		3.3.2 Selection of Bioeconomy Subsectors
	3.4 Available Models to Determine the Contribution of the Bioeconomy in Ecuador
		3.4.1 Input-Output Model (IOM)
		3.4.2 General Equilibrium Model
		3.4.3 Social Accounting Matrix
	3.5 Comparative Analysis of the Models
	3.6 Contribution to the Ecuadorian Bioeconomy
		3.6.1 Labour and Salary
		3.6.2 Production and Consumption
		3.6.3 Growth and Taxes
	3.7 Insights for Assessing the Contribution of the Bioeconomy in Ecuador in a Future Scenario
		3.7.1 Potential for the Improvement of Agricultural and Livestock Activities in Terms of Yield per Area of Arable Land Used
		3.7.2 Potential for the Use of Organic Fertilizers, Herbicides, and Pesticides
		3.7.3 Estimating Biomass-Based Manufacturing and Energy Development
		3.7.4 Estimation of the Economic Potential of Water Treatment Expansion
		3.7.5 Structure of the Input-Output Model to Assess the Future Contribution of the Bioeconomy
	3.8 Conclusion
	References
4: Biobutanol Production from Agricultural Biomass
	4.1 Introduction
	4.2 Biobutanol
	4.3 Agricultural Biomass
		4.3.1 Availability of Biomass
		4.3.2 Chemical Composition of Biomass
	4.4 Biobutanol Production from Agricultural Biomass
		4.4.1 Substrate Preparation
		4.4.2 Medium Formulation
		4.4.3 Microorganism and Inoculum Preparation
		4.4.4 ABE Fermentation
		4.4.5 Recovery
	4.5 Conclusion
	References
5: Valorization of Biowastes into Food, Fuels, and Chemicals: Towards Sustainable Environment, Economy, and Society
	5.1 Introduction
	5.2 Biowastes
		5.2.1 Valorization of Biomass into Fuels and High Value Added Products
			5.2.1.1 Anaerobic Digestion of Biomass
			5.2.1.2 Bioalcohol Production from Biomass
			5.2.1.3 Biodiesel Production from Biomass
			5.2.1.4 Biohydrogen Production from Biomass
			5.2.1.5 Bulk Chemicals from Biomass
		5.2.2 Valorization of Food Waste into Chemicals and Fuels
			5.2.2.1 Existing Methods of Management of Food Wastes
			5.2.2.2 Fuels from Food Wastes
				Anaerobic Fermentation
				Extraction of Sugars from Food Wastes
				Biohydrogen
				Biomethane
				Biohythane
				Volatile Fatty Acids
				Bioethanol
				Biodiesel Production
			5.2.2.3 Chemicals Production from Food Wastes
		5.2.3 Industrial Wastes
	5.3 Conclusion
	References
6: Sustainable Biorefinery Technologies for Agro-Residues: Challenges and Perspectives
	6.1 Introduction
	6.2 Potential and Availability of Agro-Residues
	6.3 Biorefinery Methods
		6.3.1 Thermochemical Conversion Method
			6.3.1.1 Gasification
			6.3.1.2 Pyrolysis
			6.3.1.3 Combustion
		6.3.2 Biochemical Conversion Methods
			6.3.2.1 Biomass Pretreatment
			6.3.2.2 Fermentation Process
			6.3.2.3 Anaerobic Digestion
			6.3.2.4 Hybrid Thermochemical: Biochemical Conversion Technology
	6.4 Biofuels Production from Agricultural Residues
		6.4.1 Solid Biofuels
		6.4.2 Liquid Biofuels
		6.4.3 Gaseous Biofuels
	6.5 Value-Added Biochemicals Production via Sustainable Biorefinery Approach
		6.5.1 Valorization of Cellulose
		6.5.2 Valorization of Hemicellulose
		6.5.3 Valorization of Lignin
	6.6 Challenges in Commercialization
	6.7 Conclusion
	References
7: Biotechnological Interventions for Production of Flavour and Fragrance Compounds
	7.1 Introduction
	7.2 Flavourings and Fragrance Chemicals
	7.3 Biotechnological Methods for Production of Flavours
		7.3.1 Enzymatic Methods
		7.3.2 Microbial Methods
			7.3.2.1 Fruity and Floral Terpenes
			7.3.2.2 Aromatic Compounds in Alcoholic Beverages
			7.3.2.3 Esters
			7.3.2.4 Ketones
			7.3.2.5 Fruity Lactones
			7.3.2.6 Phenolic Aldehydes
			7.3.2.7 Grassy Aroma
			7.3.2.8 Musk Aroma
			7.3.2.9 Synthetic Biology
			7.3.2.10 Metabolic Engineering
			7.3.2.11 Process of Solid-State/Submerged Fermentation for Production of Aroma Compounds
			7.3.2.12 Bioreactor Model
		7.3.3 Plant Tissue Culture Methods
	7.4 Sensory Evaluation of Flavour Compounds
	7.5 Product Formulation/Delivery Systems of Flavours
	7.6 Bioeconomy, Regulatory Aspects and Legal Status of Flavours
	7.7 Conclusion
	References
8: Phytochemicals for the Management of Stored Product Insects
	8.1 Introduction
	8.2 Phytochemicals
	8.3 Extraction Methods
		8.3.1 Solvent Extraction Method
		8.3.2 Microwave Assisted Extraction (MAE)
		8.3.3 Ultrasound Assisted Extraction (UAE)
		8.3.4 Supercritical Fluid Extraction (SFE)
		8.3.5 Hydrodistillation
		8.3.6 Soxhlet Extraction
		8.3.7 Solid Phase Extraction (SPE)
	8.4 Testing Methods to Determine the Efficiency of Phytochemicals against Stored Pests
		8.4.1 Area Preference Test
		8.4.2 Feeding Preference Test
	8.5 Analysis of Phytochemicals
		8.5.1 IR Spectroscopy
		8.5.2 UV Visible Spectroscopy
	8.6 Insect Repellent Packaging
	8.7 Constraints of Using Phytochemicals in Pest Management
	8.8 Conclusion
	References
9: Assessing the Impact of Indigenous Knowledge Systems on Sustainable Agriculture: A Case Study of the Selected Communities i...
	9.1 Introduction
	9.2 Aim and Objectives
	9.3 Research Methodology
		9.3.1 Research Design
		9.3.2 Research Setting
		9.3.3 Sampling
	9.4 Data Collection
		9.4.1 Quantitative Data Collection
		9.4.2 Qualitative Data Collection
		9.4.3 Data Analysis
	9.5 Results and Discussion
		9.5.1 The Contextualisation of IKS
		9.5.2 Challenges of the IKS on Agricultural Practices
		9.5.3 Benefits of the IKS on Agricultural Practice
	9.6 Best Practices of IKS, Sustainable Agriculture, and Food Security
	9.7 Knowledge Transfer Activities and Enhancement of Community Through Innovation
	9.8 IKS and Sustainable Agriculture Impact on Food Security
	9.9 Initiatives for Sustainability of IKS in Agricultural Practices
	9.10 Conclusion
	Web Links
	References
10: Tropical Biological Natural Resource Management Through Integrated Bio-Cycles Farming System
	10.1 Introduction
	10.2 Sustainable Development in Agroecosystem
	10.3 Integrated Bio-cycle Farming System
	10.4 Life Cycle Assessment
	10.5 Biowastes Management
	10.6 Bioenergy and Biogas Management
	10.7 Agricultural Bioeconomy
	10.8 Conclusion
	References
11: Biopesticides for Pest Management
	11.1 Introduction
	11.2 Biopesticides: Global and Indian Perspective
	11.3 Categories of Biopesticides
	11.4 Biopesticides Derived from Bacteria
		11.4.1 Mode of Action of Bacillus thuringiensis
		11.4.2 Advantages of Bacterial Biopesticides
		11.4.3 Disadvantages of Microbial Insecticides
	11.5 Viruses as Biopesticides
		11.5.1 Mode of Action of Viruses
		11.5.2 Steps Involved in the Preparation of NPV and CPV
		11.5.3 Advantages of Viral Biopesticides
		11.5.4 Disadvantages of Viral Biopesticides
	11.6 Fungi as Biopesticides
		11.6.1 Mode of Action of Fungi-Based Biopesticides
		11.6.2 Advantages of Fungi-Based Biopesticides
		11.6.3 Disadvantages of Fungi-Based Biopesticides
	11.7 Entomopathogenic Nematodes (EPN) as Biopesticides
		11.7.1 Mode of Action of EPN
		11.7.2 Advantages of EPN
		11.7.3 Disadvantages of EPN
	11.8 Protozoans as Biopesticides
		11.8.1 Mode of Action of Protozoans
	11.9 Natural Enemies of Pests as Biocontrol Agents
		11.9.1 Advantages of Parasitoids in Biological Pest Management
		11.9.2 Disadvantages of Parasitoids in Biological Pest Management
		11.9.3 Advantages of Predators in Biological Pest Management
		11.9.4 Disadvantages of Predators in Biological Pest Management
	11.10 Biochemical Pesticides
		11.10.1 Mode of Action
		11.10.2 Semiochemicals
		11.10.3 Advantages of Biochemical Pesticides
		11.10.4 Disadvantages of Biochemical Pesticides
	11.11 Plant-Incorporated Protectants
	11.12 Biopesticides Formulations
		11.12.1 Dry Powders
		11.12.2 Liquid Formulations
		11.12.3 Compatibility of Biopesticides
	11.13 Factors Influencing the Success of Biocontrol Agent
	11.14 Conclusion
	References
12: Renewable Energy for a Low-Carbon Future: Policy Perspectives
	12.1 Introduction
	12.2 World Energy Transition
	12.3 Need for a Strategic Technological Approach Towards Low and Zero-Carbon Growth
		12.3.1 Small Hydropower
		12.3.2 Wind Power
		12.3.3 Ocean Energy
		12.3.4 Solar Photovoltaic (PV) Technology
		12.3.5 Bioenergy
		12.3.6 Nuclear Power
		12.3.7 Carbon Capture and Storage (CCS)
		12.3.8 Hydrogen and Fuel Cells
	12.4 Intended Nationally Determined Contributions and Low and Zero-Carbon Initiative
		12.4.1 India´s Intended Nationally Determined Contribution (INDC)
		12.4.2 Highlights of India´s INDC
		12.4.3 India´s Clean Energy Targets
		12.4.4 Biofuel Policy in India
	12.5 Potential GHG Emissions Reductions by Renewable Resources
	12.6 Conclusion
	References
13: TNAU Energy Soft 2016: An Efficient Energy Audit Tool to Identify Energy Saving Technologies for Sustainable Agriculture
	13.1 Introduction
	13.2 Influence of Energy Demand on Climate Change Factors
	13.3 Influence of Agricultural Technologies on Climate Change Factors
	13.4 Energy Auditing for Identifying Climate Smart Agricultural Technologies
		13.4.1 Energy Auditing
		13.4.2 TNAU Energy Soft
		13.4.3 Methodology Used in TNAU Energy Software for Energy Analysis
	13.5 A Case Study Using TNAU Energy Soft 2016
	13.6 Conclusion
	References
14: Mechanism for Improving the Sustainability of Homestead Food Gardens in the Gauteng Province, South Africa
	14.1 Introduction
	14.2 Aim and Objectives
	14.3 Methodology
	14.4 Results and Discussion
		14.4.1 Study Area
		14.4.2 Descriptive Analysis
		14.4.3 Households Gardens Status
		14.4.4 Correlation Analysis
		14.4.5 Univariate Analysis
		14.4.6 Focus Group Discussion Analysis
		14.4.7 Mechanism for Improving the Sustainability of Homestead Food Gardens
			14.4.7.1 Stakeholder and Communities Mobilisation
			14.4.7.2 Situational Analysis
			14.4.7.3 Food Garden Inputs
			14.4.7.4 Technical Assistance, Training, and Demonstrations
			14.4.7.5 Nutrition Education
			14.4.7.6 Monitoring and Evaluation
	14.5 Conclusion
	References
15: Assessment of Potassium Nutrient Balance in Agricultural Farming System: A Pathway to Sustainable Production of Crops
	15.1 Introduction
	15.2 Material and Methods
		15.2.1 Dynamic Nutrient Balance Accounting
		15.2.2 Modelling Nutrient Stocks
		15.2.3 Empirical Estimation Model
		15.2.4 Estimation of K Inflow from Various Sources
		15.2.5 Estimation of Outflow of K
		15.2.6 Period of Study and Sources of Data
	15.3 Results and Discussion
		15.3.1 Nutrient Inflow
		15.3.2 Per ha K Inflow
		15.3.3 Measurement of K Outflow
		15.3.4 Per Hectare Potassium Uptake
		15.3.5 Status of K Balance
	15.4 Conclusion
	References




نظرات کاربران