ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Student Reasoning in Organic Chemistry: Research Advances and Evidence-based Instructional Practices

دانلود کتاب استدلال دانش‌آموز در شیمی آلی: پیشرفت‌های پژوهشی و شیوه‌های آموزشی مبتنی بر شواهد

Student Reasoning in Organic Chemistry: Research Advances and Evidence-based Instructional Practices

مشخصات کتاب

Student Reasoning in Organic Chemistry: Research Advances and Evidence-based Instructional Practices

ویرایش: [10] 
نویسندگان: ,   
سری: Advances in Chemistry Education 
ISBN (شابک) : 9781839164910 
ناشر: Royal Society of Chemistry 
سال نشر: 2023 
تعداد صفحات: 383
[384] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 Mb 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Student Reasoning in Organic Chemistry: Research Advances and Evidence-based Instructional Practices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب استدلال دانش‌آموز در شیمی آلی: پیشرفت‌های پژوهشی و شیوه‌های آموزشی مبتنی بر شواهد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب استدلال دانش‌آموز در شیمی آلی: پیشرفت‌های پژوهشی و شیوه‌های آموزشی مبتنی بر شواهد

استدلال در مورد واکنش ساختاری و فرآیندهای شیمیایی یک صلاحیت کلیدی در شیمی است. به‌ویژه در شیمی آلی، دانش‌آموزان در تفسیر مناسب بازنمایی‌های آلی و استدلال در مورد علت اصلی مکانیسم‌های آلی مشکل دارند. از آنجایی که شیمی آلی اغلب گلوگاهی برای موفقیت دانش آموزان در حرفه خود است، گردآوری و تقطیر بینش حاصل از تحقیقات اخیر در این زمینه به آموزش آینده و توانمندسازی دانشجویان شیمی در سراسر جهان کمک می کند. این کتاب گروه‌های تحقیقاتی پیشرو را گرد هم می‌آورد تا پیشرفت‌های اخیر در تحقیقات آموزش شیمی را با تمرکز بر توصیف استدلال دانش‌آموزان و شایستگی‌های بازنمایی آنها، و همچنین تأثیر شیوه‌های آموزشی و ارزیابی در شیمی آلی، برجسته کند. این عنوان که توسط رهبران این رشته نوشته شده است، برای محققان آموزش شیمی، مدرسان و پزشکان و دانشجویان تحصیلات تکمیلی در آموزش شیمی ایده آل است.


توضیحاتی درمورد کتاب به خارجی

Reasoning about structure-reactivity and chemical processes is a key competence in chemistry. Especially in organic chemistry, students experience difficulty appropriately interpreting organic representations and reasoning about the underlying causality of organic mechanisms. As organic chemistry is often a bottleneck for students’ success in their career, compiling and distilling the insights from recent research in the field will help inform future instruction and the empowerment of chemistry students worldwide. This book brings together leading research groups to highlight recent advances in chemistry education research with a focus on the characterization of students’ reasoning and their representational competencies, as well as the impact of instructional and assessment practices in organic chemistry. Written by leaders in the field, this title is ideal for chemistry education researchers, instructors and practitioners, and graduate students in chemistry education.



فهرست مطالب

Front Cover
Student Reasoning in Organic Chemistry
Dedication
Foreword
Preface
Contents
SECTION A
	Chapter 1 - Students’ Attention on Curved Arrows While Evaluating the Plausibility of an Organic Mechanistic Step
		1.1 Introduction
		1.2 Theoretical Framework
			1.2.1 Abstractness
			1.2.2 Student Reasoning
			1.2.3 Eye Tracking
		1.3 Research Questions
		1.4 Methods
			1.4.1 Context and Participants
			1.4.2 Data Collection
			1.4.3 Data Analysis
		1.5 Results and Discussion
			1.5.1 Explicit and Implicit Features
			1.5.2 Specific and General Terminology
			1.5.3 Reasoning Based on Sequence vs. Chaining
			1.5.4 AOIs
			1.5.5 Success
		1.6 Conclusions, Implications, and Limitations
		Acknowledgements
		References
	Chapter 2 - Supporting Spatial Thinking in Organic Chemistry Through Augmented Reality—An Explorative Interview Study
		2.1 Introduction
			2.1.1 Multiple External Representations in Organic Chemistry Learning
			2.1.2 Spatial Reasoning in Organic Chemistry
		2.2 Augmented Reality as an Instructional Aid in Organic Chemistry
		2.3 Aim of the Study
		2.4 Sample and Design
		2.5 Results
			2.5.1 Task 1—Translation Between a Dash-wedge Notation and a Newman Projection
			2.5.2 Task 2—Generating a Newman Projection from a Given Dash-wedge Notation
			2.5.3 Task 3—Translating Between Two Ball-and-stick Models
			2.5.4 Task 4—Determine the Product Conformation
		2.6 Discussion
		References
	Chapter 3 - Representational Competence Under the Magnifying Glass-The Interplay Between Student Reasoning Skills, Conceptual Understanding, and the Nature of Representations†
		3.1 Introduction
			3.1.1 The Role of Representational Competence in Organic Chemistry
			3.1.2 The Interplay Between the Nature of Representations, Conceptual Understanding, and Reasoning
		3.2 Study Design and Methods
		3.3 Findings
			3.3.1 Students\' Reasoning While Interpreting Dash-wedge Diagrams and Newman Projections
				3.3.1.1 Description of the Interpretation Tasks
				3.3.1.2 Interpreting Dash-wedge Diagrams
				3.3.1.3 Interpreting Newman Projections
			3.3.2 Students\' Reasoning While Translating Between Dash-wedge Diagrams and Newman Projections
				3.3.2.1 Description of the Translation Tasks
				3.3.2.2 Translating from Dash-wedge Diagrams to Newman Projections
				3.3.2.3 Translating from Newman Projections to Dash-wedge Diagrams
			3.3.3 Students\' Reasoning While Generating a Newman Projection from a Dash-wedge Diagram
				3.3.3.1 Description of the Generation Task
				3.3.3.2 Generating a Newman Projection from a Dash-wedge Diagram
			3.3.4 Students\' Reasoning While Using Newman Projections to Make Inferences About Stability
				3.3.4.1 Description of the Use Tasks
				3.3.4.2 Using Newman Projections to Make Inferences About Stability
		3.4 Summary of Findings and Conclusions
			3.4.1 Summary of Findings Across the Tasks that Focused on Various Representational Competence Skills
			3.4.2 Summary of Findings for Each Representative Student
			3.4.3 Conclusions
		3.5 Implications
			3.5.1 Implications for Instruction
			3.5.2 Implications for Research
		Acknowledgements
		References
SECTION B
	Chapter 4 - Fostering Causal Mechanistic Reasoning as a Means of Modelling in Organic Chemistry
		4.1 Introduction
		4.2 Causal Mechanistic Reasoning Underpins Expert-like Modeling
		4.3 Characterizing Causal Mechanistic Reasoning Across Different Reactions
		4.4 Eliciting Causal Mechanistic Reasoning—Attention to Scaffolding
		4.5 Causal Mechanistic Reasoning in Organic Chemistry
		4.6 Characterizing the Relationship Between Reasoning and Arrow Drawings
		4.7 Summary
		4.8 Strategies for Fostering Causal Mechanistic Reasoning in Learning Environments
		Acknowledgements
		References
	Chapter 5 - Students’ Reasoning in Chemistry Arguments and Designing Resources Using Constructive Alignment
		5.1 Introduction
			5.1.1 Citizens Need to be Able to Reason with Scientific Evidence
		5.2 Framework—Reasoning, Granularity, and Comparisons
			5.2.1 Modes of Reasoning
			5.2.2 Levels of Granularity—Moving Between Grain Sizes
			5.2.3 Comparison—Considering Alternatives
		5.3 Students’ Arguments Can Vary Between Tasks
		5.4 Supporting Student Learning Through Constructive Alignment
			5.4.1 Instructional Design
			5.4.2 Scaffolding Skill Development
			5.4.3 Resources for Constructively Aligning Reasoning into a Course
		5.5 Conclusions
		References
	Chapter 6 - From Free Association to Goal-directed Problem-solving-Network Analysis of Students\' Use of Chemical Concepts in Mechanistic Reasoning†
		6.1 Introduction
		6.2 Theoretical Background
			6.2.1 Reasons for Students’ Difficulties with Mechanistic Reasoning
			6.2.2 Organization of Knowledge Structure Through Cognitive Networks
		6.3 Research Questions
		6.4 Method
			6.4.1 Cohort
			6.4.2 Case Comparison Tasks
			6.4.3 Data Collection and Analysis
		6.5 Results
		6.6 Discussion and Conclusions
			6.6.1 Implications for Teaching
		Acknowledgements
		References
	Chapter 7 - Epistemic Stances in Action—Students’ Reasoning Process While Reflecting About Alternative Reaction Pathways in Organic Chemistry
		7.1 Introduction
			7.1.1 Reasoning in Students’ Argumentation
			7.1.2 Toward an Understanding of Epistemic Stances
		7.2 Research Questions
		7.3 Study Design and Methods
			7.3.1 Data Analysis
		7.4 Results and Discussion
			7.4.1 Case 1—Taylor
			7.4.2 Case 2—Robin
		7.5 Conclusion and Implications
		Acknowledgements
		References
	Chapter 8 - How Do Students Reason WhenThey Have to Describe the“What” and “Why” of a GivenReaction Mechanism?†
		8.1 Introduction
		8.2 Theoretical Background—Mechanistic Reasoning and Writing-to-learn in Organic Chemistry
		8.3 Research Questions
		8.4 Methods
			8.4.1 The Course “Training OC”
			8.4.2 Sample
			8.4.3 The Coding Process
		8.5 Results and Discussion
			8.5.1 RQ1: What is the Quality of Students’ Reasoning Regarding Their Description of the “What” of the Given Reaction Mechanism
				8.5.1.1 Properties of Entities
				8.5.1.2 Activities of Entities
			8.5.2 RQ2: What is the Quality of Students’ Reasoning Regarding Their Description of the “Why” of the Given Reaction Mechanism
				8.5.2.1 Charges
				8.5.2.2 Bonding
				8.5.2.3 Brønsted
				8.5.2.4 Nucleophile–Electrophile
		8.6 Limitations
		8.7 Implications
		Acknowledgements
		References
	Chapter 9 - In-the-moment Learning of Organic Chemistry During Interactive Lectures Through the Lens of Practical Epistemology Analysis
		9.1 Introduction
			9.1.1 Practical Epistemology Analysis (PEA)
		9.2 Methodology
			9.2.1 Study Context
			9.2.2 Data Collection
			9.2.3 Data Analysis
		9.3 Results and Discussion
			9.3.1 What Drives Student In-the-moment Learning—Gap Patterns
				9.3.1.1 Pattern 1
				9.3.1.2 Pattern 2
			9.3.2 How Students Learn In-the-moment of Group Discussions—Relation Patterns
		9.4 Conclusions and Implications
		Acknowledgements
		References
SECTION C
	Chapter 10 - Flipped Classrooms in Organic Chemistry—A Closer Look at Student Reasoning Through Discourse Analysis of a Group Activity
		10.1 Introduction
			10.1.1 Pre-class Activity—Videos
			10.1.2 Pre-class Activity—Quizzes
			10.1.3 In-class Activity—Student Response Systems
			10.1.4 In-class Activity–Group Work
		10.2 Student Dialogue in a Flipped Course—A Case Study
			10.2.1 The ICAP Framework
			10.2.2 Argumentation and Student Reasoning in Organic Chemistry
			10.2.3 Course Context and Participants
			10.2.4 Group Quiz Format
			10.2.5 Data Collection and Analysis
		10.3 Findings
			10.3.1 Group A Summary
			10.3.2 Quiz 2, Prompt 5—Group B
			10.3.3 ICAP Analysis—Comparison of Group A to Group B
			10.3.4 Argumentation—Comparison of Group A to Group B
		10.4 Conclusions and Implications
			10.4.1 Scaffolding Questions to Promote Argumentation
			10.4.2 Group Composition and Roles
			10.4.3 Incorporating Student Observations in Assessment of Group Activities
		Acknowledgements
		References
	Chapter 11 - Systemic Assessment Questions as a Means of Assessment in Organic Chemistry
		11.1 Introduction
		11.2 The Role of Scientific Reasoning Skills in Developing Meaningful Understanding in Organic Chemistry
		11.3 Assessment of Students’ Meaningful Understanding in the Context of SATL
			11.3.1 Systemic Diagrams and Systemic Assessment Questions
			11.3.2 Assessment of SAQs
		11.4 Research on Systemic Diagrams in Organic Chemistry Education
		11.5 Example of an Activity to Assess Students Meaningful Understanding with SAQs Diagrams in Organic Chemistry Lessons
		11.6 Conclusions and Implications
		References
	Chapter 12 - Variations in the Teaching of
Resonance—An Exploration of
Organic Chemistry Instructors’
Enacted Pedagogical Content
Knowledge†
		12.1 Introduction
		12.2 Theoretical Framework
			12.2.1 PCK in the Sciences
			12.2.2 Coming to a Consensus on PCK
			12.2.3 Tying It All Together
		12.3 Methods
			12.3.1 Participants
			12.3.2 Data Collection
			12.3.3 Data Analysis
		12.4 Results
			12.4.1 Grouping Instructors by ePCK
			12.4.2 Integrating ePCK Components
			12.4.3 Student Conceptions of the Resonance Hybrid
		12.5 Discussion
			12.5.1 RQ1—Characterizing Instructors’ ePCK
			12.5.2 RQ2—Instructor ePCK and Student Outcomes
		12.6 Limitations
		12.7 Conclusions and Implications
		Acknowledgements
		References
	Chapter 13 - Investigation of Students’ Conceptual Understanding in Organic Chemistry Through Systemic Synthesis Questions
		13.1 Introduction—Conceptual Understanding in Organic Chemistry
		13.2 Theoretical Foundation
			13.2.1 Organic Reaction Mechanism Problems and Mechanistic Reasoning
			13.2.2 Mental Models and Conceptual Models
			13.2.3 Systemic Diagrams and Systemic Assessment Questions as Effective Conceptual Models
		13.3 Assessing the Quality of Students’ Mental Models and/or Conceptual Structures in Organic Chemistry
			13.3.1 Research Problem, Objectives and Tasks
			13.3.2 Description of Scoring Scheme Applied to the Students’ Generated SSynQs and Obtained Results
		13.4 Concluding Remarks and Implications for Instruction
		Acknowledgements
		References
	Chapter 14 - Disciplining Perception Spatial Thinking in Organic Chemistry Through Embodied Actions
		14.1 Introduction
			14.1.1 Perceptual Learning with Visual Representations
			14.1.2 Disciplining Perception Through Embodied Actions
		14.2 Present Study
			14.2.1 Methods
			14.2.2 Case 1—Making the Steps for Spatial Thinking Visible
				14.2.2.1 Action 1. Betty Directs Attention to Spatial Information
				14.2.2.2 Action 2. Betty Performs a Perceptual Stance
				14.2.2.3 Action 3. Betty Physically Represents 3D Information
				14.2.2.4 Summary of Case 1
			14.2.3 Case 2—Performing Spatial Thinking in a Large Lecture Hall
				14.2.3.1 Action 1. Mike Directs Attention to Spatial Information
				14.2.3.2 Action 2. Mike Performs a Perceptual Stance
				14.2.3.3 Action 3. Mike Physically Represents 3D Information
				14.2.3.4 Summary of Case 2
			14.2.4 Cross-case Analysis
		14.3 Conclusion
		Acknowledgements
		References
	Chapter 15 - Building Bridges Between
Tasks and Flasks—Design of a
Coherent Experiment-supported
Learning Environment for
Deep Reasoning in Organic
Chemistry†
		15.1 Introduction
		15.2 State of Research and Approach to Design
			15.2.1 Research on Student Reasoning
			15.2.2 Design Objectives and Design Principles
			15.2.3 Aggregation and Arrangement of Reaction Mechanisms and Concepts in a Coherent Learning Environment
		15.3 Developments for Secondary and Tertiary Education
			15.3.1 Secondary Education: Learning to Think in Mechanistic Alternatives—SN1 vs. E1 Reactions
			15.3.2 Tertiary Education: Exploring Electronic Substituent Effects—Alkaline Hydrolysis of Substituted Ethyl Benzoates
		15.4 Implications for Implementation and Teaching
		15.5 Conclusion
		Acknowledgements
		References
SECTION D
	Chapter 16 - Assessment of Assessment in Organic Chemistry—Review and Analysis of Predominant Problem Types Related to Reactions and Mechanisms
		16.1 Introduction
			16.1.1 Chapter Scope
		16.2 Individual Reactions
		16.3 Synthesis
			16.3.1 Student Solutions to Traditional Synthesis Tasks
			16.3.2 Non-traditional Assessment of Synthesis
		16.4 Electron-pushing Mechanisms (EPMs)
			16.4.1 Traditional Electron-pushing Tasks
			16.4.2 Non-traditional Mechanistic Reasoning Tasks
		16.5 Conclusions
		Acknowledgements
		References
	Chapter 17 - Developing Machine Learning Models for Automated Analysis of Organic Chemistry Students’ Written Descriptions of Organic Reaction Mechanisms
		17.1 Introduction
			17.1.1 Eliciting Students’ Mechanistic Reasoning in Organic Chemistry Through Writing
			17.1.2 Machine Learning for Analyzing Student Writing in Chemistry
		17.2 Theoretical Framework
		17.3 Research Questions
		17.4 Methods
			17.4.1 Setting and Participants
			17.4.2 Writing-to-learn Assignments and Implementation
			17.4.3 Data Collection
			17.4.4 Data Analysis
				17.4.4.1 Analytical Framework
				17.4.4.2 Reliability
				17.4.4.3 Development of Automated Text Analysis Models
		17.5 Results and Discussion
			17.5.1 RQ1—How do Students Respond to WTL Assignments Intended to Elicit How and Why Organic Reaction Mechanisms Occur
			17.5.2 RQ2—Does Automated Text Analysis Allow for Predictions of the Components Included in Students’ Written Mechanistic Descrip...
		17.6 Implications
			17.6.1 Implications for Research
			17.6.2 Implications for Practice
		17.7 Limitations
		17.8 Conclusions
		References
	Chapter 18 - Development of a Generalizable Framework for Machine Learning-based Evaluation of Written Explanations of Reaction Mechanisms from the Post-secondary Organic Chemistry Curriculum
		18.1 Are Drawn Reaction Mechanisms Enough to Evaluate Understanding
		18.2 Learner Understanding of Reaction Mechanisms
		18.3 Assessment of Learner Understanding of Reaction Mechanisms
		18.4 Training Machine Learning Models for Automated Text Analysis
		18.5 Framework for Evaluating Understanding of Reaction Mechanisms
			18.5.1 Levels of Explanation Sophistication
			18.5.2 Evaluating Understanding of Electrophiles
		18.6 Implications for Educators
		18.7 Implications for Researchers
		18.8 A Path toward Better Learning
		Acknowledgements
		References
	Chapter 19 - The Central Importance of
Assessing “Doing Science” to
Research and Instruction†
		19.1 Introduction
		19.2 Assessment 101
			19.2.1 Observation
			19.2.2 Interpretation
			19.2.3 Conceptual Change
			19.2.4 How Observation, Interpretation, and Cognition Work Together
		19.3 Assessing Work Aligned with the Practice of Chemistry
		19.4 3D Assessments as Research Tools
		19.5 3D Assessments as a Vital Part of 3D Learning Environments
		19.6 Future Directions for Research on 3D Assessments
		19.7 Conclusion
		Acknowledgements
		References
Postface
Biographies of Authors
Subject Index




نظرات کاربران