دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Alon Chen (editor)
سری:
ISBN (شابک) : 0128139838, 9780128139837
ناشر: Academic Press Inc
سال نشر: 2019
تعداد صفحات: 373
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Stress Resilience: Molecular and Behavioral Aspects به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تاب آوری به استرس: جنبه های مولکولی و رفتاری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تابآوری استرس: جنبههای مولکولی و رفتاری اولین مرجع موجود در وسعت کامل تحقیقات پیشرفتهای را که در این زمینه انجام میشود، ارائه میکند. این شامل طیف گسترده ای از دانش مولکولی پایه در مورد ارتباط بالقوه بین پدیده انعطاف پذیری و تعادل بیوشیمیایی است، اما همچنین بر مکانیسم های مولکولی و سلولی زیربنای تاب آوری استرس تمرکز دارد. کارشناسان مشهور جهانی فصلهایی را ارائه میکنند که همه چیز را از مدارهای عصبی انعطافپذیری، اثرات ناملایمات اولیه زندگی، و میراث فرانسلی انعطافپذیری را پوشش میدهد.
این کتاب بینظیر و بهموقع منبعی مناسب برای دانشمندان علوم اعصاب و روانپزشکان بیولوژیکی خواهد بود که میخواهند درک خود را از پیامدهای استرس و نحوه اجتناب از آن برخی افراد بهبود بخشند.
Stress Resilience: Molecular and Behavioral Aspects presents the first reference available on the full-breadth of cutting-edge research being carried out in this field. It includes a wide range of basic molecular knowledge on the potential associations between resilience phenomenon and biochemical balance, but also focuses on the molecular and cellular mechanisms underlying stress resilience. World-renowned experts provide chapters that cover everything from the neural circuits of resilience, the effects of early-life adversity, and the transgenerational inheritance of resilience.
This unique and timely book will be a go-to resource for neuroscientists and biological psychiatrists who want to improve their understanding of the consequences of stress and on how some people are able to avoid it.
Cover Stress Resilience Copyright Dedication Contributors About the editor Preface Acknowledgments 1 - A life-course, epigenetic perspective on resilience in brain and body Introduction What is stress? Definition of stress, allostasis, and allostatic load Protection and damage as the two sides of the response to experiences Brain as the central organ of allostasis and allostatic load/overload Plasticity and vulnerability of the hippocampus Cellular processes involved in structural plasticity Extension of stress effects to amygdala and prefrontal cortex Other mediators of structural plasticity Glucocorticoids as key players in PTSD vulnerability Sex differences Lessons of an ever-changing brain from gene expression Epigenetics: two meanings that are both important for prevention and treatment Individual differences and experiences throughout the life course Early-life experiences Intervention References 2 - Cognitive and behavioral components of resilience to stress Resilience: one of many possible responses to stress or trauma Cognitive and behavioral components of the psychosocial factors associated with resilience Optimism Cognitive flexibility Active coping skills and a strong social support network Physical activity A personal moral compass Cultivating psychosocial factors to promote resilience Encourage optimism, attend to pessimism, and aspire for flexibility Face your fears Connect with a resilient role model Form and maintain a supportive social network Attend to physical health and well-being Attend to your personal moral compass; identify and foster your character strengths References 3 - Resilience as a process instead of a trait Introduction Learning-to-cope training Learning to cope inferred from hormones and behavior Neurobiology of learning to cope Limitations Conclusions References 4.- The brain mineralocorticoid receptor: a resilience factor for psychopathology? The brain mineralocorticoid receptor Mineralocorticoid receptor activation and neuronal activity Mineralocorticoid receptors and cognitive function in rodents Pharmacology, genetic variation, and vulnerability to psychopathology in humans The mineralocorticoid and hypothalamus-pituitary-adrenal axis activity The mineralocorticoid, learning, and stress appraisal in humans The mineralocorticoid receptor and resilience and vulnerability for psychiatric disorders Concluding remarks Brain mineralocorticoids important for resilience? Future directions References 5.- GABAB receptors, depression, and stress resilience: a tale of two isoforms Introduction The impact of stress-related psychiatric disorders and their treatments on GABAB receptor density, gene expression and function Effects of antidepressants on GABAB receptor density in rodents Effects of antidepressants on GABAB receptor function in rodents Clinical evidence of altered GABAB receptor density and function in depression and the antidepressant response Alterations in GABAB receptor density and function in animal models of stress and depression Effects of GABAB receptor modulation on depression-like behaviors The role of GABAB1 receptor subunit isoforms in stress resilience Potential mechanisms underlying the differential roles of GABAB1a and GABAB1b receptor subunit isoforms in stress resilience The serotonin neurotransmitter system The hypothalamic-pituitary-adrenal axis Location, location, location… Adult hippocampal neurogenesis: a mechanism for resilience? Conclusions Acknowledgements References 6 - Sex differences in the programming of stress resilience Introduction Sex x life span interaction in producing resilience Sex hormone x life span interaction in producing resilience Sex chromosome x life span interaction in producing resilience Conclusion Acknowledgments References 7 - Active resilience in response to traumatic stress Resilience—a passive lack of effect or an active response? Two isozymes of glutamic acid decarboxylase GAD genes are regulated in response to fear and stress GAD is required for resilience GAD65 haplodeficiency conveys stress resilience GAD65 and stress resilience—a complex picture Summary Acknowledgments References 8 - Rhythms of stress resilience Hypothalamic-pituitary-adrenal axis rhythms Circadian rhythm and stress response The importance of pulsatility for hormonal and behavioral response to stress Glucocorticoid rhythms and the response to stress in physiological and pathological conditions Cortisol rhythms and stress resilience in humans References 9 - Mitochondrial function and stress resilience Introduction The mitochondrion Mitochondria in neurotransmission and synaptic plasticity Mitochondria and glucocorticoids Mitochondrial dysfunction in stress-related disorders: human studies Stress effects in mitochondrial function: animal studies Promoting stress resilience through activation of mitochondrial function Conclusions and future perspectives References 10 - Understanding resilience: biological approaches in at-risk populations Introduction Definitions and measurement of resilience Biological facets of resilience Genetics Candidate studies Genome-wide unbiased studies Physiology Neuroimaging Resilience as a multidimensional trait Conclusion/summary Acknowledgments References 11 - Stress resilience as a consequence of early-life adversity Introduction Early-life stress—definition of the term Early-life stress is a risk factor for psychiatric disorders Early-life stress shapes adult phenotypes What is the rationale for shaping adult phenotypes by early-life experiences? Evidence for the match/mismatch theory in humans Evidence for the match/mismatch theory in animal studies Conclusions References 12 - Mechanisms by which early-life experiences promote enduring stress resilience or vulnerability Introduction The degree of predictability of maternal care influences long-lasting cognitive and emotional resilience or vulnerability Studying early-life experiences experimentally Disrupted maternal care Augmented/predictable maternal care Cognitive and emotional outcomes of early-life experiences A spectrum of cognitive consequences of early-life experiences Emotional consequences of early-life experience Mechanisms by which early-life experiences elicit enduring changes in neuronal, circuit, and behavioral functions Stress-sensitive neurons in the hypothalamus are influenced by early-life stress as well as by augmented early-life experience Memory consequences of early-life stress and experiences—a hippocampal story Early-life experiences affect a number of brain systems How the consequences of early-life experience are encoded long-term: transcriptional and epigenetic mechanisms Conclusions Acknowledgments References 13 - Child abuse and neglect: stress responsivity and resilience Stress responsivity physiology Hypothalamic-pituitary-adrenal axis physiology Childhood maltreatment influence on hypothalamic-pituitary-adrenal/sympathetic nervous system response to stress Sympathetic nervous system Glucocorticoid feedback regulation of stress responsivity Epigenetics of stress responsivity Stress responsivity neural circuits Stress responsivity and inflammation Stress responsivity and resilience Resilient stress responses: CRFR1/OPRL1/5HTLPR/BDNF/NPY/DHEA Treatment/implications/future Financial Disclosures References 14 - How genes and environment interact to shape risk and resilience to stress-related psychiatric disorders Introduction Prenatal development Infancy Childhood Adolescence Adulthood Conclusions References 15 - Molecular characterization of the resilient brain: transcriptional and epigenetic mechanisms Introduction DNA methylation Chromatin modifications MicroRNAs Transcription factors Immune-related processes Neurotrophic factors Circuit-related molecules Genome-wide studies Future directions Summary References 16 - The role of the CRF-urocortin system in stress resilience Introduction to the corticotropin-releasing factor/urocortin system The corticotropin-releasing factor/urocortin system as a critical mediator of the behavioral stress response The corticotropin-releasing factor/urocortin system mediates stress vulnerability caused by chronic stress exposure Corticotropin-releasing factor/urocortin system mechanisms influencing resilience Corticotropin-releasing factor system genetic variance x environment interactions Epigenetic regulation of corticotropin-releasing factor system expression Stress regulation of CRFR1 availability Stress-induced changes in CRFR2 expression Corticotropin-releasing protein–binding protein function Alterations in intracellularly activated signaling pathways Conclusion References 17 - Intergenerational transmission of stress vulnerability and resilience Introduction Foundational populations: studies of the Dutch hunger winter and holocaust survivor offspring Maternal versus paternal transmission Maternal transmission Paternal transmission Hypothesized mechanisms of transmission Intergenerational transmission of resilience Conclusions and future directions References 18- Stress and its effects across generations What is epigenetic inheritance? Why epigenetic inheritance? Germline versus non–germline transmission Germline-dependent transmission Non–germline transmission Preclinical and clinical studies of inheritance of stress susceptibility Inherited effects of stress in rodents Stress in utero Early life stress Adolescent and adult stress models Environmental enrichment Inter- and transgenerational stress effects in humans In utero Postnatal stress Other environmental factors that may impact stress response across generations Drugs of abuse Relevance of studying inheritance of the effects of stress for society References 19 - Corticolimbic stress regulatory circuits, hypothalamo–pituitary–adrenocortical adaptation, and resilience Glucocorticoid signaling, stress, and reslience Neural circuitry of stress regulation Limbic regulation of hypothalamo–pituitary–adrenocortical axis stress responses: hippocampus, amygdala, and prefrontal cortex General organizational scheme of limbic stress regulation Hippocampus Amygdala Medial prefrontal cortex Integration of hippocampal, prefrontal, and amygdala projections Bed nucleus of the stria terminalis Paraventricular thalamus Hypothalamic and brain stem circuitry Toward a neurocircuitry of stress resilience Acknowledgments References 20 - Biomarkers of resilience and susceptibility in rodent models of stress Introduction Experimental strategies Prospective strategies Retrospective strategies Potential additional biomarkers Conclusion Acknowledgments References 21 - Maladaptive learning and the amygdala—prefrontal circuit Modeling stress and anxiety disorders through behavioral paradigms of learning Cognitive and physiological components of emotional learning Associative learning in the amygdala: a preference for aversion Associative learning in the medial prefrontal cortex: mixed selectivity encoding The prelimbic and infralimbic subregions of the medial prefrontal cortex in associative learning Overview of amygdala—prefrontal communication during aversive emotional learning Directionality of amygdala–prefrontal communication during acquisition of stimulus discrimination Amygdala–prefrontal communication during recall of learned associations A unified view of mPFC–BLA circuit function in adaptive learning References Suggested Reading 22 - Endocannabinoid signaling and stress resilience Impact of stress on endocannabinoid signaling Endocannabinoid regulation of the stress response Endocannabinoid signaling in the context of susceptibility and resilience to repeated stress Conclusions References Index A B C D E F G H I L M N O P R S T U V W Back Cover