ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Supported ionic liquids : fundamentals and applications

دانلود کتاب مایعات یونی پشتیبانی شده: اصول و کاربردها

Supported ionic liquids : fundamentals and applications

مشخصات کتاب

Supported ionic liquids : fundamentals and applications

دسته بندی: شیمی معدنی
ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9783527654789, 352765481X 
ناشر: Wiley-VCH Verlag GmbH 
سال نشر: 2014 
تعداد صفحات: 497 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 45,000



کلمات کلیدی مربوط به کتاب مایعات یونی پشتیبانی شده: اصول و کاربردها: شیمی و صنایع شیمیایی، شیمی عمومی، نظری و معدنی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Supported ionic liquids : fundamentals and applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مایعات یونی پشتیبانی شده: اصول و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Content: Preface XV    List of Contributors XVII     1 Introduction 1  Rasmus Fehrmann, Marco Haumann, and Anders Riisager     1.1 A Century of Supported Liquids 1     1.2 Supported Ionic Liquids 2     1.3 Applications in Catalysis 5     1.4 Applications in Separation 5     1.5 Coating of Heterogeneous Catalysts 6     1.6 Monolayers of IL on Surfaces 7     1.7 Conclusion 7     References 8     Part I Concept and Building Blocks 11     2 Introducing Ionic Liquids 13  Tom Welton     2.1 Introduction 13     2.2 Preparation 13     2.3 Liquid Range 14     2.4 Structures 16     2.4.1 The Liquid/Solid Interface 17     2.4.2 The Liquid/Gas Interface 19     2.5 Physical Properties 20     2.5.1 The Liquid/Solid Interface 21     2.5.2 The Liquid/Gas Interface 21     2.5.3 Polarity 22     2.5.4 Chromatographic Measurements and the Abraham Model of Polarity 24     2.5.5 Infinite Dilution Activity Coefficients 24     2.6 Effects of Ionic Liquids on Chemical Reactions 26     2.7 Ionic Liquids as Process Solvents in Industry 29     2.8 Summary 30     References 31     3 Porous Inorganic Materials as Potential Supports for Ionic Liquids 37  Wilhelm Schwieger, Thangaraj Selvam, Michael Klumpp, and Martin Hartmann     3.1 Introduction 37     3.2 Porous Materials     an Overview 39     3.2.1 History 39     3.2.2 Pore Size 40     3.2.3 Structural Aspects 41     3.2.4 Chemistry 43     3.2.5 Synthesis 43     3.3 Silica-Based Materials     Amorphous 48     3.3.1 Silica Gels 48     3.3.2 Precipitated Silicas 49     3.3.3 Porous Glass 49     3.4 Layered Materials 51     3.5 Microporous Materials 52     3.5.1 Zeolites 52     3.5.2 AlPOs/SAPOs 54     3.5.3 Hierarchical Porosity in Zeolite Crystals 55     3.6 Ordered Mesoporous Materials 56     3.6.1 Silica-Based Classical Compounds 58     3.6.2 PMOs 60     3.6.3 Mesoporous Carbons 61     3.6.4 Other Mesoporous Oxides 61     3.6.5 Anodic Oxidized Materials 62     3.7 Structured Supports and Monolithic Materials 63     3.7.1 Monoliths with Hierarchical Porosity 64     3.7.2 Hierarchically Structured Reactors 65     3.8 Conclusions 66     References 66     4 Synthetic Methodologies for Supported Ionic Liquid Materials 75  Reinout Meijboom, Marco Haumann, Thomas E. Muller, and Normen Szesni     4.1 Introduction 75     4.2 Support Materials 76     4.3 Preparation Methods for Supported Ionic Liquids 77     4.3.1 Incipient Wetness Impregnation 77     4.3.2 Freeze-Drying 79     4.3.3 Spray Coating 80     4.3.4 Chemically Bound Ionic Liquids 82     4.3.5 IL   Silica Hybrid Materials 89     4.4 Summary 91     References 91     Part II Synthesis and Properties 95     5 Pore Volume and Surface Area of Supported Ionic Liquids Systems 97  Florian Heym, Christoph Kern, Johannes Thiessen, and Andreas Jess     5.1 Example I: [EMIM][NTf2] on Porous Silica 98     5.2 Example II: SCILL Catalyst (Commercial Ni catalyst) Coated with [BMIM][OcSO4] 99     Acknowledgments 103     Symbols 104     Abbreviations 104     References 104     6 Transport Phenomena, Evaporation, and Thermal Stability of Supported Ionic Liquids 105  Florian Heym, Christoph Kern, Johannes Thiessen, and Andreas Jess     6.1 Introduction 105     6.2 Diffusion of Gases and Liquids in ILs and Diffusivity of ILs in Gases 106     6.2.1 Diffusivity of Gases and Liquids in ILs 106     6.2.2 Diffusion Coefficient of Evaporated ILs in Gases 108     6.3 Thermal Stability and Vapor Pressure of Pure ILs 109     6.3.1 Drawbacks and Opportunities Regarding Stability and Vapor Pressure Measurements of ILs 109     6.3.2 Experimental Methods to Determine the Stability and Vapor Pressure of ILs 110     6.3.3 Data Evaluation and Modeling Methodology 110     6.3.3.1 Evaluation of Vapor Pressure and Decomposition of ILs by Ambient Pressure TG at Constant Heating Rate 110     6.3.3.2 Evaluation of Vapor Pressure of ILs by High Vacuum TG 114     6.3.4 Vapor Pressure Data and Kinetic Parameters of Decomposition of Pure ILs 116     6.3.4.1 Kinetic Data of Thermal Decomposition of Pure ILs 116     6.3.4.2 Vapor Pressure of Pure ILs 116     6.3.5 Guidelines to Determine the Volatility and Stability of ILs 118     6.3.6 Criteria for the Maximum Operation Temperature of ILs 118     6.3.6.1 Maximum Operation Temperature of ILs with Regard to Thermal Decomposition 118     6.3.6.2 Maximum Operation Temperature of ILs with Regard to Evaporation 120     6.4 Vapor Pressure and Thermal Decomposition of Supported ILs 120     6.4.1 Thermal Decomposition of Supported ILs 121     6.4.2 Mass Loss of Supported ILs by Evaporation 123     6.4.2.1 Evaporation of ILs Coated on Silica (SILP-System) 123     6.4.2.2 Evaporation of ILs Coated on a Ni-Catalyst (SCILL-System) 132     6.4.2.3 Evaluation of Internal Surface Area by the Evaporation Rate of Supported ILs 132     6.4.3 Criteria for the Maximum Operation Temperature of Supported ILs 134     6.4.3.1 Maximum Operation Temperature of Supported ILs with Regard to Thermal Stability 134     6.4.3.2 Maximum Operation Temperature of Supported ILs with Regard to Evaporation 135     6.5 Outlook 137     Acknowledgments 138     Symbols 138     Abbreviations 140     References 140     7 Ionic Liquids at the Gas   Liquid and Solid   Liquid Interface     Characterization and Properties 145  Zlata Grenoble and Steven Baldelli     7.1 Introduction 145     7.2 Characterization of Ionic Liquid Surfaces by Spectroscopic Techniques 146     7.2.1 Types of Interfacial Systems Involving Ionic Liquids 146     7.2.2 Overview of Surface Analytical Techniques for Characterization of Ionic Liquids 146     7.2.3 Structural and Orientational Analysis of Ionic Liquids at the Gas   Liquid Interface 147     7.2.3.1 Principles of Sum-Frequency Vibrational Spectroscopy 147     7.2.4 Cation-Specific Ionic Liquid Orientational Analysis 148     7.2.5 Anion-Specific Ionic Liquid Orientational Analysis 154     7.2.6 Ionic Liquid Interfacial Analysis by Other Surface-Specific Techniques 157     7.2.7 Ionic Liquid Effects on Surface Tension 162     7.2.8 Ionic Liquid Effects on Surface Charge Density 163     7.3 Orientation and Properties of Ionic Liquids at the Solid   Liquid Interface 165     7.3.1 Surface Orientational Analysis of Ionic Liquids on Dry Silica 165     7.3.2 Cation Orientational Analysis 166     7.3.3 Alkyl Chain Length Effects on Orientation 167     7.3.4 Competing Anions and Co-adsorption 168     7.3.5 Computational Simulations of Ionic Liquid on Silica 168     7.3.6 Ionic Liquids on Titania (TiO2) 170     7.4 Comments 172     References 173     8 Spectroscopy on Supported Ionic Liquids 177  Peter S. Schulz     8.1 NMR-Spectroscopy 178     8.1.1 Spectroscopy of Support and IL 178     8.1.2 Spectroscopy of the Catalyst 183     8.2 IR Spectroscopy 186     References 189     9 A Priori Selection of the Type of Ionic Liquid 191  Wolfgang Arlt and Alexander Buchele     9.1 Introduction and Objective 191     9.2 Methods 191     9.2.1 Experimental Determination of Gas Solubilities 192     9.2.1.1 Magnetic Suspension Balance 192     9.2.1.2 Isochoric Solubility Cell 194     9.2.1.3 Inverse Gas Chromatography 195     9.2.2 Prediction of Gas Solubilities with COSMO-RS 196     9.2.3 Reaction Equilibrium and Reaction Kinetics 197     9.3 Usage of COSMO-RS to Predict Solubilities in IL 198     9.4 Results of Reaction Modeling 201     9.5 Perspectives of the A Priori Selection of ILs 202     References 205     Part III Catalytic Applications 209     10 Supported Ionic Liquids as Part of a Building-Block System for Tailored Catalysts 211  Thomas E. Muller     10.1 Introduction 211     10.2 Immobilized Catalysts 212     10.3 Supported Ionic Liquids 214     10.4 The Building Blocks 215     10.4.1 Ionic Liquid 215     10.4.2 Support 216     10.4.3 Catalytic Function 218     10.4.3.1 Type A1     Task Specific IL 219     10.4.3.2 Type A2     Immobilized Homogeneous Catalysts and Metal Nanoparticles 219     10.4.3.3 Type B     Heterogeneous Catalysts Coated with IL 221     10.4.3.4 Type C     Chemically Bound Monolayers of IL 221     10.4.4 Additives and Promoters 222     10.4.5 Preparation and Characterization of Catalysts Involving Supported ILs 222     10.5 Catalysis in Supported Thin Films of IL 222     10.6 Supported Films of IL in Catalysis 223     10.6.1 Hydrogenation Reactions 224     10.6.2 Hydroamination 225     10.7 Advantages and Drawbacks of the Concept 228     10.8 Conclusions 229     Acknowledgments 229     References 229     11 Coupling Reactions with Supported Ionic Liquid Catalysts 233  Zhenshan Hou and Buxing Han     11.1 Introduction 233     11.2 A Short History of Supported Ionic Liquids 234     11.3 Properties of SIL 234     11.4 Application of SIL in Coupling Reactions 235     11.4.1 C   C Coupling Reactions 235     11.4.1.1 Stille Cross Coupling Reactions 235     11.4.1.2 Friedel   Crafts Alkylation 235     11.4.1.3 Olefin Hydroformylation Reaction 236     11.4.1.4 Methanol Carbonylation 237     11.4.1.5 Suzuki Coupling Reactions 237     11.4.1.6 Heck Coupling Reactions 239     11.4.1.7 Diels   Alder Cycloaddition 241     11.4.1.8 Mukaiyama reaction 242     11.4.1.9 Biglinelli Reaction 242     11.4.1.10 Olefin Metathesis Reaction 243     11.4.2 C   N Coupling Reaction 243     11.4.2.1 Hydroamination 243     11.4.2.2 N-Arylation of N-Containing Heterocycles 244     11.4.2.3 Huisgen [3+2] Cycloaddition 244     11.4.3 Miscellaneous Coupling Reaction 244     11.5 Conclusion 246     References 246     12 Selective Hydrogenation for Fine Chemical Synthesis 251  Pasi Virtanen, Eero Salminen, Paivi Maki-Arvela, and Jyri-Pekka Mikkola     12.1 Introduction 251     12.2 Selective Hydrogenation of   ,  -Unsaturated Aldehydes 251     12.3 Asymmetric Hydrogenations over Chiral Metal Complexes Immobilized in SILCAs 257     12.4 Conclusions 261     References 261     13 Hydrogenation with Nanoparticles Using Supported Ionic Liquids 263  Jackson D. Scholten and Jairton Dupont     13.1 Introduction 263     13.2 MNPs Dispersed in ILs: Green Catalysts for Multiphase Reactions 264     13.3 MNPs Immobilized on Supported Ionic Liquids: Alternative Materials for Catalytic Reactions 267     13.4 Conclusions 275     References 275     14 Solid Catalysts with Ionic Liquid Layer (SCILL) 279  Wolfgang Korth and Andreas Jess     14.1 Introduction 279     14.2 Classification of Applications of Ionic Liquids in Heterogeneous Catalysis 280     14.3 Preparation and Characterization of the Physical Properties of the SCILL Systems 283     14.3.1 Preparation of SCILL Catalysts 283     14.3.2 Nernst Partition Coefficients 284     14.3.3 Pore Volume and Surface Area of the SCILL Catalyst with [BMIM][OcSO4] as IL 287     14.4 Kinetic Studies with SCILL Catalysts 287     14.4.1 Experimental 287     14.4.2 Hydrogenation of 1,5-Cyclooctadiene (COD) 288     14.4.2.1 Reaction Steps of 1,5-COD Hydrogenation on the Investigated Ni Catalyst 288     14.4.2.2 Influence of ILCoating of the Ni Catalyst on the Selectivity of COD Hydrogenation 288     14.4.2.3 Influence of IL Coating of the Catalyst on the Rate of COD Hydrogenation 291     14.4.2.4 Influence of Pore Diffusion on the Effective Rate of COD Hydrogenation 293     14.4.2.5 Influence of Pore Diffusion on the Selectivity of COD Hydrogenation 295     14.4.2.6 Stability of the IL Layer and Deactivation of IL-Coated Catalyst 297     14.4.3 Hydrogenation of Octine, Cinnamaldehyde, and Naphthalene with SCILL Catalysts 297     14.4.4 Hydrogenation of Citral with SCILL Catalysts 298     14.5 Conclusions and Outlook 300     Acknowledgments 300     Symbols Used 300     Greek Symbols 301     Abbreviations and Subscripts 301     References 302     15 Supported Ionic Liquid Phase (SILP) Materials in Hydroformylation Catalysis 307  Andreas Schonweiz and Robert Franke     15.1 SILP Materials in Liquid-Phase Hydroformylation Reactions 307     15.2 Gas-Phase SILP Hydroformylation Catalysis 311     15.3 SILP Combined with scCO2     Extending the Substrate Range 319     15.4 Continuous SILP Gas-Phase Methanol Carbonylation 322     15.5 Conclusion and Future Potential 323     References 324     16 Ultralow Temperature Water   Gas Shift Reaction Enabled by Supported Ionic Liquid Phase Catalysts 327  Sebastian Werner and Marco Haumann     16.1 Introduction to Water   Gas Shift Reaction 327     16.1.1 Heterogeneous WGS Catalysts 327     16.1.2 Homogeneous WGS Catalysts 329     16.2 Challenges 332     16.3 SILP Catalyst Development 332     16.4 Building-Block Optimization 333     16.4.1 Catalyst Precursor 334     16.4.2 Support Material 335     16.4.3 IL Variation 337     16.4.4 Catalyst Loading 338     16.4.5 IL Loading 339     16.4.6 Combination of Optimized Parameters 340     16.5 Application-Specific Testing 341     16.5.1 Restart Behavior 341     16.5.2 Industrial Support Materials 343     16.5.3 Elevated Pressure 345     16.5.4 Reformate Synthesis Gas Tests 346     16.6 Conclusion 348     References 348     17 Biocatalytic Processes Based on Supported Ionic Liquids 351  Eduardo Garc'ya-Verdugo, Pedro Lozano, and Santiago V. Luis     17.1 Introduction and General Concepts 351     17.1.1 Enzymes and Ionic Liquids 351     17.1.2 Supported ILs for Biocatalytic Processes 353     17.1.3 Reactor Configurations with Supported ILs for Biocatalytic Processes 355     17.2 Biocatalysts Based on Supported Ionic Liquid Phases (SILPs) 356     17.3 Biocatalysts Based on Covalently Supported Ionic Liquid-Like Phases (SILLPs) 360     17.4 Conclusions/Future Trends and Perspectives 365     Acknowledgments 365     References 365     18 Supported Ionic Liquid Phase Catalysts with Supercritical Fluid Flow 369  Rub'en Duque and David J. Cole-Hamilton     18.1 Introduction 369     18.2 SILP Catalysis 369     18.2.1 Liquid-Phase Reactions 369     18.2.2 Gas-Phase Reactions 370     18.2.3 Supercritical Fluids 371     18.2.4 SCF IL Biphasic Systems 372     18.2.5 SILP Catalysis with Supercritical Flow 375     References 381     Part IV Special Applications 385     19 Pharmaceutically Active Supported Ionic Liquids 387  O. Andreea Cojocaru, Amal Siriwardana, Gabriela Gurau, and Robin D. Rogers     19.1 Active Pharmaceutical Ingredients in Ionic Liquid Form 387     19.2 Solid-Supported Pharmaceuticals 389     19.3 Silica Materials for Drug Delivery 389     19.4 Factors That Influence the Loading and Release Rate of Drugs 391     19.4.1 Adsorptive Properties (Pore Size, Surface Area, Pore Volume) of Mesoporous Materials 391     19.4.1.1 Pore Size 391     19.4.1.2 Surface Area 392     19.4.1.3 Pore Volume 392     19.4.2 Surface Functionalization of Mesoporous materials 392     19.4.3 Drug Loading Procedures 394     19.4.3.1 Covalent Attachment 394     19.4.3.2 Physical Trapping 394     19.4.3.3 Adsorption 395     19.5 SILPs Approach for Drug Delivery 395     19.5.1 ILs Confined on Silica 395     19.5.2 API-ILs Confined on Silica 396     19.5.2.1 Synthesis and Characterization of SILP Materials 396     19.5.2.2 Release Studies of the API-ILs from the SILP Materials 399     19.6 Conclusions 402     References 402     20 Supported Protic Ionic Liquids in Polymer Membranes for Electrolytes of Nonhumidified Fuel Cells 407  Tomohiro Yasuda and Masayoshi Watanabe     20.1 Introduction 407     20.2 Protic ILs as Electrolytes for Fuel Cells 409     20.2.1 Protic ILs 409     20.2.2 Thermal Stability of Protic IL 410     20.2.3 PILs Preferable for Fuel Cell Applications 411     20.3 Membrane Fabrication Including PIL and Fuel Cell Operation 411     20.3.1 Membrane Preparation 411     20.3.2 Fuel Cell Operation Using Supported PILs in Membranes 414     20.4 Proton Conducting Mechanism during Fuel Cell Operation 415     20.5 Conclusion 417     Acknowledgments 418     References 418     21 Gas Separation Using Supported Ionic Liquids 419  Marco Haumann     21.1 SILP Materials 419     21.1.1 SILP-Facilitated GC 423     21.2 Supported Ionic Liquid Membranes (SILMs) 428     21.2.1 Gas Separation 429     21.2.2 Gas Separation and Reaction 437     21.3 Conclusion 440     References 441     22 Ionic Liquids on Surfaces     a Plethora of Applications 445  Thomas J. S. Schubert     22.1 Introduction 445     22.2 The Influence of ILs on Solid-State Surfaces 445     22.3 Layers of ILs on Solid-State Surfaces 446     22.4 Selected Applications 446     22.5 Sensors 447     22.6 Electrochemical Double Layer Capacitors (Supercapacitors) 449     22.7 Dye Sensitized Solar Cells 451     22.8 Lubricants 452     22.9 Synthesis and Dispersions of Nanoparticles 453     References 454     Part V Outlook 457     23 Outlook     the Technical Prospect of Supported Ionic Liquid Materials 459  Peter Wasserscheid     23.1 Competitive Advantage 460     23.2 Observability 462     23.3 Trialability 462     23.4 Compatibility 463     23.5 Complexity 463     23.6 Perceived Risk 464     References 465     Index 467




نظرات کاربران