دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Shwetank Avikal (editor), Amit Raj Singh (editor), Mangey Ram (editor) سری: ISBN (شابک) : 0367607735, 9780367607739 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 257 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Sustainability in Industry 4.0: Challenges and Remedies (Mathematical Engineering, Manufacturing, and Management Sciences) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پایداری در صنعت 4.0: چالش ها و راه حل ها (مهندسی ریاضی، تولید و علوم مدیریت) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تعداد زیادی از تولیدکنندگان در حال درک مزایای مالی و زیست محیطی قابل توجهی از شیوه های تجاری پایدار هستند. برای توسعه جوامع پایدارتر، صنایع باید درک بهتری از نحوه پاسخگویی به چالش های محیطی، اقتصادی و اجتماعی و تغییر رفتار صنعتی داشته باشند. هدف این کتاب ارائه دانش مورد نیاز و تسریع انتقال به سمت یک سیستم صنعتی پایدار است.
این کتاب به صنایع کمک می کند تا با کاهش هزینه ها و ضایعات،
کارایی عملیاتی خود را افزایش دهند. این به آنها کمک می کند تا
پاسخ مشتری را افزایش دهند، به مشتریان جدید دست یابند و مزیت
رقابتی به دست آورند. این برنامه نوآوری، برنامه ریزی سناریو و
تجزیه و تحلیل استراتژیک را ارائه می دهد که فراتر از انطباق
است، همچنین مطالعات موردی و راه حل هایی برای چالش های صنعت
4.0 ارائه می دهد.
متخصصین و همچنین دانشجویان می توانند به این کتاب مراجعه کنند.
برای افزودن به دانش خود در مورد Industry 4.0 و ایجاد ایده ها
و راه حل های جدید برای مشکلات موجود و آینده.
A large and growing number of manufacturers are realizing the substantial financial and environmental benefits of sustainable business practices. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic, and social challenges and transform industrial behavior. The objective of this book is to provide the required knowledge and accelerate the transition towards a sustainable industrial system.
The book will help industries to enhance operational
efficiency by reducing costs and waste. It will help them
increase customer response, reach new customers, and gain
competitive advantage. It offers innovation, scenario
planning, and strategic analysis that goes beyond compliance,
as well as case studies and remedies to the industry 4.0
challenges.
Professionals, as well as students, can refer to this book to
add to their knowledge on Industry 4.0 and develop new ideas
and solutions to the existing and future problems.
Cover Half Title Series Page Title Page Copyright Page Contents Preface Acknowledgements Editor's Biographies Contributors 1. Sustainability in the New Normal: Industry 4.0 Perspective 1.1 Introduction 1.2 DEFINING SUSTAINABILITY 1.3 RELATIONSHIP BETWEEN SUSTAINABILITY AND TECHNOLOGY 1.4 INDUSTRY 4.0 1.5 ANALYSIS 1.5.1 ADOPTION AND FORMATION STAGE 1.5.2 OPERATION STAGE 1.5.3 INDUSTRY 4.0 AND SUSTAINABILITY 1.5.4 INDUSTRY 4.0 AND ECONOMIC SUSTAINABILITY 1.5.5 INDUSTRY 4.0 AND SOCIAL SUSTAINABILITY 1.5.6 INDUSTRY 4.0 AND ECOLOGICAL SUSTAINABILITY 1.6 CONCLUSION AND DISCUSSION References 2. Sustainability of Large-Scale Industries in the Global Market 2.1 Introduction 2.1.1 Sustainable Development - The Origin 2.1.2 Industrial Sustainability - An Antidote to Environmental Degradation 2.1.2.1 Relevance of Industrial Sustainability Across Industries 2.1.3 Industry 4.0 and Circular Economy - Aligning Technology and Sustainability 2.1.4 Sustainable Development Goals (SDG) - Inclusive and Sustainable Development by Industries (ISID-I) 2.1.5 Sustainable Global Market (Scope and Potential) - Role of Industry 4.0 2.1.5.1 Digital Technologies Need to Create a Resource Efficient Industrial Base 2.1.5.2 Benefits of Technologically Advanced Sustainable Industrial Manufacturing Processes 2.1.6 Challenges in Achieving Industrial Sustainability 2.1.6.1 A Large Segment of Unaware and Unprepared Consumers 2.1.6.2 The Stakeholders 2.1.6.3 Competitiveness and Lock-in Period 2.1.6.4 Organizational and Product Fit 2.1.6.5 Limited Potential of Recycling and Substitution - Choosing the Right Materials Throughout the Product Life Cycle 2.1.6.6 Employee Skill Set - How Prepared Are Employees to Imbibe Sustainability as Part of Tech-Operated Culture? 2.1.7 Role of Govt - Focus on National SDG, Inch Closer Towards Global SDG 2.1.8 Industrial Sustainability - COVID-19 and Way Forward Operational Technology Information Technology Chapter Summary References Web References 3. Sustainable Supplier Selection in Industry 4.0: A Three-Stage Fuzzy Kano and FIS-Based Decision Framework 3.1 Introduction 3.2 Literature Review 3.2.1 Industry 4.0 3.2.2 Sustainable Supplier Selection for Industry 4.0 3.2.3 Fuzzy Kano Model (FKM) 3.2.3.1 Steps for Fuzzy Kano Model Application 3.2.4 Fuzzy Logic and Fuzzy Inference System 3.2.4.1 Fuzzy Logic 3.2.4.2 Fuzzy Inference System (FIS) 3.3 Proposed Methodology 3.4 Application of Proposed Methodology 3.5 Managerial Implications 3.6 Conclusions and Future Work References 4. Supply Chain and the Sustainability Management: Selection of Suppliers for Sustainable Operations in the Manufacturing Industry 4.1 Introduction 4.2 Sustainable Supplier Selection (SSS) - Background of the Study and Theoretical Framework 4.3 Research Gaps 4.3.1 Contributions to the Study 4.4 Methodology 4.5 Result and Discussion 4.6 Conclusion References Appendix A 5. WASPAS Multi-Criteria Decision-Making Approach for Selecting Oxygen Delignification Additives in the Pulp and Paper Industry 5.1 Introduction 5.2 Research Methodology 5.2.1 Data Collection 5.2.2 Operating Procedure of the WASPAS Method 5.2.3 Standard Deviation Method to Calculate Criteria Weight 5.3 Results and Discussion 5.3.1 Identification of Beneficial and Non-Beneficial Criteria 5.3.2 Case 1: Selection Among Chelating Agents for O2 Delignification 5.3.3 Case 2: Selection Among Polymeric Additives for O2 Delignification 5.3.4 Case 3: Selection Among Chelating and Chemical Additives for O2 Delignification 5.4 Conclusion References 6. Does Green Consumption Matter? Insights from Emerging Markets 6.1 Introduction 6.2 Theoretical Framework and Hypothesis Development 6.2.1 Environmental Concern 6.2.2 Green Brand Image 6.2.3 Green Perceived Risk 6.2.4 Health Consciousness 6.2.5 Consumer Attitude and Green Purchase Intention 6.3 Research Methodology 6.4 Results and Discussion 6.5 Testing of Hypothesis 6.7 Conclusion and Limitations References 7. Energy Consumption Optimization Based on Six-Sigma Tool (DAMIC) and Energy Value Stream Mapping 7.1 Introduction 7.2 Case Study 7.2.1 Process Layout 7.3 Industry 4.0 7.3.1 Smart Manufacturing in the Smart Factory 7.3.2 Concepts of Industry 4.0 and Its Technologies 7.3.3 Sustainable Environment and Industry 4.0 7.4 Six Sigma 7.5 Six sigma and Industry 4.0 7.6 Case Study Description 7.7 Methodology 7.7.1 Implementation of Lean-Six-Sigma for Process Optimization 7.7.1.1 Define 7.7.1.2 Measure 7.7.1.2.1 Create Energy Value Stream Mapping 7.7.1.2.2 Time Study 7.7.1.3 Analysis of Time Study 7.7.1.4 Improvement 7.7.1.4.1 Future State Map 7.7.1.4.2 Symbols Used in Future State Map 7.7.1.4.3 Analysis of Future State Map 7.7.1.5 Control 7.8 Result and Discussion 7.8.1 Determination of Bottleneck Station 7.9 Outcome Criteria 7.10 Conclusion References 8. Machine Learning Perspective in Additive Manufacturing 8.1 Introduction 8.2 Literature Survey 8.3 Proposed Framework 8.4 Case Study Implementation 8.4.1 Acquisition of Experimental Samples 8.5 Results and Discussion 8.5.1 Neural Network Architecture 8.5.2 Choosing of the Training Algorithm 8.6 Conclusion References Annexure 9. Sustainability Performance Measurement Methods, Indicators, and Challenges: A Review 9.1 Introduction 9.2 Critical Review of Previous Studies Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings Key Learnings 9.3 Methodology 9.4 Theoretical Findings and Discussion 9.5 Conclusion 9.6 Implication of the Study 9.7 Future Research Scope References 10. A Systematic Review of Industrial Sustainability Research 10.1 Introduction 10.2 Review Methodology 10.3 Results and Discussion 10.4 Conclusion and Future Research Directions References 11. An AHP-Based Approach to Determine the Effects of COVID-19 on Industrial Sustainability 11.1 Introduction 11.2 Problem Definition 11.3 Proposed Approach 11.3.1 Analytical Hierarchy Process (AHP) 11.4 Results and Discussion 11.5 Conclusion References 12. Roadmap to Smart Manufacturing for Developing Countries 12.1 Introduction 12.2 Literature Survey 12.2.1 Initiatives Taken towards Industry 4.0 12.2.2 Technologies Supporting Industry 4.0 12.2.3 Adoption of Industry 4.0 Research Gaps 12.3 Proposed Frame Work Of Smart Manufacturing 12.4 Discussion References 13. Sustainable Entrepreneurship: An Emerging Concept Benefiting Small and Medium Entrepreneurs and Their Future 13.1 Introduction 13.2 The Concept of Sustainability 13.3 Sustainable Entrepreneurship (SE) 13.4 Three Pillars of Sustainable Entrepreneurship (TBL): People, Profit, and Planet 13.5 Sustainable Entrepreneurship Benefitting SMEs 13.6 Conclusion References Index