ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Sustainability and Health in Intelligent Buildings

دانلود کتاب پایداری و سلامت در ساختمان های هوشمند

Sustainability and Health in Intelligent Buildings

مشخصات کتاب

Sustainability and Health in Intelligent Buildings

دسته بندی: طراحی: معماری
ویرایش:  
نویسندگان:   
سری: Woodhead Publishing Series in Civil and Structural Engineering 
ISBN (شابک) : 0323988261, 9780323988261 
ناشر: Woodhead Publishing 
سال نشر: 2022 
تعداد صفحات: 286 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 55,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Sustainability and Health in Intelligent Buildings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پایداری و سلامت در ساختمان های هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Sustainability and Health in Intelligent Buildings
Copyright
Dedication
Contents
Preface
	Features
	Scope
	Audience
Acknowledgments
Abbreviations
Chapter 1: Building as a system
	1.1. Sustainability by closing the loop
		1.1.1. Through a circulatory system
		1.1.2. Toward a circularity system
	1.2. Intelligence for sustainability and health
	1.3. Hierarchy of buildings development
		1.3.1. Conventional buildings
		1.3.2. High-performance buildings
		1.3.3. Smart buildings
		1.3.4. Intelligent buildings (IB)
		1.3.5. Circular buildings
	1.4. Duality of sustainability and health
		1.4.1. Sustainable development (SD)
		1.4.2. Health environment
		1.4.3. Quality of life (QoL)
	1.5. Building as a responsive and adaptive system
		1.5.1. Responsive buildings
		1.5.2. Adaptive buildings
	1.6. Building as a human-cyber-physical system (HCPS)
		1.6.1. Digital transformation
		1.6.2. Façades and smart surfaces
		1.6.3. Technical systems
	1.7. Resilience and systems thinking
	1.8. Programs, standards, and rating systems
		1.8.1. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
		1.8.2. Federation of European Heating, Ventilation and Air Conditioning Associations (REHVA)
		1.8.3. Architecture 2030
		1.8.4. Institute of Building Biology+sustainability (IBN)
		1.8.5. For health: Healthy buildings
		1.8.6. Healthy building network (HBN)
		1.8.7. International rating systems
	References
Chapter 2: Building as a living system
	2.1. Building as a living organism
		2.1.1. Eliminate, isolate, and ventilate
		2.1.2. Sick building syndrome (SBS)
		2.1.3. Building-related illness (BRI)
	2.2. Foundations of healthy buildings
		2.2.1. Indoor environmental quality (IEQ)
		2.2.2. Human health environment
	2.3. Indoor air quality (IAQ)
		2.3.1. Air quality index (AQI)
		2.3.2. Indoor pollutants
	2.4. Healthy ventilation
		2.4.1. Natural and sustainable ventilation
		2.4.2. Mechanical ventilation
		2.4.3. Hybrid and intelligent ventilation
	2.5. Thermal comfort
		2.5.1. Environmental and individual variables
		2.5.2. Thermal health
		2.5.3. Moisture and humidity
	2.6. Acoustic comfort
		2.6.1. Noise pollution
		2.6.2. Acoustic performance
	2.7. Visual comfort
		2.7.1. Natural light
		2.7.2. Artificial light
		2.7.3. Lighting design
	2.8. Water quality
	2.9. Electromagnetic environment
	2.10. Safety and security
	References
Chapter 3: Building as an energy system
	3.1. Energy efficiency through a sustainability lens
		3.1.1. The six focus areas of energy use
		3.1.2. The ``Trias Energetica´´ concept
		3.1.3. Energy efficiency strategies
		3.1.4. Exergy analysis
	3.2. Bioclimatic architecture
	3.3. Life-cycle energy consumption
		3.3.1. Embodied energy
		3.3.2. Operational energy
		3.3.3. Energy return of investment (ERoI)
	3.4. Distributed energy resources (DER)
		3.4.1. Geothermal heating and cooling
		3.4.2. Biomass energy
		3.4.3. Combined heat and power (CHP)
		3.4.4. Urban heating and cooling networks
		3.4.5. Solar systems
		3.4.6. Wind systems
		3.4.7. Fuel cells and hydrogen
	3.5. Energy storage systems
		3.5.1. Batteries
		3.5.2. Flywheels
		3.5.3. Thermal energy
	3.6. Building as a charging station
	3.7. Electrification and decarbonization
		3.7.1. Electrify everything
		3.7.2. Decarbonization strategy
	3.8. Electricity in buildings
		3.8.1. Electric power distribution in small buildings
		3.8.2. Electric power distribution in large buildings
		3.8.3. Wiring system
	3.9. Electrical load estimation
	3.10. Clean electricity
		3.10.1. Power quality
		3.10.2. Harmonics and power factor
		3.10.3. Transients
	3.11. Switching between AC and DC
		3.11.1. War of currents
		3.11.2. Edisons revenge: A shift back to DC
	References
Chapter 4: Building as a smart system
	4.1. Sustainability through smartness and intelligence
	4.2. Electrical grid
		4.2.1. Smart grid
		4.2.2. Microgrid
		4.2.3. Virtual power plants (VPP)
	4.3. Smart building loads
		4.3.1. Smart HVAC system
		4.3.2. Smart lighting
		4.3.3. Smart plug loads
	4.4. Grid-interactive efficient buildings
	4.5. Smart load management strategies
		4.5.1. Smart metering
		4.5.2. Energy consumption forecasting
		4.5.3. Load modulation
		4.5.4. Demand response
		4.5.5. Load shedding and shifting
	4.6. 5G digital ecosystem
	4.7. High-performance wireless
		4.7.1. In-building wireless communication
		4.7.2. Wireless power transfer (WPT)
		4.7.3. WiFi 6
	4.8. Tactile internet (TI)
	4.9. Internet-of-things (IoT)
		4.9.1. IoT platforms and gateways
		4.9.2. Building IoT (BIoT) smart structure
	4.10. Wireless sensor and actuator networks (WSAN)
	4.11. Internet of energy (IoE)
	4.12. Smart urban mobility
	4.13. Net-zero energy buildings (NZEB)
		4.13.1. The path to net-zero through sustainability
		4.13.2. System structure and key elements
		4.13.3. Performance indicators
	References
Chapter 5: Building as a human-cyber-physical system
	5.1. Digital transformation
	5.2. Digital sustainability
		5.2.1. Intelligent digital twin
		5.2.2. 3D printing and robotics
		5.2.3. Digital building passport
	5.3. User experience (UX)
	5.4. Ambient intelligent architecture
		5.4.1. User-focused architecture
		5.4.2. Intelligent façades
	5.5. Computational intelligence
		5.5.1. Artificial intelligence
		5.5.2. Machine learning (ML)
		5.5.3. Human in the loop (HIL) intelligence
	5.6. Big data
		5.6.1. 4 V model
		5.6.2. Data centers and cloud
		5.6.3. Edge-intelligence technologies
		5.6.4. Data analytics
	5.7. Artificial IoT (AIoT)
	5.8. Building as a human-cyber-physical platform
	5.9. Building information modeling (BIM)
	5.10. BIM-digital twin-driven sustainable design
	5.11. Surveillance and privacy
	5.12. Security in human-cyber-physical systems
	5.13. BIM, digital twin, and blockchain
	References
Chapter 6: Building as a control system
	6.1. Control systems engineering
		6.1.1. Model-based control
		6.1.2. Control systems
		6.1.3. Computational intelligence
	6.2. Thermal modeling approaches
		6.2.1. White-box: Modeling with physics
		6.2.2. Black-box: Modeling with data
		6.2.3. Gray box: Hybrid modeling
	6.3. Analog control systems
		6.3.1. Open-loop systems
		6.3.2. Closed-loop systems
		6.3.3. Process control
	6.4. Digital control systems
		6.4.1. Signal converters
		6.4.2. Sampling frequency
		6.4.3. Control algorithm
	6.5. Adaptive control systems
	6.6. Intelligent control systems
		6.6.1. Artificial neural networks (ANN)
		6.6.2. Fuzzy logic (FL)
		6.6.3. Hybrid systems
	6.7. Building automation and control systems (BACS)
	6.8. HVAC control
		6.8.1. System components
		6.8.2. Control system
		6.8.3. Optimization techniques
	6.9. Lighting control
		6.9.1. Lighting control approaches
		6.9.2. Integrated and intelligent lighting control
	6.10. Research trends
		6.10.1. Forward model-based HVAC system
		6.10.2. Data-driven HVAC system
		6.10.3. Model predictive control (MPC)
		6.10.4. Agent-based control
		6.10.5. Exergy-based control and optimization
	References
Chapter 7: Building as a bioelectromagnetics ecosystem
	7.1. Nonionizing electromagnetic fields
	7.2. Interaction mechanisms
		7.2.1. ELF fields
		7.2.2. RF fields
		7.2.3. Cell membrane and the chemical link
	7.3. Safety standards and protection guidelines
		7.3.1. IEEE standard
		7.3.2. ICNIRP guidelines
		7.3.3. Building biology institute (IBN) evaluation guidelines
	7.4. Electromagnetic living environment
		7.4.1. Potential ELF sources
		7.4.2. Potential RF sources
	7.5. Biological and health effects
		7.5.1. Neuropsychiatric symptoms
		7.5.2. Effects on pregnancy outcomes
		7.5.3. Electromagnetic hypersensitivity (EHS)
		7.5.4. Electromagnetic fields and cancer
	7.6. Electromagnetic safety in the built environment
		7.6.1. Reducing current
		7.6.2. Increasing distance
		7.6.3. Reducing spacing
		7.6.4. Phasing conductors
		7.6.5. Shielding techniques
	7.7. Design for minimum exposure
		7.7.1. Minimizing power frequency fields
		7.7.2. RF survey and link planning
		7.7.3. Metamaterials for shielding RF fields
	7.8. Electromagnetic risk management
		7.8.1. Anticipatory ethics of EM fields
		7.8.2. Precautionary approaches
	References
Chapter 8: Building as a hygiene system
	8.1. Historically thinking
	8.2. Infectious disease outbreaks
	8.3. Routes of transmission
		8.3.1. Respiratory droplets
		8.3.2. Aerosol and airborne
		8.3.3. Direct and fomite
	8.4. Infection control strategies
	8.5. Design considerations for indoor air quality
		8.5.1. Hygiene ventilation
		8.5.2. Air recirculation
		8.5.3. Filtration
		8.5.4. Authoritative positions
	8.6. Environmental electromagnetic disinfection
		8.6.1. Vertical potential gradients (VPG)
		8.6.2. Bipolar ionization (BPI)
		8.6.3. Electrostatic disinfection
		8.6.4. Ultraviolet sterilization
		8.6.5. Microwave sterilization
	8.7. Pandemic intelligent solutions
		8.7.1. Predictive analytics
		8.7.2. Mobile applications
		8.7.3. Sensing technologies
		8.7.4. Drones
		8.7.5. Robots
	References
Chapter 9: Urbanization as an intelligent system
	9.1. Urban history
	9.2. Urban intelligence
	9.3. Urban sustainability
	9.4. Urban health
	9.5. Urban adaptability
	9.6. Urban therapy
	9.7. Urban knowledge
	9.8. Intelligence for pandemic response
	9.9. Intelligence for postpandemic experience
	References
Index
Back Cover




نظرات کاربران