دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: V. Venkatramanan, Shachi Shah, Ram Prasad سری: ISBN (شابک) : 9789811573200 ناشر: Springer سال نشر: 2021 تعداد صفحات: 347 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Sustainable Bioeconomy: Pathways to Sustainable Development Goals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اقتصاد زیستی پایدار: مسیرهایی برای دستیابی به اهداف توسعه پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
توسعه پایدار مهمترین چالش پیش روی بشر در قرن بیست و یکم است. رشد اقتصاد جهانی در گذشته نه چندان دور در بسیاری از کشورها پیشرفت چشمگیری داشته است. با این وجود، مسائل مربوط به اختلاف درآمد، فقر، شکاف جنسیتی و سوءتغذیه در چشم انداز جهانی، به رغم رشد رو به رشد اقتصاد و پیشرفت های تکنولوژیکی، غیر معمول نیست. این تصویر وحشتناک با افزایش جمعیت انسانی ما، استفاده بیدیده از منابع، روند رو به افزایش مصرف و تغییر آب و هوا تشدید میشود. به منظور حفاظت از بشریت و حفظ کره زمین، سازمان ملل متحد "دستور کار 2030 برای توسعه پایدار" را صادر کرد که شامل فعالیت های تولید و مصرف پایدار اما محدود به آن نمی شود، به عنوان مثال. در یک اقتصاد زیستی پایدار ویژگی بارز اقتصاد زیستی پایدار تغییر پارادایم از یک اقتصاد مبتنی بر سوخت فسیلی به یک اقتصاد مبتنی بر بیولوژیکی است که توسط فضایل پایداری، استفاده کارآمد از منابع و «اقتصاد دایرهای» هدایت میشود. از آنجایی که اقتصاد زیستی پایدار مبتنی بر استفاده کارآمد از منابع بیولوژیکی و تحولات اجتماعی است، پتانسیل بسیار زیادی برای دستیابی به اهداف توسعه پایدار سازمان ملل دارد. این کتاب بینشهای ارزشمندی را در مورد پیوندهای بین اقتصاد زیستی پایدار و اهداف توسعه پایدار به اشتراک میگذارد و آن را برای سیاستگذاران، محققان و دانشجویان مطالعات محیطی ضروری میسازد.
Sustainable development is the most important challenge facing humanity in the 21st century. The global economic growth in the recent past has indeed exhibited marked progress in many countries. Nevertheless, the issues of income disparity, poverty, gender gaps, and malnutrition are not uncommon in the global landscape, in spite of the upward growth of the economy and technological advances. This grim picture is further exacerbated by our growing human population, unmindful resource use, ever-increasing consumption trends, and changing climate. In order to protect humanity and preserve the planet, the United Nations issued the “2030 agenda for sustainable development,” which includes but is not limited to sustainable production and consumption practices, e.g. in a sustainable bioeconomy. The hallmark of the sustainable bioeconomy is a paradigm shift from a fossil-fuel-based economy to a biological-based one, which is driven by the virtues of sustainability, efficient utilization of resources, and “circular economy.” As the sustainable bioeconomy is based on the efficient utilization of biological resources and societal transformations, it holds the immense potential to achieve the UN’s Sustainable Development Goals. This book shares valuable insights into the linkages between the sustainable bioeconomy and Sustainable Development Goals, making it an essential read for policymakers, researchers and students of environmental studies.
Preface Contents Editors and Contributors About the Editors Contributors 1: Exploring the Economics of the Circular Bioeconomy 1.1 Introduction 1.2 Circularity in Bioeconomy Systems 1.3 Optimal Rate of Circularity 1.4 Discussion 1.5 Conclusion References 2: The Role of Culture and Moral Responsibility in Facilitating a Sustainable Bioeconomy 2.1 Introduction 2.2 Consumption and Economic Growth 2.3 Consumption and Sustainable Growth 2.4 Consumption, Economics, and Culture 2.5 Reconciling Economic Theory and Historical Context 2.6 Values and the Tragedy of the Commons 2.7 The Role of Culture in Averting and Promoting Tragedy 2.7.1 Indigenous Relationship with the Commons 2.7.2 Colonists Promotion of ``Tragedy´´ 2.8 Perception of Resource Value, Market Outcomes, and Price 2.9 Competition and the Tragedy of the Commons 2.10 Market Distortions, Externalities, and Failure of Market Equilibrium 2.11 Market Prices, Values, and Common Goods 2.12 Conscious Consumption and the Social Norm of Sustainability 2.13 Conclusion References 3: Social and Economic Contribution of the Bioeconomic Sector in Ecuador: A Methodological Approach 3.1 Introduction 3.2 Conceptual Framework 3.3 Sectors in the Ecuadorian Bioeconomy 3.3.1 The Ecuadorian Economic Structure 3.3.2 Selection of Bioeconomy Subsectors 3.4 Available Models to Determine the Contribution of the Bioeconomy in Ecuador 3.4.1 Input-Output Model (IOM) 3.4.2 General Equilibrium Model 3.4.3 Social Accounting Matrix 3.5 Comparative Analysis of the Models 3.6 Contribution to the Ecuadorian Bioeconomy 3.6.1 Labour and Salary 3.6.2 Production and Consumption 3.6.3 Growth and Taxes 3.7 Insights for Assessing the Contribution of the Bioeconomy in Ecuador in a Future Scenario 3.7.1 Potential for the Improvement of Agricultural and Livestock Activities in Terms of Yield per Area of Arable Land Used 3.7.2 Potential for the Use of Organic Fertilizers, Herbicides, and Pesticides 3.7.3 Estimating Biomass-Based Manufacturing and Energy Development 3.7.4 Estimation of the Economic Potential of Water Treatment Expansion 3.7.5 Structure of the Input-Output Model to Assess the Future Contribution of the Bioeconomy 3.8 Conclusion References 4: Biobutanol Production from Agricultural Biomass 4.1 Introduction 4.2 Biobutanol 4.3 Agricultural Biomass 4.3.1 Availability of Biomass 4.3.2 Chemical Composition of Biomass 4.4 Biobutanol Production from Agricultural Biomass 4.4.1 Substrate Preparation 4.4.2 Medium Formulation 4.4.3 Microorganism and Inoculum Preparation 4.4.4 ABE Fermentation 4.4.5 Recovery 4.5 Conclusion References 5: Valorization of Biowastes into Food, Fuels, and Chemicals: Towards Sustainable Environment, Economy, and Society 5.1 Introduction 5.2 Biowastes 5.2.1 Valorization of Biomass into Fuels and High Value Added Products 5.2.1.1 Anaerobic Digestion of Biomass 5.2.1.2 Bioalcohol Production from Biomass 5.2.1.3 Biodiesel Production from Biomass 5.2.1.4 Biohydrogen Production from Biomass 5.2.1.5 Bulk Chemicals from Biomass 5.2.2 Valorization of Food Waste into Chemicals and Fuels 5.2.2.1 Existing Methods of Management of Food Wastes 5.2.2.2 Fuels from Food Wastes Anaerobic Fermentation Extraction of Sugars from Food Wastes Biohydrogen Biomethane Biohythane Volatile Fatty Acids Bioethanol Biodiesel Production 5.2.2.3 Chemicals Production from Food Wastes 5.2.3 Industrial Wastes 5.3 Conclusion References 6: Sustainable Biorefinery Technologies for Agro-Residues: Challenges and Perspectives 6.1 Introduction 6.2 Potential and Availability of Agro-Residues 6.3 Biorefinery Methods 6.3.1 Thermochemical Conversion Method 6.3.1.1 Gasification 6.3.1.2 Pyrolysis 6.3.1.3 Combustion 6.3.2 Biochemical Conversion Methods 6.3.2.1 Biomass Pretreatment 6.3.2.2 Fermentation Process 6.3.2.3 Anaerobic Digestion 6.3.2.4 Hybrid Thermochemical: Biochemical Conversion Technology 6.4 Biofuels Production from Agricultural Residues 6.4.1 Solid Biofuels 6.4.2 Liquid Biofuels 6.4.3 Gaseous Biofuels 6.5 Value-Added Biochemicals Production via Sustainable Biorefinery Approach 6.5.1 Valorization of Cellulose 6.5.2 Valorization of Hemicellulose 6.5.3 Valorization of Lignin 6.6 Challenges in Commercialization 6.7 Conclusion References 7: Biotechnological Interventions for Production of Flavour and Fragrance Compounds 7.1 Introduction 7.2 Flavourings and Fragrance Chemicals 7.3 Biotechnological Methods for Production of Flavours 7.3.1 Enzymatic Methods 7.3.2 Microbial Methods 7.3.2.1 Fruity and Floral Terpenes 7.3.2.2 Aromatic Compounds in Alcoholic Beverages 7.3.2.3 Esters 7.3.2.4 Ketones 7.3.2.5 Fruity Lactones 7.3.2.6 Phenolic Aldehydes 7.3.2.7 Grassy Aroma 7.3.2.8 Musk Aroma 7.3.2.9 Synthetic Biology 7.3.2.10 Metabolic Engineering 7.3.2.11 Process of Solid-State/Submerged Fermentation for Production of Aroma Compounds 7.3.2.12 Bioreactor Model 7.3.3 Plant Tissue Culture Methods 7.4 Sensory Evaluation of Flavour Compounds 7.5 Product Formulation/Delivery Systems of Flavours 7.6 Bioeconomy, Regulatory Aspects and Legal Status of Flavours 7.7 Conclusion References 8: Phytochemicals for the Management of Stored Product Insects 8.1 Introduction 8.2 Phytochemicals 8.3 Extraction Methods 8.3.1 Solvent Extraction Method 8.3.2 Microwave Assisted Extraction (MAE) 8.3.3 Ultrasound Assisted Extraction (UAE) 8.3.4 Supercritical Fluid Extraction (SFE) 8.3.5 Hydrodistillation 8.3.6 Soxhlet Extraction 8.3.7 Solid Phase Extraction (SPE) 8.4 Testing Methods to Determine the Efficiency of Phytochemicals against Stored Pests 8.4.1 Area Preference Test 8.4.2 Feeding Preference Test 8.5 Analysis of Phytochemicals 8.5.1 IR Spectroscopy 8.5.2 UV Visible Spectroscopy 8.6 Insect Repellent Packaging 8.7 Constraints of Using Phytochemicals in Pest Management 8.8 Conclusion References 9: Assessing the Impact of Indigenous Knowledge Systems on Sustainable Agriculture: A Case Study of the Selected Communities i... 9.1 Introduction 9.2 Aim and Objectives 9.3 Research Methodology 9.3.1 Research Design 9.3.2 Research Setting 9.3.3 Sampling 9.4 Data Collection 9.4.1 Quantitative Data Collection 9.4.2 Qualitative Data Collection 9.4.3 Data Analysis 9.5 Results and Discussion 9.5.1 The Contextualisation of IKS 9.5.2 Challenges of the IKS on Agricultural Practices 9.5.3 Benefits of the IKS on Agricultural Practice 9.6 Best Practices of IKS, Sustainable Agriculture, and Food Security 9.7 Knowledge Transfer Activities and Enhancement of Community Through Innovation 9.8 IKS and Sustainable Agriculture Impact on Food Security 9.9 Initiatives for Sustainability of IKS in Agricultural Practices 9.10 Conclusion Web Links References 10: Tropical Biological Natural Resource Management Through Integrated Bio-Cycles Farming System 10.1 Introduction 10.2 Sustainable Development in Agroecosystem 10.3 Integrated Bio-cycle Farming System 10.4 Life Cycle Assessment 10.5 Biowastes Management 10.6 Bioenergy and Biogas Management 10.7 Agricultural Bioeconomy 10.8 Conclusion References 11: Biopesticides for Pest Management 11.1 Introduction 11.2 Biopesticides: Global and Indian Perspective 11.3 Categories of Biopesticides 11.4 Biopesticides Derived from Bacteria 11.4.1 Mode of Action of Bacillus thuringiensis 11.4.2 Advantages of Bacterial Biopesticides 11.4.3 Disadvantages of Microbial Insecticides 11.5 Viruses as Biopesticides 11.5.1 Mode of Action of Viruses 11.5.2 Steps Involved in the Preparation of NPV and CPV 11.5.3 Advantages of Viral Biopesticides 11.5.4 Disadvantages of Viral Biopesticides 11.6 Fungi as Biopesticides 11.6.1 Mode of Action of Fungi-Based Biopesticides 11.6.2 Advantages of Fungi-Based Biopesticides 11.6.3 Disadvantages of Fungi-Based Biopesticides 11.7 Entomopathogenic Nematodes (EPN) as Biopesticides 11.7.1 Mode of Action of EPN 11.7.2 Advantages of EPN 11.7.3 Disadvantages of EPN 11.8 Protozoans as Biopesticides 11.8.1 Mode of Action of Protozoans 11.9 Natural Enemies of Pests as Biocontrol Agents 11.9.1 Advantages of Parasitoids in Biological Pest Management 11.9.2 Disadvantages of Parasitoids in Biological Pest Management 11.9.3 Advantages of Predators in Biological Pest Management 11.9.4 Disadvantages of Predators in Biological Pest Management 11.10 Biochemical Pesticides 11.10.1 Mode of Action 11.10.2 Semiochemicals 11.10.3 Advantages of Biochemical Pesticides 11.10.4 Disadvantages of Biochemical Pesticides 11.11 Plant-Incorporated Protectants 11.12 Biopesticides Formulations 11.12.1 Dry Powders 11.12.2 Liquid Formulations 11.12.3 Compatibility of Biopesticides 11.13 Factors Influencing the Success of Biocontrol Agent 11.14 Conclusion References 12: Renewable Energy for a Low-Carbon Future: Policy Perspectives 12.1 Introduction 12.2 World Energy Transition 12.3 Need for a Strategic Technological Approach Towards Low and Zero-Carbon Growth 12.3.1 Small Hydropower 12.3.2 Wind Power 12.3.3 Ocean Energy 12.3.4 Solar Photovoltaic (PV) Technology 12.3.5 Bioenergy 12.3.6 Nuclear Power 12.3.7 Carbon Capture and Storage (CCS) 12.3.8 Hydrogen and Fuel Cells 12.4 Intended Nationally Determined Contributions and Low and Zero-Carbon Initiative 12.4.1 India´s Intended Nationally Determined Contribution (INDC) 12.4.2 Highlights of India´s INDC 12.4.3 India´s Clean Energy Targets 12.4.4 Biofuel Policy in India 12.5 Potential GHG Emissions Reductions by Renewable Resources 12.6 Conclusion References 13: TNAU Energy Soft 2016: An Efficient Energy Audit Tool to Identify Energy Saving Technologies for Sustainable Agriculture 13.1 Introduction 13.2 Influence of Energy Demand on Climate Change Factors 13.3 Influence of Agricultural Technologies on Climate Change Factors 13.4 Energy Auditing for Identifying Climate Smart Agricultural Technologies 13.4.1 Energy Auditing 13.4.2 TNAU Energy Soft 13.4.3 Methodology Used in TNAU Energy Software for Energy Analysis 13.5 A Case Study Using TNAU Energy Soft 2016 13.6 Conclusion References 14: Mechanism for Improving the Sustainability of Homestead Food Gardens in the Gauteng Province, South Africa 14.1 Introduction 14.2 Aim and Objectives 14.3 Methodology 14.4 Results and Discussion 14.4.1 Study Area 14.4.2 Descriptive Analysis 14.4.3 Households Gardens Status 14.4.4 Correlation Analysis 14.4.5 Univariate Analysis 14.4.6 Focus Group Discussion Analysis 14.4.7 Mechanism for Improving the Sustainability of Homestead Food Gardens 14.4.7.1 Stakeholder and Communities Mobilisation 14.4.7.2 Situational Analysis 14.4.7.3 Food Garden Inputs 14.4.7.4 Technical Assistance, Training, and Demonstrations 14.4.7.5 Nutrition Education 14.4.7.6 Monitoring and Evaluation 14.5 Conclusion References 15: Assessment of Potassium Nutrient Balance in Agricultural Farming System: A Pathway to Sustainable Production of Crops 15.1 Introduction 15.2 Material and Methods 15.2.1 Dynamic Nutrient Balance Accounting 15.2.2 Modelling Nutrient Stocks 15.2.3 Empirical Estimation Model 15.2.4 Estimation of K Inflow from Various Sources 15.2.5 Estimation of Outflow of K 15.2.6 Period of Study and Sources of Data 15.3 Results and Discussion 15.3.1 Nutrient Inflow 15.3.2 Per ha K Inflow 15.3.3 Measurement of K Outflow 15.3.4 Per Hectare Potassium Uptake 15.3.5 Status of K Balance 15.4 Conclusion References